
Finite identification of functions by teams with success ratio 1
2

and above

Sanjay Jain

Department of Information Systems and Computer Science

National University of Singapore

Lower Kent Ridge Road, Singapore 0511

Republic of Singapore

Email: sanjay@iscs.nus.sg

Arun Sharma

School of Computer Science and Engineering

The University of New South Wales

Sydney, NSW 2052, Australia

Email: arun@cse.unsw.edu.au

Mahendran Velauthapillai

Department of Computer Science

Georgetown University

Washington, D. C. 20057, USA

Email: mahe@cs.georgetown.edu

March 12, 2007

Abstract

Consider a scenario in which an algorithmic machine, M, is being fed the graph of a
computable function f . M is said to finitely identify f just in case after inspecting a finite
portion of the graph of f it emits its first conjecture which is a program for f , and it never
abandons this conjecture thereafter. A team of machines is a multiset of such machines.
A team is said to be successful just in case each member of some nonempty subset, of
predetermined size, of the team is successful. The ratio of the number of machines required
to be successful to the size of the team is referred to as the success ratio of the team.
The present paper investigates the finite identification of computable functions by teams of
learning machines. The results presented complete the picture for teams with success ratio
1
2 and greater.

It is shown that at success ratio 1
2 , introducing redundancy in the team can result in

increased learning power. In particular it is established that larger collections of functions
can be learned by employing teams of 4 machines and requiring at least 2 to be successful
than by employing teams of 2 machines and requiring at least 1 to be successful. Surprisingly,
it is also shown that introducing further redundancy at success ratio 1

2 does not yield any
extra learning power. In particular, it is shown that the collections of functions that can be
finitely identified by a team of 2m machines requiring at least m to be successful is the same
as:

• the collections of functions that can be finitely identified by a team of 4 machines
requiring at least 2 to be successful, if m is even, and

• the collections of functions that can be identified by a team of 2 machines requiring at
least 1 to be successful, if m is odd.

These latter results require development of sophisticated simulation techniques.

1 Introduction

Consider a typical learning situation involving a learner attempting to learn a concept. The
learner is presented with data about the concept, and from time to time as data is being
received, the learner conjectures a sequence of hypotheses. Successful learning is said to take
place, just in case, the learner eventually conjectures a hypothesis that correctly explains
the concept and which hypothesis the learner never abandons. This criterion of success
is essentially the notion of learning in the limit formalized by Gold [Gol67] in his seminal
paradigm of identification.

A team of learners is a multiset of learners. A team is said to be successful just in case
each member of some nonempty subset of the team is successful. The ratio of the number
of learners required to be successful to the size of the team is referred to as the success
ratio of the team. The problem of learning in the limit a program for a recursive function
from its graph by a team of deterministic machines was motivated by Case (based on the
“non-union theorem” of L. Blum and M. Blum [BB75]), and first studied by Smith [Smi82].
The main motivation of the work on teams is to investigate how teams of learners can

1

cooperate to learn collections of computable functions (from their graphs), which collections
of functions no individual member of the team can learn alone. We direct the reader to
[Smi82, Pit89, JS90b] for description of scenarios involving teams of learners. There is an
interesting connection between identification by a team and identification by a probabilistic
learner. The notion of probabilistic learner is due to Freivalds [Fre79]. We next give an
informal description of probabilistic learners.

A probabilistic learner behaves very much like a deterministic learner except that every
now and then it has the ability to base its actions on the outcome of a random event like
a coin flip. (For a discussion of probabilistic Turing machines see Gill [Gil77].) Let p be
such that 0 ≤ p ≤ 1. A probabilistic learner, P, identifies a function f in the limit with
probability p just in case P identifies f in the limit with probability of success at least p,
where the probability is taken over all possible coin flips of P. Pitt [Pit89] showed that
for any identification criteria the collection of functions that can be identified by teams of
n learners requiring at least 1 to be successful can also be learned (according to the same
criterion of success) by a probabilistic learner with probability at least 1/n. Interestingly, for
the success criterion identification in the limit, Pitt [Pit89] also established that the converse
of the above result holds. He showed that for any positive integer n and any probability
p, if 1/(n + 1) < p ≤ 1/n, then the classes of computable functions that can be learned in
the limit by a single probabilistic machine with probability p are exactly the same as the
classes of computable functions that can be learned in the limit by a team of n deterministic
machines, at least one of which is required to be successful. As a consequence of this
result, Pitt and Smith [PS88] showed that for team identification in the limit of computable
functions, introducing redundancy in the team does not yield any additional learning power.
In other words, for all k > 0, multiplying both the number of learners in the team and the
number of learners required to be successful by k, does not increase the learning ability of
the team for identification in the limit of computable functions.

The present paper investigates the above questions for a more practical learning criterion
than learning in the limit, namely, finite identification. In this setting, a machine, fed the
graph of a computable function f , outputs a (possibly empty) sequence of programs. The
machine is said to finitely identify f just in case its first conjecture (which should exist)
is a program for f and the learner sticks to this first conjecture1. Finite identification of
functions by a probabilistic machine was first studied by Freivalds [Fre79]. In this paper,
we study finite identification of functions by teams. The present study of this problem has
many interesting features. First, as a consequence of our results, an analog of the above
mentioned Pitt’s connection does not hold for team finite identification and probabilistic
finite identification. This is established by showing that there exists a success ratio at which
introducing redundancy in the team does yield extra learning ability. Second, the techniques
used in the study of finite identification turn out to be a lot more complex than the ones
required in the study of limiting identification.

We now give an informal description of the notions and results discussed in the present

1An alternative formulation of finite identification requires the learner to conjecture only one program and
that program should be correct. It can easily be seen that this later formulation is equivalent to the former,
as a learner can keep repeating its first conjecture.

2

paper.
A learning machine may be thought of as an algorithmic device that takes as input finite

initial sequences of graphs of computable functions and that from time to time conjectures
computer programs as hypotheses. The two criteria of success for a learning machine to be
successful on a function discussed above are introduced next.

A machine M is said to Ex-identify a recursive function f just in case M, fed the graph
of f in any order2, outputs a sequence of programs that converges to a correct program
for f . This criterion of success is essentially identification in the limit introduced by Gold
[Gol67]. Ex is defined to be the class of sets S of computable functions such that some
machine Ex-identifies each function in S. Intuitively, Ex provides a set theoretic summary
of the capability of machines to Ex-identify entire classes of computable functions.

A machine M is said to Fin-identify a computable function f just in case M, fed the
graph of f in any order3, scans a finite portion of the graph such that its first conjecture is
a program for f and it never abandons this first conjecture. Fin is defined to be the class
of sets S of computable functions such that some machine Fin-identifies each function in
S. This criterion of success is also referred to as finite identification. Finite identification of
functions was first studied by Gold [Gol67] and Trakhtenbrot and Barzdin [TB70]. Finite
identification may also be thought of as a special case of identification in the limit where the
learning machine is not allowed any mind changes (Case and Smith [CS83]).

We now define finite identification by teams of machines. A team of learning machines
is a multiset of learning machines. Let m and n range over the set of positive integers such
that m ≤ n. A team of n machines M1,M2, . . . ,Mn is said to Teamm

n Fin-identify a set
of recursive functions S iff (by definition) for each f ∈ S, there exist i1, i2, . . . , im, where
1 ≤ i1 < i2 · · · < im ≤ n, such that each of Mi1 ,Mi2 , . . . ,Mim , Fin-identifies f . Teamm

n Fin

is defined to be the class of sets S of recursive functions such that some team of n machines
Teamm

n Fin-identifies each function in S.
One can similarly define the criterion Teamm

n Ex-identification and its set theoretic sum-
mary Teamm

n Ex; these definitions can be traced back to Osherson, Stob, and Weinstein
[OSW86] and appeared in Pitt and Smith [PS88]. For both Teamm

n Ex and Teamm
n Fin, we

refer to the ratio m
n

as the success ratio of the team criterion.
In the context of identification in the limit, Pitt and Smith [PS88] showed the following

result for teams with success ratio 1
2 , thereby implying that for success ratio 1

2 , introducing
redundancy in the team does not yield any extra learning ability. For m ≥ 1,

Teamm
2mEx = Team1

2Ex

With a view to check if an analog of Pitt’s connection holds for finite identification, we
consider finite identification of functions by teams with success ratio 1

2 . As a contrast to the
identification in the limit case, we show the following.

Team1
2Fin ⊂ Team2

4Fin

2For the subject of this paper it suffices to consider only canonical order ((0, f(0)), (1, f(1)), . . .) of the
graph without any loss of generality.

3Again, without loss of generality, it suffices to consider only the canonical order.

3

The above result implies that for team finite identification with success ratio 1
2 , there

is a situation in which redundancy does yield extra learning power. However, the following
two results, which settle the question of team finite identification with success ratio 1

2 , show
that there is no further gain to be achieved by introducing more redundancy. For m ≥ 1,

Team2m
4mFin = Team2

4Fin

Team2m+1
4m+2Fin = Team1

2Fin

Results for success ratios > 1/2 are also presented (these results are based on [Fre79]
and [DPVW91]).

We now proceed formally. In Section 2, we introduce the notation and define the learning
paradigms discussed in this paper. In Section 3, we present our results.

2 Preliminaries

2.1 Notations

Recursion-theoretic concepts not explained below are treated in [Rog67]. N denotes the set
of natural numbers, {0, 1, 2, 3, . . .}. N+ denotes the set of positive integers, {1, 2, 3, . . .}. R
denotes the class of all recursive functions, i.e., total computable functions with arguments
and values from N . Unless otherwise specified, a, e, i, j, k, l, m, n, p, q, r, s, t, w, x, y, z,
with or without decorations, (decorations are the subscripts, superscripts, primes and the
like), range over N . Unless otherwise specified, f , g, and h, with or without decorations,
range over R. S and P , with or without decoration range over sets. S and C, with or
without decorations, range over subsets of R. η with or without decoration ranges over
possibly partial functions.

The symbol ⊆ denotes the subset relation, and ⊂ denotes proper subset. ∅ denotes the
empty set. The cardinality of a set S is denoted by card(S). By card(S) < ∞, we mean S
is a finite set. max(·),min(·), respectively denote the maximum and minimum of a set. By
convention max(∅) = 0 and min(∅) = ∞.

ϕ denotes a fixed acceptable programming system [Rog67, MY78]. ϕi denotes the partial
recursive function computed by the ith program in the ϕ-system. Φ denotes an arbitrary
Blum [Blu67] complexity measure associated with acceptable programming system ϕ.

〈·, ·〉, denoting a one to one pairing function, is a bijection from N × N to N . For a real
number x, bxc denotes the largest integer ≤ x.

2.2 Finite Function Identification

An information sequence is a mapping from N or an initial segment of N into N . We let SEQ
denote the set of all finite information sequences (i.e., information sequences with domain
an initial segment of N). We let σ and τ , with or without decorations, range over SEQ. |σ|
denotes the length of σ.

4

For a (partial) function η, which is defined for all x < n, η[n] denotes the finite sequence
σ, of length n, such that, for x < n, σ(x) = η(x).

We say that σ ∈ SEQ is consistent with τ ∈ SEQ just in case, for all x < min({|σ|, |τ |}),
σ(x) = τ(x).

We say that σ ∈ SEQ is consistent with f ∈ R just in case for all x < |σ|, σ(x) = f(x).
For an algorithmic machine M, M(σ) denotes the last conjecture output by M by the

time it has received input σ. If M has not output any conjecture by the time it has received
σ, then we let M(σ) =⊥. Hence, a learning machine can be considered as a mapping from
SEQ into N ∪ {⊥}. The following definition states this formally. We often use the terms
“learning machine” or just “machine” instead of Gold’s terminology of inductive inference
machine.

Definition 1 [Gol67]

1. A learning machine is an algorithmic device that computes a mapping from SEQ into
N ∪ {⊥}. We let M, with or without decorations, range over learning machines.

2. For σ ∈ SEQ, M(σ) denotes M’s conjecture on the finite information sequence σ.

3. We further assume that for all σ ⊆ τ , if M(σ) 6=⊥, then M(τ) 6=⊥.

Intuitively, ⊥ is a nonnumeric element that a machine issues to say that it does not
wish to conjecture a hypothesis, that is, M(σ) =⊥ denotes that M on σ does not output a
conjecture. In the sequel, all reference to a machine means a reference to a learning machine.

We now describe what it means for a learning machine to finitely identify a function.

Definition 2 A learning machine M is said to Fin-identify a function f just in case there
exists n0 such that the following hold:

1. for all n < n0, M(f [n]) =⊥;

2. ϕM(f [n0]) = f ; and

3. for all n ≥ n0, M(f [n]) = M(f [n0]).

If M Fin-identifies f , then we write f ∈ Fin(M).

Definition 3 Fin denotes the class of all sets S of recursive functions such that some
learning machine Fin-identifies each function in S.

2.3 Finite Function Identification by Teams

A team of learning machines is a multiset of learning machines.
Based on the definitions in Smith [Smi82], Pitt [Pit89], and Pitt and Smith [PS88], the

following definition of finite identification of functions by teams follows:

Definition 4 Let m,n ∈ N+, m ≤ n. A team of machines M1,M2, . . . ,Mn Teamm
n Fin-

identifies f (written: f ∈ Teamm
n Fin(M1,M2, . . . ,Mn)) ⇔ card({l | 1 ≤ l ≤ n ∧ f ∈

Fin(Ml)}) ≥ m.
Teamm

n Fin = {S | (∃M1,M2, . . . ,Mn)[S ⊆ Teamm
n Fin(M1,M2, . . . ,Mn)]}.

5

3 Results

Our results can be divided into two groups. The first group of results is about success ratios
greater than 1

2 and the second group is about success ratio equal to 1
2 . The results in the

second group turn out to be considerably more difficult to prove.
Freivalds [Fre79] showed that the learning capability of probabilistic learners above prob-

ability 1
2 is discrete in the sense that if n+2

2n+3 < p ≤ n+1
2n+1 , then the collections of functions

that can be finitely identified by a probabilistic learner with probability at least p is the
same as the collections of functions that can be finitely identified by a probabilistic learner
with probability at least n+1

2n+1 . Freivalds also showed that the collections of functions that
can be finitely identified in these discrete intervals form a strict hierarchy. In particular,
he showed that the collections of functions that can be finitely identified by a probabilistic
learner with probability at least n+1

2n+1 is properly contained in the collections of functions

that can be finitely identified by a probabilistic learner with probability at least n+2
2n+3 .

It turns out that using proof techniques similar to Freivalds [Fre79], a similar scenario
holds for team identification of functions. Theorem 1, just below, is Freivalds’ diagonalization
adapted to teams and Theorem 2, due to Daley, Pitt, Velauthapillai, and Will [DPVW91] is
Freivalds’ simulation adapted to teams.

Theorem 1 (∀n ∈ N)[Teamn+2
2n+3Fin− Teamn+1

2n+1Fin 6= ∅].

Proof. We give an example collection of functions that witnesses the separation. For
m ≤ m′, consider the class Cm

m′ defined as follows.

Cm
m′ = {f | the following three conditions are satisfied

(a) (∀i | 1 ≤ i ≤ m′)[card({x | f(〈i, x〉) 6= 0}) ≤ 1].

(b) (∀i > m′)(∀x)[f(〈i, x〉) = 0].

(c) card({k | 1 ≤ k ≤ m′ ∧ (∃x)[f(〈k, x〉) 6= 0 ∧ ϕf(〈k,x〉) = f]}) ≥ m.

}

It is easy to see that Cn+2
2n+3 ∈ Teamn+2

2n+3Fin. Using techniques from Freivalds [Fre79] and
Smullyan’s [Smu61] multiple recursion theorem, it can be shown that Cn+2

2n+3 6∈ Teamn+1
2n+1Fin;

we omit the details.
The following corollary to Theorem 1, along with Theorem 2 shows that the highest

fraction at which a separation for Teamm
n Fin-identification from Fin-identification occurs

is 2/3.

Corollary 1 Team2
3Fin− Fin 6= ∅.

Techniques from [Fre79] were used in [DPVW91] to show that Theorem 1 is tight.

Theorem 2 [DPVW91] For all r, s such that n+2
2n+3 < r

s
≤ n+1

2n+1 , Teamr
sFin = Teamn+1

2n+1Fin.

6

We now turn our attention to what happens at success ratio 1/2. The following surprising
theorem shows that at success ratio 1/2, introducing redundancy in the team results in
increased learning power. The theorem states that there are collections of functions that
can be finitely identified by teams of 4 learners requiring at least 2 to be successful, but cannot
be finitely identified by any team of 2 learners requiring at least one to be successful. As a
consequence of this result Pitt’s equivalence between limiting identification by probabilistic
learners and limiting identification by team learners does not hold for finite identification of
functions.

Theorem 3 Team2
4Fin− Team1

2Fin 6= ∅.

Before we give a formal proof of the above theorem, we present an informal description of
the proof. The collections of functions, that will be presented as a witness to the separation,
contains functions with the following property: they have program(s) for the function em-
bedded at at least two special arguments (out of a maximum of four special arguments). We
refer to this class, formally defined later, as C2

4 . It will be easy to see that C2
4 ∈ Team2

4Fin

(since the four machines can be asked to output the programs embedded at the special
arguments, and by the construction of C2

4 , at least two will be successful.)
Suppose by way of contradiction a team of two machines M1 and M2 Team1

2Fin-
identifies C2

4 . We now give an informal argument demonstrating that there exists a function
in C2

4 on which both M1 and M2 fail.
Four programs e1, e2, e3, and e4 are defined using Smullyan’s [Smu61] multiple recursion

theorem in such a way that the function computed by at least one of them will be from the
class C2

4 and on which both M1 and M2 will fail.
Let f1, f2, f3, and f4 denote the (partial) functions computed by the programs e1, e2, e3,

and e4, respectively. The idea of the construction is as follows. Initially, programs e1 and
e2 are embedded at the two special arguments for both f1 and f2. Then the following two
processes are performed in parallel until the condition in the first step is successful.

1. find if either machine M1 or M2 conjectures an output on the f1 constructed so far;

2. keep extending both f1 and f2 such that both are equal on the arguments defined.

If the first condition is never satisfied, then both f1 and f2 will be the same and both M1

and M2 fail to identify them. Hence, suppose the condition in the first step becomes true.
Further suppose that it is machine M1 (a similar argument can be worked out if it is machine
M2) that conjectures an output for f1.

Now, f1 and f2 are explicitly made different from each other. This ensures that at least
one of f1 defined so far or f2 defined so far does not agree with M1’s conjecture.

We first consider the case of M1’s conjecture not agreeing with f1 defined so far. (The
other case is similar). Program e3 is embedded at the (third) special argument for f1, and f3

is made equal to f1 defined so far. Then an attempt is made to find if machine M2 outputs a
conjecture on f1 or f3 defined so far. This is achieved in a manner similar to the one before
by performing the following two processes in parallel until the condition in the first step is
successful.

7

1. find if machine M2 conjectures an output on f1 constructed so far;

2. keep extending both f1 and f3 such that both are equal on the arguments defined.

Now, if the condition in the first step is never successful then f1 and f3 are equal and neither
M1 nor M2 identifies f1 (M1’s conjecture on f1 is incorrect and M2 fails to conjecture
anything on f1).

Hence, suppose that the condition in the first step is successful. Then f1 and f3 are
made distinct from each other and it is ensured that both are members of C2

4 (by embedding
a program at the fourth special argument for f1 and f3). Now, clearly M1 fails to identify
both f1 and f3. Also, M2 makes the same conjecture on both f1 and f3, and hence fails to
identify at least one of f1 or f3.

The special arguments for the embedding of the programs come from the cylinders
{〈i, x〉 | x ∈ N}, for 1 ≤ i ≤ 4. We use the cylinder {〈0, x〉 | x ∈ N} for making the
functions f1, f2, f3, f4 different (if needed). The formal description of the proof follows:

Proof. (Theorem 3) Consider the class C2
4 defined as follows.

C2
4 = {f | the following three conditions are satisfied

(a) (∀i | 1 ≤ i ≤ 4)[card({x | f(〈i, x〉) 6= 0}) ≤ 1].

(b) (∀i > 4)(∀x)[f(〈i, x〉) = 0].

(c) card({k | 1 ≤ k ≤ 4 ∧ (∃x)[f(〈k, x〉) 6= 0 ∧ ϕf(〈k,x〉) = f]}) ≥ 2.

}

It is easy to see that C2
4 ∈ Team2

4Fin. Suppose by way of contradiction that C2
4 ∈

Team1
2Fin as witnessed by M1 and M2. Then by implicit use of the 4-ary recursion theorem

[Smu61], there exist distinct e1, e2, e3, e4 (each ek, 1 ≤ k ≤ 4, greater than 0) such that ϕek

may be described as follows.

Begin ϕek
, 1 ≤ k ≤ 4.

1. For 1 ≤ i, j ≤ 2, let ϕei
(〈j, 0〉) = ej .

Let y = max({〈1, 0〉, 〈2, 0〉}).

For x ≤ y, 1 ≤ i ≤ 2, such that ϕei
(x) has not been defined until now let, ϕei

(x) = 0.

2. repeat

2.1. If there exists an i ∈ {1, 2} such that Mi(ϕe1
[y]) 6=⊥ then go to step 3.

2.2. Let y = y + 1. For 1 ≤ i ≤ 2, let ϕei
(y) = 0.

forever

3. Without loss of generality assume that i found in step 2.1 is 1 (otherwise just swap M1

and M2).

4. For odd x, such that 〈0, x〉 > y, let ϕe1
(〈0, x〉) = 1 and ϕe2

(〈0, x〉) = 2.

Note that the above step ensures that at least one of ϕe1
(defined until now) or ϕe2

(defined until now) is not contained in ϕM1(ϕe1
[y]), though we cannot know effectively

8

which one. Due to this we need to work separately for each of the possibilities. Below
in steps 5 to 7, we describe the process for the possibility when ϕe1

is not contained
in ϕM1(ϕe1

[y]). A similar process should also be executed in parallel for the possibility
when ϕe2

is not contained in ϕM1(ϕe1
[y]). This can be done by replacing e1, e3 by

e2, e4 respectively (and with separate local variables) in the steps 5 to 7. We omit the
details.

5. Let z be the least x such that ϕe1
(〈3, x〉) has not been defined until now. Let ϕe1

(〈3, z〉) =
e3.

For x such that ϕe1
(x) has been defined until now, let ϕe3

(x) = ϕe1
(x).

6. repeat

6.1. Suppose z is the least x such that ϕe1
(x) has not been defined until now.

6.2. Let ϕe1
(z) = ϕe3

(z) = 0.
6.3. If M2(ϕe1

[z]) 6=⊥ then go to step 7.

forever

7. For all x, such that ϕe1
(〈0, x〉) has not been defined until now, let ϕe1

(〈0, x〉) = 1, and
ϕe3

(〈0, x〉) = 2.

Let x be such that ϕe1
(〈4, x〉) has not been defined until now. Let ϕe1

(〈4, x〉) = e1. Let
ϕe3

(〈4, x〉) = e3.

For all x such that ϕe1
(x) has not been defined until now let ϕe1

(x) = ϕe3
(x) = 0.

End ϕek
, 1 ≤ k ≤ 4.

Now consider the following cases.
Case 1: The If-clause at step 2.1 is never true.

In this case, let f = ϕe1
= ϕe2

∈ C2
4 . However, none of M1 and M2 outputs a program

on f .
Case 2: The If-clause at step 2.1 eventually becomes true.

Let y be as in step 2.1, when the if clause succeeds. Without loss of generality suppose it
was M1 which outputs a program on ϕe1

[y]. Suppose ϕM1(ϕe1
[y]) does not contain ϕe1

defined
until the end of step 4 (case of ϕM1(ϕe1

[y]) does not contain ϕe2
is similar; see discussion at

the end of step 4). We now consider the following cases.
Case 2.1 The If-clause at step 6.3 is never true.

In this case let f = ϕe1
= ϕe3

∈ C2
4 . Note that M2 does not output a program on f , and

by discussion above the program output by M1 on f does not compute f .
Case 2.2 The If-clause at step 6.3 eventually becomes true.

In this case let f = ϕe1
∈ C2

4 and f ′ = ϕe3
∈ C2

4 . Note that both f and f ′ belong to C2
4

and are distinct from each other. Note that the program output by M1 on f and f ′ is the
same and does not compute either of them. Also the program output by M2 on f and f ′ is
the same and, since f and f ′ are distinct, it does not compute at least one of them.

From the above cases we have that C2
4 is not Team1

2Fin-identified by M1,M2.

As a contrast to the above Theorem 3, we now present the two surprising Theorems 4
and 5 below. The proof of these two theorems involves a complex simulation argument. We
first introduce some technical machinery that will be useful in proving these theorems.

9

Definition 5 Suppose M is a machine and η is a (partial) function. Then ConjPoint(M, η) =
min({n | (∀x < n)[η(x)↓] ∧ M(η[n]) 6=⊥}).

Intuitively, ConjPoint denotes the point at which M, fed η, outputs its first conjecture;
ConjPoint(M, η) is ∞ if M does not output a conjecture on any initial segment of η.

We motivate the next definition. Consider a set of programs P . Let i ≤ card(P) be
given. Also, suppose we are given the initial segment f [m] of some recursive function f .
It is useful to find if there are i distinct programs in the set P that compute an extension
of f [m]. In particular, we will be given an upper bound s, and we would like to find the
maximum number r ≤ s such that there exists a subset S of P of cardinality i with the
following properties:

• each program in S extends f [m],

• each program in S is defined on arguments < r. Moreover, all programs in S compute
the same value on arguments < r,

• the above two conditions can be checked in ≤ s steps.

The function Maxcons defined below formalizes this notion.

Definition 6 Suppose P is a finite set of programs, i ≤ card(P) and f is a total function.
Then,

Maxcons(P, i, s, f [m]) = max({r ≤ s | ∃S ⊆ P such that the following four conditions are
satisfied

card(S) = i,

(∀p ∈ S)(∀x < max(m, r))[Φp(x) ≤ s],

(∀p ∈ S)(∀x < m)[f(x) = ϕp(x)], and

(∀p, p′ ∈ S)(∀x < r)[ϕp(x) = ϕp′(x)]

}).

Intuitively, Maxcons determines the maximal initial consistency among subsets S (of size i)
of P , as can be judged using a time bound of s, such that S contains only programs that
extend f [m]. Once, Maxcons has been used to determine the point of maximal consistency,
we would like to find one such set S. The function Progcons defined below returns the
lexicographically least subset S of P . (By lexicographical order, we mean the dictionary
order.)

Definition 7 Suppose P is a finite set of programs, i ≤ card(P) and f ∈ R. Then,

Progcons(P, i, s, f [m], n) = lexicographically least subset, S, of P of cardinality i, if any,
such that the following conditions are satisfied

(∀p ∈ S)(∀x < max(m,n))[Φp(x) ≤ s],

(∀p ∈ S)(∀x < m)[f(x) = ϕp(x)], and

(∀p, p′ ∈ S)(∀x < n)[ϕp(x) = ϕp′(x)].

10

We always use Progcons in conjunction with Maxcons with the parameter n in Progcons
having the value of Maxcons(P, i, s, f [m]). It should be noted that if Maxcons(P, i, s, f [m]) =
0, then Progcons(P, i, s, f [m], 0) may not be defined. In such cases, we take, by convention,
the value of Progcons to be an arbitrary subset of P of size i. This is merely for ease of
presenting the proof.

We now describe a procedure, which aids in separating functions computed by sufficiently
large fraction of programs from a set of programs.

Suppose m ≤ m′, an initial segment f [m′], and a set P , card(P) < 3j, of programs is
given. Further suppose that at least j programs in P compute (partial) functions that extend
f [m′]. Note that there can be at most two distinct total functions which are computed by
at least j of the programs in P . The aim of the following procedure is to effectively find the
functions, if any, which extend f [m] and are computed by at least j programs in P ; f1, f2

in the definition of Simul denote these two functions (if any).

Simul(P, j, f [m′],m, f1, f2)

Assumptions about the input: (a) m ≤ m′, (b) card(P) < 3j, and (c) f [m′] is an initial
segment of at least j programs in P .

f1, f2 denote the functions (or, initial segments of functions) extending f [m], if any, that
are computed by at least j programs in P .

1. For x < m, let f1(x) = f(x).

For x < m′, let f2(x) = f(x).

Let t be such that there exists a set S ⊆ P of cardinality j, such that (∀i ∈ S)(∀x <
m′)[Φi(x) ≤ t ∧ ϕi(x) = f(x)]. (Note that by assumption such a t exists since the
functions computed by at least j programs in the set P contain f [m′] as an initial
segment). Go to stage t. (Note that there are no stages less than t; this is merely for
convenience of writing the construction).

Stage s

1. Let m1 = Maxcons(P, j, s, f [m]).
2. Let S = Progcons(P, j, s, f [m],m1).
3. Let w be an element of S. If f2 defined until now is consistent with ϕw[m1], then

let i = 2 and i′ = 1; else let i = 1 and i′ = 2.
4. For x < m1, let fi(x) = ϕw(x).
5. Let m2 = Maxcons(P − S, j, s, f [m]).
6. If m2 = 0, then let S′ be an arbitrary subset of P , of size j; else let S ′ =

Progcons(P − S, j, s, f [m],m2).
(Note that if less than j programs in P − S are found to be extending f [m], then

m2 = 0.)
7. Let w′ be an element of S′.
8. For x < m2, let fi′(x) = ϕw′(x).
9. Go to Stage s + 1.

End stage s.

11

It is easy to show using induction on the stages that the following lemma regarding Simul
holds.

Lemma 1 Suppose j ∈ N+, a set P of cardinality less than 3j, m ≤ m′, and an initial
segment f [m′] are given. Further suppose that at least j of the programs in P compute
functions that extend f [m′]. Then, for f1, f2, as defined in Simul(P, j, f [m′],m, f1, f2), the
following hold:

(a) f [m′] ⊆ f2,
(b) f [m] ⊆ f1, and
(c) (∀g ⊇ f [m] | g ∈ R ∧ card({i ∈ P | ϕi = g}) ≥ j)[f1 = g ∨ f2 = g].

We now present our first simulation result which implies that for all positive odd numbers
m, the collections of functions that can be finitely identified by teams of 2m machines
requiring at least m to be successful can also be identified by a team of two machines
requiring at least one to be successful.

Theorem 4 Team
2j+1
4j+2Fin ⊆ Team1

2Fin.

We first give an informal high level description of the simulation required to establish
this result. Suppose C is a collection of functions that can be Team

2j+1
4j+2Fin-identified. Let a

team consisting of machines M1,M2, . . . ,M4j+2 witness the identification. We then describe
machines M′

1 and M′
2 that Team1

2Fin-identify C. Let f ∈ C.
The machine M′

1 simulates each of the 4j + 2 machines, M1,M2, . . . ,M4j+2, on f and
waits for at least 2j + 1 machines to output a conjecture. It then outputs a procedure X
that depends on these 2j + 1 conjectures and the convergence point of the 2j + 1 machines
on f .

The machine M′
2 also simulates each of the 4j + 2 machines, M1,M2, . . . ,M4j+2, on f

but waits for at least 3j +2 machines to output a conjecture. It then outputs a procedure Y
that depends on these 3j + 2 conjectures and the convergence point of the 3j + 2 machines
on f .

The procedures X and Y cooperate to make sure that at least one of them computes f .
This is ensured as follows: Procedure X keeps track of whether procedure Y gets initiated or
not. The cooperation between the two procedures begins when it is discovered that there are
at least j+1 programs in the first 2j+1 conjectures that agree with a suitable initial segment
of f . Following case analysis gives a high level description of which procedure simulates the
function in which case.

Case 1: Less than 3j+2 machines in the team consisting of machines M1,M2, . . . ,M4j+2

output a conjecture on f . In this case, there are at least j + 1 correct programs for f in the
conjectures of first 2j + 1 machines. Procedure X uses procedures Maxcons and Progcons
to find these programs and simulates f .

Case 2: At least 3j + 2 machines in team consisting of machines M1,M2, . . . ,M4j+2

output a conjecture on f . There are two subcases:
Case 2.1: There are less than j +1 programs in the first 2j +1 conjectures that compute

a suitable initial segment of f . In this case cooperation between procedure Y and X will

12

not take place and procedure Y will use the procedures Maxcons and Progcons to find j + 1
correct programs from the first 3j + 2 programs and simulate f .

Case 2.2: There are at least j + 1 programs in the first 2j + 1 conjectures that compute
a suitable initial segment of f . In this case both procedures X and Y collaborate and use
the procedure Simul to ensure that at least one of them simulates f .

We now proceed formally.
Proof. Suppose machines M1,M2, . . . ,M4j+2 Team

2j+1
4j+2Fin-identify C. We construct ma-

chines M′
1,M

′
2 which Team1

2Fin-identify C. We assume without loss of generality that, for
all functions f , ConjPoint(M1, f) ≤ ConjPoint(M2, f) ≤ · · · ≤ ConjPoint(M4j+2, f). We
further assume that, for any function f , the programs output by different machines, if any,
are different (otherwise we can easily ensure this by padding).

Fix f . Let the programs output (if any), on f , by machines M1,M2, . . . ,M3j+2, be
p1, p2, . . . , p3j+2, respectively. M′

1, fed f , waits until machine M2j+1 has output its guess.
M′

1 then outputs the program X(p1, p2, . . . , p2j+1, f [ConjPoint(M2j+1, f)]) (where X(· · ·) is
defined below). M′

2, fed f , waits until machine M3j+2 has output its guess. M′
2 then out-

puts the program Y (p1, p2, . . . , p2j+1, p2j+2, p2j+3, . . . , p3j+2, f [ConjPoint(M3j+2, f)]) (where
Y (· · ·) is defined below).

We describe algorithms for X and Y below. For convenience of presentation, we describe
the algorithm for Y first.

begin ϕY (p1,p2,...,p2j+1,p2j+2,p2j+3,...,p3j+2,f [m])

(For notational convenience, we will use ϕY below instead of ϕY (p1,p2,...,p3j+2,f [m]). Note that
for the case of interest m = ConjPoint(M3j+2, f)).

1. For x < m, let ϕY (x) = f(x).

2. Let k be the least value, if any, such that, there exists a set S ⊆
{p1, p2, . . . , p2j+1, p2j+2, p2j+3, . . . , p3j+2}, of cardinality j+1, such that (∀p ∈ S)(∀x <
m)[Φp(x) ≤ k ∧ ϕp(x) = f(x)]. Go to stage k + 1 (note that there are no stages less
than k + 1. This is just for the ease of presentation).

Begin stage s

2.1. If there exists a subset S of {p1, p2, . . . , p2j+1} of cardinality j + 1, such that
(∀p ∈ S)(∀x < m)[Φp(x) ≤ s ∧ ϕp(x) = f(x)], then go to step 3.

2.2. Let m0 = Maxcons({p1, . . . , p3j+2}, j + 1, s, f [m]).
2.3. Let S = Progcons({p1, . . . , p3j+2}, j + 1, s, f [m],m0).
2.4. Let w be an element of S. For x < m0, let ϕY (x) = ϕw(x).
2.5. Go to stage s + 1.

End stage s

3. Proceed to collaborate with ϕX(p1,p2,...,p2j+1,f [n]) (at step 3), where n = ConjPoint(M2j+1, f),
as described in the procedure for ϕX(p1, p2, . . . , p2j+1, f [n]) below.

end ϕY (p1,p2,...,p2j+1,p2j+2,p2j+3...,p3j+2,f [m]).

13

begin ϕX(p1,p2,...,p2j+1,f [n])

(For notational convenience, we will use ϕX below instead of ϕX(p1,p2,...,p2j+1,f [n]). Note that
for the case of interest n = ConjPoint(M2j+1, f)).

1. Let t be such that there exists a subset S of {p1, p2, . . . , p2j+1} of cardinality j + 1, such
that (∀x < n)(∀p ∈ S)[Φp(x) ≤ t ∧ ϕp(x) = f(x)]. Go to stage t. Note that there are
no stages < t. This is just for the ease of writing the proof. If no such t exists then
ϕX is the everywhere undefined function.

Begin stage s

1.1. Let m1 = Maxcons({p1, p2, . . . , p2j+1}, j + 1, s, f [0]).
1.2. Let S = Progcons({p1, p2, . . . , p2j+1}, j + 1, s, f [0],m1).
1.3. Let w be an element of S. If ConjPoint(M3j+2, ϕw) ≤ m1, then go to step 2.
1.4. For all x < m1, let ϕX(x) = ϕw(x).
1.5. Go to stage s + 1.

End stage s.

2. Let m2 = ConjPoint(M3j+2, ϕw).

For all x < m2, define ϕX(x) = ϕw(x).

3. Suppose the output of machines M2j+2,M2j+3, . . . ,M3j+2 on ϕw[m2] are
p′2j+2, . . . , p

′
3j+2 respectively. For notational convenience we will use ϕY instead of

ϕY (p1,...,p2j+1,p′
2j+2

,...,p′
3j+2

,ϕw[m2]) below. Note that if the input function being learned

is consistent with ϕw[m2], then ϕY simulated here is the same as ϕY which will be de-
fined for the input function. Also, if the current procedure has reached this point, then
ϕY would have recognized that, and would cooperate with ϕX (see the algorithm for
ϕY). Also, ϕX , ϕY are consistent with each other until this point. Also, ϕX has been
defined only for inputs < m2. Also, ϕY defined until now is contained in the (partial)
functions computed by at least j +1 programs in {p1, . . . , p2j+1, p

′
2j+2, . . . , p

′
3j+2}. Let

m3 be such that, ϕY is defined on exactly the inputs < m3, when it starts collaborating
with ϕX .

Let ϕX = f1 and ϕY = f2, where f1 and f2 are as obtained in Simul({p1, p2, . . . , p3j+2}, j+
1, ϕY [m3],m2, f1, f2).

end ϕX(p1,p2,...,p2j+1,f [n])

Now fix f , which is Team
2j+1
4j+2Fin-identified by M1, . . . ,M3j+2. Suppose

p1, p2, p3, . . . , p3j+2 are the programs, if any, output by M1,M2, . . . ,M3j+2 on f , respec-
tively. Recall that according to our assumption regarding the machines, if Mi+1 outputs a
program on f then it follows that Mi also outputs a program on f . For ease of notation let
X denote X(p1, . . . , p2j+1, f [ConjPoint(M2j+1, f)]), and if ConjPoint(M3j+2, f) 6= ∞, then
let Y denote Y (p1, . . . , p3j+2, f [ConjPoint(M3j+2, f)]).

We prove below that, for f ∈ C, at least one of X,Y computes f .
There are following cases:

Case 1: M3j+2 does not output a program on f .
In this case, at least j + 1 of the programs in {p1, . . . , p2j+1} are programs for f . Since

on f , less than 3j + 2 machines output a program, in the procedure for X step 1.3 would

14

never succeed. It follows that in the simulation at steps 1.1 to 1.5, X will simulate f .
Case 2: At least 3j + 2 machines (of M1, . . . ,M4j+2) output a program on f .

Suppose m = ConjPoint(M3j+2, f).
Case 2.1: There are less than j +1 programs in p1, . . . , p2j+1 which calculate f [m] correctly.

In this case, step 2.1 of Y will not succeed. Also there exist j+1 programs in {p1, . . . , p3j+2}
which compute f correctly. Thus in steps 2.1 to 2.5 (of Y) Y will simulate f .
Case 2.2: There are at least j + 1 programs in p1, . . . , p2j+1, which calculate f [m] correctly.

In this case, both X and Y will be cooperating with each other to ensure correctness of
at least one of X and Y (due to properties of Simul as noted in Lemma 1).

The next theorem completes the picture for finite identification of functions by teams
with success ratio 1/2. It shows that for all positive even numbers m, the collections of
functions that can be finitely identified by a team of 2m machines requiring at least m to
be successful can also be finitely identified by a team of 4 machines requiring at least 2
to be successful. The proof of this theorem is a more complicated version of the proof of
Theorem 4. To get an informal overview of the simulation, we recommend that the reader
peruse through the case analysis at the end of the proof before reading the descriptions of
various procedures.

Theorem 5 (∀j ∈ N+)[Team
2j
4jFin ⊆ Team2

4Fin].

Proof. Let machines M1,M2, . . . ,M4j Team
2j
4jFin-identify C. Without loss of generality

we assume that, for all f , ConjPoint(M1, f) ≤ ConjPoint(M2, f) ≤ . . . ≤ ConjPoint(M4j , f).
We further assume, without loss of generality, that for all f , the programs output by dif-
ferent machines, if any, are different. We construct machines M′

1,M
′
2,M

′
3, and M′

4 which
Team2

4Fin-identify C.
Let the programs output (if any) by machines M1,M2, . . . ,M4j be p1, p2, . . . , p4j re-

spectively. M′
1,M

′
2, fed a function f , wait until machine M2j has output its guess.

M′
1 then outputs the program X1(p1, p2, . . . , p2j , f [n]), and M′

2 outputs the program
X2(p1, p2, . . . , p2j , f [n]), where n = ConjPoint(M2j , f). Similarly, M′

3 waits until machine
M3j has output its guess. M′

3 then outputs the program Y (p1, p2, . . . , p3j , f [m]), where
m = ConjPoint(M3j, f). M′

4 waits until machine M3j+1 has output its guess. M′
4 then

outputs the program Z(p1, p2, . . . , p3j+1, f [l]), where l = ConjPoint(M3j+1, f).
We describe X1,X2, Y and Z below. X1,X2 are described together since they are similar.

We do not describe Z separately, but it behaves as described in procedures for Y and Xi.
We describe Y first for ease of presentation.

begin ϕY (p1,p2,...,p3j ,f [m]).

For notational convenience we will write Y instead of Y (p1, p2, . . . , p3j, f [m]) below.
Note that for the case of interest m = ConjPoint(M3j , f). We assume without loss of
generality that, f [m] ⊆ ϕM3j(f [m]).

1. Go to stage 0.

Stage s

15

1.1 If there exists a subset S of {p1, . . . , p2j} of cardinality j, such that (∀p ∈ S)(∀x <
m)[Φp(x) < s ∧ ϕp(x) = f(x)], then go to step 2.

1.2. If there exists a subset S of {p1, . . . , p3j} of cardinality j, and r such that
m ≤ r ≤ s,
(∀p ∈ S)(∀x < r)[Φp(x) < s],
(∀p ∈ S)(∀x < m)[ϕp(x) = f(x)],
(∀p, p′ ∈ S)(∀x < r)[ϕp(x) = ϕp′(x)],
for p ∈ S,ConjPoint(M3j+1, ϕp) ≤ r,

then go to step 3.
1.3. Go to stage s + 1.

End stage s.

2. For x < m, let ϕY (x) = f(x). Proceed to collaborate with ϕXi(p1,...,p2j ,f [n]) (step 3)
where n = ConjPoint(M2j , f), as described in the procedure for Xi.

3. Let S be as found in step 1.2. Suppose p ∈ S. Let l′ = ConjPoint(M3j+1, ϕp) and
p′3j+1 = M3j+1(ϕp[l

′]).

Let Z denote Z(p1, . . . , p3j , p
′
3j+1, ϕp[l

′]).

Let ϕY = ϕZ = f2, where f2 is as in Simul({p1, . . . , p3j, p
′
3j+1}, j + 1, ϕp[l

′],m, f1, f2).

end ϕY (p1,p2,...,p3j ,f [m]).

beginϕXi(p1,p2,...,p2j ,f [n]), i = 1, 2

(For notational convenience we will use ϕXi
below instead of ϕXi(p1,p2,...,p2j ,f [n]). Note that

for the case of interest n = ConjPoint(M2j , f).)

1. Go to stage 0.

Stage s

1.1. If there exists m1 and a set S ⊆ {p1, p2, . . . , p2j} such that
n ≤ m1 ≤ s
card(S) = j,
(∀p ∈ S)(∀x < m1)[Φp(x) ≤ s],
(∀p ∈ S)(∀x < n)[ϕp(x) = f(x)],
(∀i1, i2 ∈ S)(∀x < m1)[ϕi1(x) = ϕi2(x)] and
ConjPoint(M3j , ϕw) ≤ m1,

then let S be one such set. Go to step 2.
1.2. Let m1 = Maxcons({p1, p2, . . . , p2j}, j + 1, s, f [n]).
1.3. Let S = Progcons({p1, p2, . . . , p2j}, j + 1, s, f [n],m1).
1.4. For x < m1, let ϕX1

(x) = ϕX2
(x) = ϕw(x), w ∈ S.

1.5. Go to Stage s + 1.

End stage s.

2.1. Let S be as found in step 1.1. Let w be an element of S (Note that this w will be
referred to in several places below). Let m2 = ConjPoint(M3j , ϕw). For x < m2, let
ϕX1

(x) = ϕw(x).

16

2.2. Let S′ = {p1, p2, . . . , p2j} − S. If all the programs in S ′ are convergently different from
ϕw[m2] and there exists an m′

2 such that (∀i1, i2 ∈ S′)(∀x < m′
2)[ϕi1(x) ↓= ϕi2(x) ↓]

and M3j outputs a program on ϕw′ [m′
2], w

′ ∈ S′, then a procedure similar to the one
below (from step 2.3 onwards) is started with ϕX2

playing the role of ϕX1
, m′

2 playing
the role of m2, w′ playing the role w, and S ′ playing the role of S. Note that if there
does not exist such a m′

2 then X2 is always available for use below (for example if the
simulation extends ϕX2

in steps 5, 6).

2.3. For 2j < i ≤ 3j, let p′i = Mi(ϕw[m2]).

Let Y denote Y (p1, . . . , p2j , p
′
2j+1, . . . , p

′
3j , ϕw[m2]). Note that if the input function is

consistent with ϕw[m2], then Y is same as Y output on the input function.

2.4. If in the procedure for ϕY , step 1.1. succeeds, then go to step 3.

Else, let S, l′ be as in step 3 in the procedure for Y . Let S1 = S. Let p′3m+1 =
M3j+1(ϕY [l′]). Let W ′ = X1, W ′′ = X2. Let w1 be a member of S1. Go to step 5.

3. Note that ϕY and ϕX1
defined until now are ϕw[m2]. Moreover, at least j + 1 programs

in {p1, . . . , p2j, p
′
2j+1, . . . , p

′
3j} compute extensions of ϕw[m2].

Let t be the last stage executed in step 1 above. Go to stage t + 1.

Stage s.

3.1. If there exists m3 ≤ s and a set S1 ⊆ {p1, p2, . . . , p2j , p
′
2j+1, . . . , p

′
3j} such that

card(S1) = j,
m2 ≤ m3 ≤ s,
(∀p ∈ S1)(∀x < m3)[Φp(x) ≤ s],
(∀x < m2)(∀p ∈ S1)[ϕp(x) = ϕw(x)].
(∀i1, i2 ∈ S1)(∀x < m3)[ϕi1(x) = ϕi2(x)], and
ConjPoint(M3j+1, ϕw1

) ≤ m3, for w1 ∈ S1,
then let S1 be one such set. Go to step 4.

3.2. Let m3 = Maxcons({p1, p2, . . . , p2j , p
′
2j+1, . . . , p

′
3j}, 2j, s, ϕw[m2]).

3.3. Let S1 = Progcons({p1, p2, . . . , p2j , p
′
2j+1, . . . , p

′
3j}, 2j, s, ϕw[m2],m3).

3.4. For x < m3, let ϕX1
(x) = ϕY (x) = ϕw1

(x), where w1 ∈ S1.
3.5. Go to Stage s + 1.

End Stage s.

4. Let S1 be as in step 3.1. Let w1 ∈ S1. Let l′ = ConjPoint(M3j+1, ϕw1
). Let p′3j+1 =

M3j+1(ϕw1
[l′]). Let Z denote Z(p1, . . . , p2j , p

′
2j+1, . . . , p

′
3j+1, ϕw1

[l′]). If ϕY defined
until now is consistent with ϕw1

[l′], then let W = Y , W ′ = X1 and W ′′ = X2;
otherwise let W = X2, W ′ = Y and W ′′ = X1. Let ϕW = ϕZ = f2, where f2 is as in
Simul({p1, . . . , p2j , p

′
2j+1, . . . , p

′
3j+1}, j + 1, ϕw1

[l′],m2, f1, f2). Go to step 5.

5. Let S′
1 = {p1, p2, . . . , p2j , p

′
2j+1, . . . , p

′
3j} − S1. Go to stage 0.

Stage s

5.1. If there exists a set S2 ⊆ S′
1 of cardinality j + 1 such that, (∀p ∈ S2)(∀x <

l′)[Φp(x) ≤ s ∧ ϕp(x) = ϕw1
(x)], then go to step 6.1.

5.2. { This step and step 6.2 guard against the possibility that there may be up to

3 distinct initial segments extending f [m2] on which M3j+1 outputs a pro-

gram, and each of these initial segments is extended by at least j programs

17

in { p1, p2, . . . , p2j , p′2j+1, . . . , p
′
3j }; the reader is advised to also look at Case

3.2.2 in the case analysis at the end of this proof }
If there exists a set S2 ⊆ S′

1 of cardinality j and an l′′ ≥ m2 such that
(∀p ∈ S2)[(∀x < l′′)[Φp(x) ≤ s],
(∀x < m2)[ϕp(x) = ϕw(x)]],
(∀p, p′ ∈ S2)(∀x < l′′)[ϕp(x)↓ = ϕp′(x)↓] and
(∃x < min(l′, l′′))[ϕp(x) 6= ϕw1

(x)], where p ∈ S2, and
ConjPoint(M3j+1, ϕp) = l′′, where p ∈ S2,

Then go to step 6.2.
5.3. Let m5 = Maxcons(S′

1, 2j, s, ϕw[m2]).
5.4. Let S2 = Progcons(S′

1, 2j, s, ϕw[m2],m5).
5.5. For x < m5, let ϕW ′(x) = ϕW ′′(x) = ϕw2

(x), for w2 ∈ S2.
5.6. Go to stage s + 1.

End stage s.

6.1. Let ϕW ′ = ϕW ′′ = f1, where f1 is as in Simul({p1, . . . , p2j , p
′
2j+1, . . . , p

′
3j+1}, j +

1, ϕw1
[l′],m2, f1, f2). HALT.

6.2. Let S2, l′′, be as found in step 5.2. Let w2 be a member of S2. Let p′′3j+1 = M3j+1(ϕw2
[l′′]).

Let Z ′ denote Z(p1, . . . , p2j , p
′
2j+1, . . . , p

′
3j , p

′′
3j+1, ϕw2

[l′′]). Let ϕW ′ = ϕZ′ = f2, where
f2 is as in Simul({p1, . . . , p2j , p

′
2j+1, . . . , p

′
3j , p

′′
3j+1}, j + 1, ϕw2

[l′′],m2, f1, f2).

Let S3 = S′
1 − S2. If and when it is discovered, that there exists a l′′′, (∀p ∈

S3)(∀x < m2)[ϕp(x) = ϕw(x)] and (∀p, p′ ∈ S3)(∀x < l′′′)[ϕp(x)↓ = ϕp′(x)↓] and
(∃x < min(l′, l′′′))[ϕp(x) 6= ϕw1

(x)], and (∃x < min(l′′, l′′′))[ϕp(x) 6= ϕw2
(x)], and

ConjPoint(M3j+1, ϕp) = l′′′, where p ∈ S3, then

Let w3 be a member of S3. Let p′′′3j+1 = M3j+1(ϕw3
[l′′′]). Let Z ′′ denote

Z(p1, . . . , p2j , p
′
2j+1, . . . , p

′
3j , p

′′′
3j+1, ϕw3

[l′′′]). Let ϕW ′′ = ϕZ′′ = f2, where f2

is as in Simul({p1, . . . , p2j , p
′
2j+1, . . . , p

′
3j , p

′′′
3j+1}, j + 1, ϕw2

[l′′′],m2, f1, f2).

end ϕXi(p1,p2,...,p2j ,f [n]), i = 1, 2

Suppose f is Team
2j
4jFin-identified by M1, . . . ,M4j . Let the programs output (if

any) by machines M1,M2, . . . ,M4j on f be p1, p2, . . . , p4j respectively. For ease of
notation let Xi denote Xi(p1, p2, . . . , p2j, f [n]), where n = ConjPoint(M2j , f). Let
Y denote Y (p1, p2, . . . , p3j , f [m]), where m = ConjPoint(M3j , f). Let Z denote
Z(p1, p2, . . . , p3j+1, f [l]), where l = ConjPoint(M3j+1, f). We now consider the following
cases.
Case 1: M3j does not output a program on f .

In this case, there are at least j + 1 correct programs (for f) in {p1, . . . , p2j} and on f
since M3j does not output a program, step 1.1. in the procedure for ϕXi

will not succeed,
and thus both X1,X2 will simulate f .
Case 2: M3j outputs a program on f , but M3j+1 does not output a program on f .

In this case, in the procedure for ϕXi
step 1.1. will eventually succeed. Also in the

procedure for ϕY step 1.1. eventually succeeds (since step 1.2. can never succeed). If
f [m] is not contained in ϕX1

, then consider step 3 onwards in the computation of ϕX2
(see

description in step 2.2). Otherwise consider step 3 onwards in the computation of ϕX1
. Note

18

that at least 2j of the programs in {p1, . . . , p3j} are program for f , and thus steps 5.1. or
5.2. cannot succeed. Thus either due to step 3.2 to 3.5 or due to steps 5.3 to 5.6, at least
two of ϕX1

, ϕX2
, ϕY are same as f .

Case 3: M3j+1 outputs a program on f .
Case 3.1: Less than j of the programs in {p1, p2, . . . , p2j}, calculate f [m] correctly.

In this case, in the procedure for ϕY step 1.2. would eventually succeed (and step 1.1.
can never succeed) and thus both Y,Z are programs for f .
Case 3.2: Greater than j of the programs in {p1, p2, . . . , p2j}, calculate f [m] correctly.

In this case, note that the procedure for ϕXi
reaches step 2, and the condition for splitting

off ϕX2
stated in step 2.2. never succeeds.

Case 3.2.1: There are at least 2j + 1 programs in the {p1, . . . , p3j} which compute upto f [l]
correctly.

In this case less than j programs in {p1, . . . , p3j} are inconsistent with f [l].
Thus we have that f2 in Simul({p1, . . . , p3j+1}, j + 1, f [l],m, f1, f2), is simulated by Y,Z

(either in step 3 of procedure for ϕY , or step 4 of procedure for ϕXi
) and f1 is simulated by

X1,X2 at step 6.1. of ϕXi
.

Case 3.2.2: There are less than 2j + 1 programs in the {p1, . . . , p3j}, which compute upto
f [l] correctly.

Note that if there are at least j programs in {p1, . . . , p3j}, which extend some g[k] ⊇ f [m],
on which M3j+1 outputs a program, then corresponding Z (as output by M′

4 on function
g) and at least one of X1,X2, Y , simulate f2 in Simul({p1, . . . , p3j+1}, j + 1, g[k],m, f1, f2).
Since for f there could be at most 2j + 1 programs in {p1, . . . , p3j+1} which extend f [l],
we have that Z and one of Y,X1,X2 compute f (by properties of Simul as described in
Lemma 1).
Case 3.3: There are exactly j programs in {p1, . . . , p2j}, which calculate f [m] correctly.

In this case in procedure for ϕXi
step 1.1. eventually succeeds. Suppose, without loss

of generality that X1 computed f [m] correctly (case for X2 is similar). In this case Z, Y
simulate f2 in Simul({p1, . . . , p3j+1}, j + 1, f [l],m, f1, f2), at either step 3 of ϕY or step 4 of
ϕX1

. They thus compute f .

4 Conclusions

In this paper we presented some results about finite identification of programs from graphs
of computable functions by teams of deterministic machines, and contrasted some of these
results with corresponding results about limiting team function inference. As a consequence
of this study a direct analog of Pitt’s connection does not hold for finite identification. Also
the results presented here along with the results in [DPVW91] complete the picture for finite
identification for ratio ≥ 1/2. Recently there has been significant work for success ratios
< 1

2 and related issues. For example in [DPVW91], it is shown that at success ratio 1/3,
introducing redundancy always helps. We direct the reader to [DKV92a, DK93, DKV93,
DKV92b]. However, the picture is far from complete.

For related work on language identification by teams we direct the reader to [JS90b,
JS93c, JS93a, JS93b].

19

5 Acknowledgements

We would like to thank John Case, Mark Fulk, Bill Gasarch, Sudhir Jha, Lata Narayanan,
and Rajeev Raman for helpful discussion and comments. We are also grateful to the two
referees for providing several helpful comments. Preliminary version of results described
in this paper were presented at the Second Annual Workshop on Computational Learning
Theory [Vel89] and the Third Annual Workshop on Computational Learning Theory [JS90a].

References

[BB75] L. Blum and M. Blum. Toward a mathematical theory of inductive inference.
Information and Control, 28:125–155, 1975.

[Blu67] M. Blum. A machine independent theory of the complexity of recursive func-
tions. Journal of the ACM, 14:322–336, 1967.

[CS83] J. Case and C. Smith. Comparison of identification criteria for machine inductive
inference. Theoretical Computer Science, 25:193–220, 1983.

[DK93] R. P. Daley and B. Kalyanasundaram. Capabilities of probabilistic learners
with bounded mind changes. In Proceedings of the Sixth Annual Conference on
Computational Learning Theory, Santa Cruz, California, pages 182–191. A. C.
M. Press, 1993.

[DKV92a] R. P. Daley, B. Kalyanasundaram, and M. Velauthapillai. Breaking the probabil-
ity 1/2 barrier in fin-type learning. In Proceedings of the Fifth Annual Workshop
on Computational Learning Theory, Pittsburgh, Pennsylvania, pages 203–217. A.
C. M. Press, 1992.

[DKV92b] R. P. Daley, B. Kalyanasundaram, and M. Velauthapillai. The power of prob-
abilism in popperian finite learning. In Proceedings of the Third International
Workshop on Analogical and Inductive Inference, Dagstuhl Castle, Germany,
pages 151–169, October 1992.

[DKV93] R. P. Daley, B. Kalyanasundaram, and M. Velauthapillai. Capabilities of fallible
finite learning. In Proceedings of the Sixth Annual Conference on Computational
Learning Theory, Santa Cruz, California, pages 199–208. A. C. M. Press, 1993.

[DPVW91] R. P. Daley, L. Pitt, M. Velauthapillai, and T. Will. Relations between prob-
abilistic and team one-shot learners. In L. Valiant and M. Warmuth, editors,
Proceedings of the Workshop on Computational Learning Theory, pages 228–239.
Morgan Kaufmann Publishers, Inc., 1991.

[Fre79] R. Freivalds. Finite identification of general recursive functions by probabilistic
strategies. In Proceedings of the Conference on Fundamentals of Computation
Theory, pages 138–145. Akademie-Verlag, Berlin, 1979.

20

[Gil77] Gill. Computational complexity of probabilistic turing machines. SIAM Journal
of Computing, 1977.

[Gol67] E. M. Gold. Language identification in the limit. Information and Control,
10:447–474, 1967.

[JS90a] S. Jain and A. Sharma. Finite learning by a team. In M. Fulk and J. Case,
editors, Proceedings of the Third Annual Workshop on Computational Learning
Theory, Rochester, New York, pages 163–177. Morgan Kaufmann Publishers,
Inc., August 1990.

[JS90b] S. Jain and A. Sharma. Language learning by a team. In M. S. Paterson, edi-
tor, Proceedings of the 17th International Colloquium on Automata, Languages
and Programming, pages 153–166. Springer-Verlag, July 1990. Lecture Notes in
Computer Science, 443.

[JS93a] S. Jain and A. Sharma. Computational limits on team identification of languages.
Technical Report 9301, School of Computer Science and Engineering; University
of New South Wales, 1993.

[JS93b] S. Jain and A. Sharma. On aggregating teams of learning machines. In K.P.
Jantke, S. Kobayashi, E. Tomita, and T. Yokomori, editors, Proceedings of the
Fourth International Workshop on Algorithmic Learning Theory, Tokyo, Japan,
pages 150–163. Springer-Verlag, November 1993. Lecture Notes in Artificial
Intelligence No. 744.

[JS93c] S. Jain and A. Sharma. Probability is more powerful than team for language
identification. In Proceedings of the Sixth Annual Conference on Computational
Learning Theory, Santa Cruz, California, pages 192–198. ACM Press, July 1993.

[MY78] M. Machtey and P. Young. An Introduction to the General Theory of Algorithms.
North Holland, New York, 1978.

[OSW86] D. Osherson, M. Stob, and S. Weinstein. Aggregating inductive expertise. In-
formation and Control, 70:69–95, 1986.

[Pit89] L. Pitt. Probabilistic inductive inference. Journal of the ACM, 36:383–433, 1989.

[PS88] L. Pitt and C. Smith. Probability and plurality for aggregations of learning
machines. Information and Computation, 77:77–92, 1988.

[Rog67] H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw
Hill, New York, 1967. Reprinted, MIT Press 1987.

[Smi82] C. Smith. The power of pluralism for automatic program synthesis. Journal of
the ACM, 29:1144–1165, 1982.

[Smu61] R. Smullyan. Theory of Formal Systems, Annals of Mathematical Studies, No.
47. Princeton, NJ, 1961.

21

[TB70] B. Trakhtenbrot and J. M. Barzdin. Konetschnyje Awtomaty (Powedenie i Sin-
tez) (in Russian). Nauka, Moskwa, 1970. English Translation: Finite Automata–
Behavior and Synthesis, Fundamental Studies in Computer Science 1, North
Holland, Amsterdam, 1975.

[Vel89] M. Velauthapillai. Inductive inference with bounded number of mind changes.
In Proceedings of the Second Annual Workshop on Computational Learning The-
ory, Santa Cruz, California, pages 200–213. Morgan Kaufmann Publishers, Inc.,
August 1989.

22

