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Abstract. One of the most important paradigms in the inductive inference litera-
ture is that of robust learning. This paper adapts and investigates the paradigm of
robust learning to learning languages from positive data. Broadening the scope of
that paradigm is important: robustness captures a form of invariance of learnability
under admissible transformations on the object of study; hence, it is a very desirable
property. The key to defining robust learning of languages is to impose that the latter
be automatic, that is, recognisable by a finite automaton. The invariance property
used to capture robustness can then naturally be defined in terms of first-order de-
finable operators, called translators. For several learning criteria amongst a selection
of learning criteria investigated either in the literature on explanatory learning from
positive data or in the literature on query learning, we characterise the classes of
languages all of whose translations are learnable under that criterion.

Keywords. Inductive inference, learning in the limit, query learning, robust learning,
translations, automatic structures.

1 Introduction

The present paper considers robust learning in the framework of inductive inference, more pre-
cisely, of Gold-style language learning in the limit. Informally, Gold [5] formalised language
learning in the limit in a way that the learner is presented with all members, one at a time, of
a language selected from a class of languages to be learnt. From this data, the learner has to
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identify the language in the limit by conjecturing and revising at most finitely often a hypoth-
esis where the last hypothesis describes the language to be learnt correctly. Learning is robust
when it is preserved under any admissible transformation of a learnable class: that is, given a
learnable class, each of the images of the class under an admissible transformation, is learnable.
Of course, the notion of an “admissible transformation” has to be appropriately and naturally
defined. A related question is that of which classes of languages could be the object of learning,
as the proposed “admissible transformations” will be defined with respect to those classes. This
is a familiar theme, as the search for invariants is prominent in many fields of mathematics.
For example, Hermann Weyl described Felix Klein’s famous Erlangen programme on the alge-
braic foundation of geometry in these words [22]: “If you are to find deep properties of some
object, consider all natural transformations that preserve your object.” In the field of inductive
inference, Barzdins addressed the question of robust learning in the context of learning classes of
recursive functions, and he conjectured the following, see [4, 24]. Let a class of recursive functions
be given. Then every image of the class under a general recursive operator is learnable iff the
class is a subclass of a recursively enumerable (that is, a uniformly recursive) class of functions.
To see where this conjecture comes from, it should be recalled that recursively enumerable classes
of functions can be easily identified by a technique called “learning by enumeration” [5]. This
technique amounts to simply conjecturing the first function in an effective list of the functions
to learn, which is consistent with all data seen so far. The learnability of a class of functions by
such an algorithm cannot be destroyed by transforming that class to another class using gen-
eral recursive operators. So Barzdins’ conjecture essentially says that the enumeration technique
fully captures robust learnability. Fulk [4] disproved the conjecture and this started a rich and
fruitful exploration within the field of function learning [10, 11, 20]. Further refinements, such as
uniform robust learnability [11] (where the learner for a transformed class has to be computable
in a description of the transformation) and hyperrobust learnability [20] (learnability, by the
same learner, of all transformations of a class under primitive recursive operators) have also
been investigated.

It is natural to try and generalise robust learning to learning of classes of languages, first
because the concept of robustness is an instance of the ubiquitous mathematical quest for in-
variants, and second because learning of classes of languages was the first object of study in
inductive inference and has been more broadly investigated than function learning. However,
what seems to be the natural extension of the definition from the context of function learning
to the context of language learning does not work well, as even the class of singletons would
not be robustly learnable according to the resulting definition. This paper proposes a modified
approach to robust language learning, focusing on specific classes of languages, to be introduced
in the next paragraph. Not only are these classes of languages well suited to the definition of a
natural transformation between languages that can adequately capture a notion of robust learn-
ing and enjoy appealing characterisations; these classes of languages are also interesting in their
own right and are themselves a new important topic of research. Besides the advantages of the
restriction to those interesting languages, all concepts defined in this paper are meaningful even



with respect to all r.e. languages.

Before we introduce the specific classes of languages which we have identified as the natural
object of study for robust learning of languages, recall that sets of finite strings over some finite
alphabet are regular if they are recognisable by a finite state automaton. Sets of pairs of finite
strings over respective alphabets are regular if they are recognisable by a finite state multi-input
automaton that uses two different inputs to read both coordinates of the pair, with a special
symbol (say x) being used to pad a shorter coordinate. For instance, to accept the pair (010, 45)
an automaton should read 0 from the first input and 4 from the second input and change its
state from the start state to some state ¢, then read 1 from the first input and 5 from the second
input and change its state from ¢; to some state ¢o, finally read 0 from the first input and x
from the second input and change its state from ¢y to an accepting state. It is essential that all
inputs involved are read synchronically — one character per input and cycle. One can similarly
consider finite state automata accepting triples, quadruples, and so on. The classes of languages
that we focus on in this paper are classes of regular languages of the form (L;);cr such that I and
{(i,z) : © € L;} are regular sets; we refer to such a class as an automatic family of languages.
An automatic family of languages is actually a particular kind of automatic structure, an object
of study in its own right, which is now a source of many interesting questions and results on
definability [6, 14, 15].

What this paper presents is not the first work to create a bridge between inductive inference
and automatic structures: learnability of automatic families has recently been studied [7,8]. It
should also be noted that our approach is an instance of a more general theme in inductive infer-
ence, that of the learnability of indexed families, a topic which has been extensively investigated
in learning theory [1,17,18]: automatic families of languages are a special case of indexed fam-
ilies. One major advantage of automatic families over indexed families is that their first-order
theory is decidable [6-8,14] and many of their important properties are first-order definable.
In particular, the inclusion structure of an automatic family can be first-order defined. As we
will see, this property plays an important role in this paper, and it is a key reason why robust
learning can be fruitfully studied with automatic families.

With the right classes of languages in hand, we can then suitably define the admissible trans-
formations of one class of languages into another that will capture a natural form of robust
learning. We consider any transformation given by an operator @ which maps sets of strings
to sets of strings such that the automatic family (L;);c; to be learnt is mapped to a fam-
ily (L))ie;r = (P(L;))ics, where @ is definable by a first-order formula, @ preserves inclusions
amongst sets of strings, and @ preserves noninclusions between members of the family. We call
such a @ a translator. A key result of the theory of automatic structures is that the image
(@(L;))ier of an automatic family under such an operator @ is again an automatic family [14].
An important special case is given by continuous, or text-preserving, translators for which @(L)
is the union of all ¢(F) where F ranges over the finite subsets of L. Continuity is one of the
most important properties in the general theory of functionals, and this work is no exception; it
captures the natural requirement of computing more and more of the elements of the mapped
language from larger and larger, but always finite, sets of elements of the original language. We



study the impact of such translations on learnability.

We proceed as follows. In Sections 2 and 3, we introduce the necessary notation and concepts.
In Section 4, we provide an overview of the main results to guide the reader in what comes next.
In Section 5, we illustrate the notions with a few examples and provide a general characterisation
of robust learnability in the limit of automatic families of languages. In Section 6 to 8, we provide
many further characterisations of robust learnability for some of the learning criteria that have
been studied in the literature: consistent and conservative learning, strong-monotonic learning,
strong-monotonic consistent learning, finite learning. In Section 11, we consider learning from
subset queries, learning from superset queries and learning from membership queries.

The characterisations that have been found are all natural as they express a particular con-
straint on the inclusion structure of the original class. In many cases, they deal not only with
transformations of the original class under all possible translations, but also with transformations
under text-preserving (continuous) translations.

2 Automatic structures, languages and translations

The languages considered in inductive inference [9] consist of numbers implicitly coding some
underlying structure, but the coding is not made explicit. In the context of the present work
though, where languages have to be recognised by finite automata, a minimum of structure has
to be given to the members of a language: they are assumed to be finite strings over an alphabet
denoted by Y. Let L* denote the set of all finite strings over 2. It is assumed that ' is nonempty
and finite. For z € X*| the length of x, denoted |z|, is the number of symbols occurring in z; for
example, |00121] = 5. We write zy for the concatenation of two strings x and y. We denote the
empty string by €.

We denote by I a regular subset of 1J*. We assume that X' is strictly ordered and given
x,y € X* we write x <j; y iff £ is length-lexicographically smaller than y, that is, if either
|z| < |y|] or |z| = |y| and x comes lexicographically before y. We write z < y iff x = y or
rT<py.

In order to capture the constraint that a class of languages is uniformly recognisable by
a finite automaton, we make use of a particular kind of automatic structures [15], that for
simplicity, is still referred to as automatic structures. The structures under consideration offer
enough expressive power to refer to the target language that a learner will be given a presentation
of and has to eventually correctly identify, and to refer to the whole class of languages that are
the object of learning. A unary predicate symbol and a binary predicate symbol are used to refer
to the target language and the class of languages, respectively.

Definition 1. We call automatic structure any V-structure 91 whose domain is X*, with V
being a relational vocabulary satisfying the following properties.

— V contains the unary predicate symbol X and the binary predicate symbol Y (and possibly
more predicate symbols of any arity).

— The interpretation of X in 9 is included in 2* and the interpretation of Y in 91 is included
in I x X*, where [ is a regular set.



— The interpretation of all predicate symbols in V in 91 is regular.

By language we mean a subset of X*. Intuitively, in the above definition, I is a set of indices.
X is a predicate for a language {x : X(x) = 1}, and Y is a predicate for describing a class of
languages I = (L;);es, where L; = {z : Y (i,x) = 1}, for i € I.

Definition 2. Let [ be a regular set. An automatic class is a repetition-free I-family I = (L;);e;
of languages such that {(i,z) : i € I, x € L;} is recognisable by a finite state multi-input
automaton. Members of I are referred to as indices for the languages in the class I.

Assuming that X has at least 2 elements, say 0 and 1, here are some examples of classes of
languages that can be represented as automatic classes, for proper choices of I:

— the class of sets with up to k elements for a constant k;
— the class of all finite and cofinite subsets of {0}*;
— the class of all intervals of an automatic linear order on a regular set.

On the other hand, the class of all finite sets over {0, 1} is not automatic.

The constraint that automatic classes be repetition-free is not standard when one considers
learning of indexed families. However, it is at no loss of generality in the context of the present
work and allows one to substantially simplify the arguments in most proofs.

One advantage of considering automatic structures and families is that first-order definable
relations over existing automatic relations are also automatic. Thus, several problems related to
automatic families become decidable.

Fact 3 (Khoussainov, Nerode [14]). Any relation that is first-order definable from existing
automatic relations is automatic.

We consider transformations of languages that are definable in the language and are used to
describe the target language and the class of languages to be learnt. Intuitively, in the next
definition, @ is a translator (using an automatic class I as a parameter), that maps a language
L to &1(L).

Definition 4. Let @ be any first-order formula over the vocabulary of some automatic structure
with the distinguished variable x as unique free variable (this allows one to denote such a formula
by @ rather than by &(x)). Let an automatic class I = (L;);c; be given. For all languages L,
denote by @1(L) the language consisting of all strings s such that @[s/x] is true in all automatic
structures in which the interpretation of X(w) is w € L and the interpretation of Y (i,w) is
1 € I Nw € L;. We say that @ is an automatic I-translator if:

— for all languages L and L', if L C L' then &1(L) C &1(L');
— for all members ¢ and j of I, if L, ¢ L; then &1(L;) € P1(L;).

As an example consider the translation @ given by the formula

e INVy[[Y(z,y) =1] = [X(y) = 1]]

5



Then, for I = (L;);cr, P1(L) maps L to the language {x € I : L, C L}.

Let an automatic class I = (L;);er be given. Note that though the index set [ is not part of the
logical vocabulary, “x € I” is first-order expressible in this language as there is at most one index
for @: I is either the set of all xs with Jy Y (x,y), or the set of all xs with Jy Y (z,y) V x = 1o,
where iy denotes the index of @ in case @ € 1.

For ease of notation, given two terms ¢ and t’, we write t € X for X (¢) and t' € Y; for Y (¢,t')
(equivalently, Y; = {t' : Y'(¢t,t')}).

Given an automatic I-translator @, we let &(I) denote (P1(L;))icr; we refer to any such family
as a translation of I. Note that a translation is always defined with respect to I-translators for
a particular automatic class I. We drop the reference to I for ease of notation.

One major advantage of the definability of translators via first-order formulas is that auto-
maticity is preserved. This follows from Fact 3.

Theorem 5. For all automatic classes 1, all translations of 1 are automatic.

3 Texts and learnability

Let us recall the basic concepts in inductive inference as originally defined in [5] and fix some
notation. The only difference with the classical framework of learning from positive data is that
we consider languages over strings rather than natural numbers.

Let # be a special symbol not in 3. We denote by SEQ the set of finite sequences of members
of X* U {#}. Given ¢ € SEQ, we denote by rng(c) the set of members of X* that occur in o
(for example, if X = {a,b,c} and o = (ab, #, ab, cacba) then rng(c) = {ab, cacba}). We say that
o is for L if rng(c) C L. Given ¢ € SEQ and a family I = (L;);c; of languages, we say that o is
for Tiff rng(o) C L; for some i € I. Given a language L, a text for L refers to an enumeration
of all elements of L of the form (eg)xen, possibly with duplicates and possibly with #, but no
other symbol, occurring anywhere in the enumeration. In particular, if L = @ then e, = # for
all k£ € N. The concatenation of o € SEQ and 7 € SEQ is denoted by o ¢ 7. For s € X* U {#}
and o € SEQ, we sometimes abuse notation and use o ¢ s to denote the concatenation of ¢ with
(s). A member 7 of SEQ is an initial segment of another member o of SEQ iff 0 = 7o 7/ for
some 7' € SEQ); in this case o is said to extend 7.

The notion of translator is quite general and it is worthwhile to examine to which extent it
can be constrained to continuous transformations, that is, translators such that any member of
the translation can be determined from a finite subset of the original language:

Definition 6. Let an automatic class I = (L;);c; and an automatic I-translator ¢ be given. We
say that @ is text-preserving iff for all languages L and for all s € &1(L), there is a finite subset
F of L with s € ¢&1(F).

We talk about text-preserving translation of I to refer to any family of the form &(I) where
@ is a text-preserving automatic I-translator.

Example 7. Given an automatic class I = (L;);c;, let a formula &"¢ (with x as unique free
variable, parameter X for the input language, and parameter Y; for the i-th element L; of the
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indexing) express © € I A Jy(y € X \'Y,), that is, z € I A X ¢ Y,. Then for all languages L,
Ppe(L) is equal to {i € I : L € L;}. Moreover, "¢ is text-preserving.

Almost all results will involve recursive learners, with one exception (Theorem 30) where we had
to drop the recursiveness requirement. This result will be expressed in terms of general learners.
Learners of both kinds are defined next.

Definition 8. A general learner is a partial function from SEQ into I. A learner is any partial
recursive function from SEQ into I with a recursive domain.

In the context of automatic structures, the fact that a learner is undefined on some input indicates
that the learner cannot make a reasonable guess, rather than the learner being unable to make a
guess due to computational infeasibility. This justifies letting learners be partial rather than total
functions. We could also let a learner output some special symbol rather than being undefined.

Definition 9 (Gold [5]). Let I = (L;);e; be an automatic class. A learner M is said to learn
I iff for all i € I and for all texts (ey)ren for Lj, M((eo el ek)) is defined and equal to ¢ for
cofinitely many k € N. We say that I is learnable iff some learner learns I.

Note that for simplicity, we use the term “learning” to refer to the notion that in the literature is
more precisely called explanatory learning. Furthermore, observe that the definition above takes
advantage of the one-one indexing of the automatic families considered.

We now recall some of the restrictions on learnability that have been investigated in the
literature [1,3,12,13,23] and that will be considered in this paper, individually or combined.

Definition 10. Let I = (L;);c; be an automatic class and M be a learner that learns I.

M is consistent iff for all 0 € SEQ), if ¢ is for I then M (o) is defined and rng(c) C L)

M is conservative iff for all o, 7 € SEQ), if o o7 is for I, both M (o) and M (o ¢ 1) are defined
and LM(JOT) #* LM(O’)7 then rng(a <>7') \ LM(J) %+ O,

M is confident iff for all texts e for an arbitrary language, there exists m € N such that for
all n >m, M((e(0)...e(n))) is undefined or equal to M ((e(0)...e(m))).

M is strong-monotonic iff for all o, 7 € SEQ, if ¢ is an initial segment of 7, 7 is for I and
both M(c) and M (7) are defined, then Lys) C Las(r).

Conservative and strong-monotonic learners do not overgeneralise, that is, on any input sequence
for L € I, they do not output a conjecture which is a proper superset of L.

Definition 11. An automatic class I is said to be consistently, conservatively, confidently or
strong-monotonically learnable iff some consistent, conservative, confident or strong-monotonic
learner learns I, respectively.

For robust learning, one requires that each translation @(I) of the family I is learnable (according
to the given criterion), where @ ranges over all automatic I-translators. Note that requiring the
learnability of each translation demands that I itself be learnable, as the identity is a particular
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translator. In some cases, we consider learnability of &(I) only for all text-preserving Ps.

The characterisation of learnability of indexed families of languages in terms of tell-tales
given by Angluin [1] can easily be adapted to the current setting, with indexed families replaced
by automatic classes. The characterisation is simpler here because the tell-tales do not have to
be assumed to be computable from the languages in the class, as they are necessarily so.

Definition 12 (Angluin [1]). Let I = (L;);c; be an automatic class. Given i € I, a tell-tale
for L; (with respect to I) is a finite F' C L; such that for alli' € I, if F C Ly C L; then L; = L.

7

If T is clear from the context, then, for ease of notation, we often drop “(with respect to I)
when considering tell-tale sets. If every language in an automatic class I has a tell-tale set, then
we say that the class satisfies Angluin’s tell-tale condition.

Theorem 13 (Jain, Luo and Stephan [7]; based on Angluin [1]). Let I = (L;)ics be an
automatic class. Then 1 is learnable iff for all i € I, there exists a tell-tale for L;. Moreover, if
I is learnable then 1 is consistently and conservatively learnable by a set-driven learner (whose
conjecture on an input o only depends on rng(c)).

Alternatively, one could also describe the tell-tale by an upper bound in order to get a first-
order formula which expresses learnability. An automatic class I = (L;);cs is learnable iff for all
members ¢ of I, there is a bound b; € X* such that {y € L; : y <, b;} C L; C L; forno j € I.
This is equivalent to

Viel)(3yeX)(Vjel)|[Fye Li\Lij(y <ub) vV Iye L;\ L; vV Vy e Li(y € L;)].

In order not to clutter notation, we will from now on abstain from breaking subset-relations
down into first-order formulas as exemplified with the previous formula; we leave it to the reader
to formalise subset-relations via quantified predicates using membership.

Example 14. Let an automatic class I = (L;);cr be given. There are two learners, M,,on
and M., (that use an automatic description of I as a parameter), which learn I whenever I is
strong-monotonically and explanatorily learnable, respectively. These two learners are defined
as follows.

— In response to 0 € SEQ, M., outputs the unique i € I that satisfies (1) rng(o) C L; and
(2) for all j € I, if rng(o) C L, then L; C Lj; if such an i does not exist then Mo, is
undefined.

— In response to o € SEQ, M., outputs the unique i € I such that rng(c) C L; and there is no
j € I with (1) rng(c) C L; and (2) either L; C L; or j <y ¢ and L; ¢ Lj; if such an index 4
does not exist then M., is undefined.

Proof. Clearly, the learner M,,,, is partial recursive and has a recursive domain. Note that
by definition, any hypothesis output by Mj,,,, is the smallest one (with respect to C) which
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contains the input data seen so far; hence, any further hypothesis output by M,,., is a superset
of the current one and therefore M,,, is strong-monotonic. Suppose that I is learnable by a
(possibly non partial recursive) strong-monotonic learner N. Let us show that for all o for I,
if N(o) = i then either rng(o) € L; or M., = i; this implies that M, also learns I as
whenever N converges to i on a text for L;, so does M,on. So assume that N (o) outputs ¢ and
L; contains rng(o). Let j be any index with rng(c) C L;. There is a text for L; which starts
with o; hence, N outputs j on some 7 extending o. It follows from the strong-monotonicity of
N that L; C L;. In other words, ¢ is the index of the C-minimal language containing rng(c);
hence, Myyon(0) = i. Therefore M, is a strong-monotonic learner for the class I whenever I
has a strong-monotonic learner at all.

Clearly, the learner M., is partial recursive and has a recursive domain. Now assume that the
class I is explanatorily learnable. Therefore it satisfies Angluin’s tell-tale condition. Fix i € L;
and a text for L;; to complete the verification of the claim of the example, it is necessary and
sufficient to show that M., converges on this text to i. For every sufficiently long initial segment
o of the given text for L;, it holds that (a) rng(c) contains the tell-tale of L; and (b) rng(o)
contains some element of L; \ L; for every j <; i with L; ¢ L;. Condition (a) implies that
there is no j with rng(o) C L; C L;, and condition (b) implies that there is no j <; i with
rng(o) € L; and L; ¢ L;. Hence, for every i € I and every text for L;, M,(c) conjectures i on
almost all initial segments of the text. [

Note that not all explanatorily learnable classes are strong-monotonically learnable. Hence, the
learner M., is not as powerful as M,,. An example of a class which is explanatorily learnable
but not strong-monotonically learnable is {{0,1}*\ {z} : « € {0,1}*}. Furthermore, the above
learners can of course also operate on classes of the form @(I) (using ®(I) as a parameter instead
of I) whenever such a class is learnable under the corresponding condition.

4 Overview of the main results

Theorem 13, proved in [7], characterises the learnability of an automatic class in terms of tell-
tales, defined in Definition 12. We will establish other characterisations of the learnability of an
automatic class or of one of its translations:

— Theorem 21 shows that every automatic class has some strong-monotonically learnable trans-
lation.

— Theorem 31 characterises the finite learnability of some translation of an automatic class in
terms of the class being an antichain.

— Theorem 34 shows that every automatic class is learnable from equivalence queries.

— Theorem 39 shows that every automatic class has a translation learnable using membership
queries.

— Theorem 40 and Corollary 41 characterise the learnability of an automatic class from subset
and superset queries, respectively, in terms of tell-tale-like conditions.

Another family of results characterise the learnability of all translations of an automatic class
in terms of tell-tale-like conditions.



— Theorem 17, dealing with arbitrary automatic classes, is the most general result, and it also
holds for text-preserving translations.

— Theorem 20 provides such a characterisation for strong-monotonic learnability, which also
holds for text-preserving translations.

— Theorem 26 provides such a characterisation for strong-monotonic and confident learnability.

— Theorem 46 provides such a characterisation for learnability from membership queries.

Besides, characterising the learnability of all translations of an automatic class in terms of tell-
tale-like conditions, we also do some other characterisations as follows:

— In terms of well orderings of the set of indices, or of the class of languages under inclusion:
e Theorem 19 provides such a characterisation for consistent and conservative learnability.
e Theorem 24 provides such a characterisation for strong-monotonic consistent learnability,
which also holds for text-preserving translations.
— In terms of the finiteness of the class, with Theorem 29 providing such a characterisation for
confident, conservative and consistent learnability.
— In terms of the existence of least upper bounds whenever every finite collection of languages
in the class are bounded (with respect to inclusion) by a language in the class:
e Theorem 25 provides such a characterisation when some translation of the class is consis-
tently and strong-monotonically learnable.
e Corollary 27 provides such a characterisation when some translation of the class is con-
sistently, confidently and strong-monotonically learnable.

5 General characterisation

We start with two examples of conditions that guarantee robust learnability.

Theorem 15. Let I = (L;);c; be an automatic class.

— If ({Li:i€ I},D) is well ordered (for the superset, not the subset relation) then all trans-
lations of 1 are learnable.
— Ifforalli,jelI, Ly C L; & L; = Lj, then all translations of 1 are learnable.

Proof. Let an automatic I-translator @ be given.

Suppose that ({LZ 21 € I}, D) is well ordered. Let ordinal x and (L)<, be a well ordering
of ({L; :i € I},D). Then (P1(L}))r<x is a well ordering of ({®y(L;) : i € I},D). Given i € I,
let A < x be such that L; = L), and let s; € $1(L)) be such that if \+-1 < s then s; & $1(L\ ).
Clearly, for all i € N, {s;} is a tell-tale for &1(L;). We conclude using Theorems 5 and 13 that
&(T) is learnable.

Suppose that for all members ¢ and j of I, L; C L; and L; = L; are equivalent. This property
is inherited by the translations: @1(L;) C @1(L;) iff &1(L;) = @1(L;). Then for all i € N, @ is a
tell-tale for @1(L;), and we conclude using Theorems 5 and 13 again that @(I) is learnable. [

As can be expected, learning does not imply robust learning, even if restricted to text-preserving
translations:
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Theorem 16. There exists a strong-monotonically, consistently and confidently learnable auto-
matic class one of whose text-preserving translations is not learnable.

Proof. Take I equal to {0,1}*. Clearly, there exists an automatic class I = (L;);e; such that
L. = {0,1}* (recall that e denotes the empty string), Lo = @), and for all i € I\ {,0}, L, = {i}.
Define @ as Ju(v € X Av # x) (a formula with x as unique free variable). It is immediately
verified that I is strong-monotonically, consistently and confidently learnable. Furthermore, @ is
an automatic I-translator, and @(I) consists of I, (), and all cosingletons of I except for I\ {¢}
and I \ {0}. This implies that ¢(I) is not learnable (as there is no tell-tale of I with respect to
o)) [1]. O

Theorem 17 offers a general characterisation of robust learning in this framework along the lines
of Theorem 13. It is worth comparing the third condition in Theorem 17 with the condition on
tell tales spelled out after Theorem 13. Given ¢ € I, the existence of a language L, such that
{ye Ly <uyb}C L; C L; is not ruled out but still under control: L; rather than L; will be
output as a hypothesis on the basis of {y € L; : y <j; b;} only if L; has been “killed” thanks to
the appearance of a member of L; that does not belong to a superset L;, of L;.

Theorem 17. Given an automatic class I = (L;);er, the three conditions below are equivalent.

1. FEvery translation of 1 is learnable.

2. Every text-preserving translation of 1 is learnable.

3. For all i € I, there exists b; € I such that for all j € I, either L; ¢ L; or there exists k € I
with k Sll bi, Lz g Lk and Lj Q Lk.

Proof. It suffices to prove that 3. implies 1. and 2. implies 3.

We first show that 3. implies 1. Assume that 3. holds. Without loss of generality, for all i € I,
let b; be the <;-least member of I that satisfies the third condition of the theorem. Note that
for all i € I, b; is first-order definable from i; therefore the mapping ¢ — b; is recursive (Fact 3).
Let @ be an automatic I-translator. Let a learner M be such that in response to o € SEQ, M
outputs the <j-least i € I, if any, such that rng(c) C @1(L;) and for all j € I, if L; C L; then
rng(o) contains a member of @1(L;) \ @1(Ly) for some k <; b; with L; C Ly. It is easily verified
that M learns &(I).

We now show that 2. implies 3. For a contradiction, assume that there exists ¢« € I for which
there exists no b; € I such that for all j € I, either L; ¢ L; or there exists k € I with k <;; b;,
L; C Ly and L; Q L. Thus, I is infinite. We have to exhibit a text-preserving automatic I-
translator @ such that @(I) is not learnable. Define @ as follows: given a language L, ®1(L)
consists of all (p,n) € I? such that at least one of the following conditions holds:

(a) For all s with s <; n, if s € L, then s € L.

(b) For all s with s <;; n, if s € L, then s € L;. Furthermore, for all k € I with k <; max(p,n),
either L; C Ly or L € L.

This is a first-order definition. Let H; = @1(L;). It follows from the definition of ¢ that if L C L’

then @1(L) C @1(L'). Let j,j5',n € I be such that there exists s <;; n with s € L; \ Lj;. Then at

least one of the following conditions holds:
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— For all s with s’ <;; n,if s € L; then s’ € L. Hence, s € L;\ (L;U Lj/) and s < n; therefore
(j,n) belongs to H; \ Hj.

— There exists s’ such that s <; n, s’ € L, and s ¢ Lj. Let j” = max(j’,n). Clearly,
(7,4") € H;. Furthermore, setting p = j and n = j” in conditions (a) and (b) above and
instantiating k to j” in the last part of condition (b), it follows from the existence of s’ and the
inclusion Ly C L that (j,j"”) cannot be in Hj = &1(L;/). Hence, (4, j”) belongs to H; \ Hj.

Hence, by case distinction, H; ¢ Hj.

We conclude that @ is an automatic I-translator. Moreover, it is immediately verified that &
is text-preserving. Now for every b; € I, thereis a j € I with L; C L; such that for all k € I with
k <u by, either L; C Ly or L; € Ly. It follows that for all elements (p,n) of H;, if both p and
n are <;-smaller than b; then (p,n) is also in H;. However, H; is still a proper subset of H;. It
follows that H; does not have a finite tell-tale. Hence, by Theorem 13, ¢(I) is not learnable. [J

6 Characterisations of learnability variously constrained

Consistency is a rather weak constraint on learners, and is often combined with other desirable
properties. We first combine consistency with conservativeness. In Section 8, we will combine it
with strong-monotonicity. Note that here, “a class is consistently and conservatively learnable”
means that the class is learnable by a learner which is both consistent and conservative (rather
than having two different learners, one satisfying consistency and the other satisfying conserva-
tiveness). A similar convention applies to combining other constraints on learners. Let us first
illustrate the notion with an example.

Example 18. Take I equal to {1”, 2" :n €{1,2,3,.. }} Let I = (L;)ier be defined by Lin =
{0™ :m > n} and Lyn» = {0™ : m < n} for all n > 0. Note that I is an automatic class
that is neither C- nor D-well founded. Let @ be a text-preserving automatic I-translator. Some
consistent and conservative learner M learns @(I), proceeding as follows in response to o € SEQ:

If o extends 7 with M (7) being defined and rng(c) C Ly (-, then M outputs M(7),
else if there is n € N with rng(c) C ®1(Lin) and rng(c) € P1(Lyn+1), then M outputs 17,
else M conjectures 2" for the least n > 0 with rng(c) included in @(Lan).

Since @ is text-preserving, for all n > 0, every finite subset of @1(Ly») is contained in @y(Lom) for
some m € N; hence, M is consistent. By the first clause in the definition of M, M is conservative.

We now show that M learns &(I). Let n > 0 be given. Presented with a text for @r(Lin), M
eventually observes a datum outside @y(Lin+1), at which point M either conjectures 1™ or outputs
the previous hypothesis — of the form 2™ for some m > 0 — until @(Lom) becomes inconsistent
with the data observed, at which point M makes a mind change to 1". Presented with a text
for @1(Lan), M eventually conjectures 2™ as soon as the data observed become inconsistent with
@1(Ly) and Py(Lam) for all nonzero m < n, which is guaranteed to happen as there are only
finitely many languages of the latter type.

12



Combined with Theorem 17, the next result characterises robust learnability by consistent,
conservative learners.

Theorem 19. Let I be a learnable automatic class all of whose translations are learnable. Then
every translation of 1 is consistently and conservatively learnable iff the set of members of 1 is
well founded under inclusion.

Proof. Set I = (L;);c;. First assume that I is well founded under inclusion. Note that the
inclusion structure is preserved under all translations and it is therefore sufficient to let a learner
exploit no other information on I but the inclusion structure of I and its automaticity. Let & be
an automatic I-translator.

Let a learner M process an input o for @¢(I) as follows. If there are 7, s with 0 = 7 ¢ s and
mg(o) € Pr(Lai(r)), then let M(o) = M(7), else let M (o) be the length-lexicographically least
1 € I, if any, such that

(a) rng(o) C &1(L;) and
(b) no j € I satisfies rng(c) C @1(L;) C Pi(L;).

Now it is shown that M is consistent and conservative. Consistency needs that M be defined on
all relevant input. To see that this is the case, consider any input o for the class. Due to the well
foundedness of I under inclusion and the definition of M, there is some i satisfying (a) and (b).
Hence, M is defined on o. Furthermore, M is consistent, as a mind change is forced whenever
the old hypothesis becomes inconsistent. On the other hand, a consistent old hypothesis will not
be withdrawn; hence, the learner is conservative.

So it remains to show that M actually learns the class. Consider a set to be learnt of the
form @1(L;), as well as a text for this set. Then there is an initial segment o of this text such
that the tell-tale of @1(L;) is contained in rng(c) and rng(c) € P1(Ly) for every k <y i with
Or(L;) € P1(Ly). Note that i is then the length-lexicographically least index satisfying (a) and
(b) in the definition of M above. Set j = M (o). If j = i then the learner has converged to the
correct index. If j # ¢ then @1(L;) cannot be a superset of @1(L;) due to the definition of M.
Thus the learner will eventually observe a datum inconsistent with the current hypothesis. Let
7 be the least initial segment of the given text with rng(r) € @1(L;). Then 7 extends o and M
updates its hypothesis on 7 to i, as ¢ is the length-lexicographic least index satisfying (a) and
(b) above with rng(7) in place of rng(c). Hence, M converges to i and M is indeed a learner for
&(I) as required.

Conversely, assume for a contradiction that there exists a sequence (i, )nen of members of 1
such that (L;, )nen is a C-descending chain. Let (j,)nen be a sequence of members of I such that
for all n € N, the following conditions hold:

- ‘]n| < ‘jn+1| and Ljn+1 - Ljn;
— Infinitely many members of {ig,1,...} extend the initial segment of j, ;1 of length |j,[;

— Jni2 extends the initial segment of j,.; of length |j,|.

The existence of (j,)nen can be shown by induction. Suppose we have defined jo, j1, .. ., jnt1
(where we take jy to be ig, and for purposes of definition, set j_; to ). To define j, o for
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n > —1, note that by the inductive hypothesis, there exists an extension A of the initial segment
of jn41 of length [j,| which is both longer than j,,; and an initial segment of infinitely many
i,s. Choose j,42 to be one of these 4,s such that L; , C L;,  ,. We now describe a coding of
(Jn)nen in three w-words «, § and . The w-word « is such that for all n € N, its initial segment
of length |j,| is an initial segment of j, 1. The w-word § consists of jy followed by the |ji| — |jo|
last symbols of j; followed by the last |ja| — |71] symbols of j, and so on. The w-word ~ is an
w-word over {0, 1} such that for all m € N, v(m) = 1 iff there is n € N with |j,| = m. Clearly,
(Jn)nen can be retrieved from these three w-words, and thus there exists a Rabin automaton
which recognises all triples of w-words which code an infinite descending chain of indices in I,
see [21]. It follows that there exists an infinite regular language R C I which consists of indices
of an infinite descending chain of sets. Consider a first-order formula @ (with z as unique free
variable and parameters X for the input language and Y, for the r-th element L, of the indexing)
which expresses the following condition:

if there exists j € R with Y; C X,
then z is either the empty string or of the form Oy for some y € X,
else z is of the form Oy for some y € X.

It is easily verified that @ is an automatic I-translator.

Suppose a consistent learner M learns @(I). In response to the empty string, M must output
some ¢ € [ for which there is j € R with L; C L;, and, hence, @1(L;) C @1(L;). But by the
choice of R, the empty word can be extended to a text for a language L; with L, C L;, and,
hence, ¢1(Ly,) C @1(L;). This implies that M cannot be conservative, completing the proof of
the theorem. [J

7 Strong-monotonic learning

For the learning criterion of strong-monotonicity, we first consider the concept by itself and then,
in Section 8, combined with consistency. Again, we can characterise robust learnability under
these restrictions, and provide further insights.

Theorem 20. Given an automatic class I = (L;)ier, clauses 1-3 are equivalent.

1. Every translation of 1 is strong-monotonically learnable.

2. Every text-preserving translation of 1 is strong-monotonically learnable.

3. For all i € I, there exists b; € I such that for all j € I with L; ¢ L;, there exists k € I with
k Sll bi, Lz ,Q Lk and Lj g Lk

Proof. First it is shown that 3. implies 1. and 2., by verifying that the learner My, from Ex-
ample 14 learns the class. Note that M., only exploits the inclusion-structure and automaticity
of the class @(I), making the same algorithm (using parameter ¢) work on all translations of
I. Without loss of generality, for all 7 € I, let b; be the <j;-least member of I that satisfies the
third condition of the theorem. Note that for all © € I, b; is first-order definable from ¢; therefore
the mapping i — b; is recursive (Fact 3).
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Let @ be an automatic I-translator. Recall that M,,,,, from Example 14 works as follows:
Mgpnon(0) = 4 iff 7 is the unique index such that rng(o) C &r(L;) C P(L;) for all j with
rng(o) C @1(L;). If such an index i does not exist then M., (0) is undefined. It is clear that
M mon is partial recursive. Furthermore, if ¢ and j are subsequent hypotheses of M,,,,, then
D1(L;) C P1(L;); hence, My, is strong-monotonic.

So the main task is to show that M, indeed learns the class &(I). Let i € I and a text for
Pr(L;) be given. Let o be any initial segment of the text which is so long that rng(o) ¢ ®r(Ly)
for every k <y b; with @1(L;) € P1(Lg). Then for all j with @1(L;) € P1(L;), there exists k <y b,
with &1(L;) ¢ ®1(Ly) and P1(L;) C Pr(Lg). By assumption, rng(c) ¢ Pr(Lg) and, hence,
mg(o) € P1(L;). Thus there exists a C-minimal language in the class which contains rng(o),
and 7 is the index of that set; s0 My,0n(0) = i. It follows that Mg, strong-monotonically learns
&(I). Hence, 3. implies 1. and 2.

Now it is shown that 2. implies 3., from which it follows that 1. implies 3. Let #™ be the text-
preserving automatic I-translator defined in Example 7. Let M be a strong-monotonic learner
that learns @"(I). Let i € I be given, and let b; be the <j-least member of I for which there exists
o € SEQ such that rng(o) C @7(L;), M (o) =i and for all s € rng(o), s <y b;. Then for any
J € I with &p¢(L;) ¢ PF¢(L;), there exists k € rng(o) with k <, b; and k € O7¢(L;) \ Py(L;),
implying that L; C Ly and L; € Lj. Hence, condition 3. holds, completing the proof of the
theorem. [

The following theorem shows that for every automatic class, which may or may not be learnable,
one can find some automatic translation which can be strong-monotonically learnt.

Theorem 21. Fvery automatic class has some strong-monotonically learnable translation.

Proof. Let I = (L;);c; be an automatic class and let @ be the formula (with x as unique free
variable and parameters X for the input language and Y, for the r-th element L, of the indexing)
that is defined as Vz(z € Y, = z € X). So for all languages L, ®1(L) is the set of all j € I
with L; C L. Clearly, ¢ is an automatic I-translator. Let M be a learner such that for all £ € N
and members 7, 7q, ..., 2, of I, M((io, e ,zk)) is defined and equal to 7 iff L;,, ..., L;, are all
subsets of L; and ¢ is the index of the C-minimal member of I that contains L , Ly, . It is
easily verified that M learns @(I) and that M is strong-monotonic. [

iy ¢

The following theorem shows that a text-preserving translation of an automatic class is strong-
monotonically learnable only if the class itself is strong-monotonically learnable.

Theorem 22. If some text-preserving translation of an automatic class 1 is strong-monotoni-
cally learnable, then 1 itself is strong-monotonically learnable.

Proof. Set I = (L;)ier. Let @ be a text-preserving I-translator such that &(I) is strong-
monotonically learnable. Then for all i € I, there exists a finite subset F; of @1(L;) such that
for all j € I, if F; C &1(L;) then @1(L;) C @1(L;). Since @ is text-preserving, for all ¢ € I, there
exists a finite subset E; of L; with F; C &((E;). For all members ¢ and j of I, if E; C L; then
D1(E;) C D1(Lj); thus F; C @1(L;), and, hence, 1(L;) C &1(L;) and L; C L;. Thus, for every
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© € I, there is a finite subset E; of L; such that for all j € I, if B, C L; then L, C L;. As I'is
automatic, one can determine E; effectively from ¢. Thus there is a learner M which, on input
o € SEQ, outputs the <j-least i € I, if it exists, such that E; C rng(c) C L; — if such an i does
not exist, then the learner M is undefined on o. It is easily verified that M is a strong-monotonic
learner for I. [

8 Strong-monotonic consistent learning

In this section, we consider learners which are both strong-monotonic and consistent. The fol-
lowing example shows that consistency adds a genuine constraint to strong-monotonicity.

Example 23. Take I = {0,1} U {2}*. Let I = (L;);es be defined by Ly = {0}, L; = {1} and
Lyn = {0,1}U{2™ : m > n} for all n € N. Then I is an automatic class. Let @ be an automatic
I-translator. Then Mg, from Example 14 (using @(I) as a parameter) learns ¢(I), due to the
following behaviour on ¢ € SEQ: if rng(o) is contained in exactly one of ®1(Ly) and ®r(L4),
then Mg,., outputs 0 or 1, respectively. If there is n € N with rng(o) contained in @1(Lyn) but
not in @1(Laon+1), then My,., (o) outputs 2. In any other case, Mgy,,(0) is undefined. Clearly,
M mon 18 & strong-monotonic learner that learns @(I).

But no consistent, strong-monotonic learner M learns @(I). Indeed, suppose otherwise, and
let o € SEQ be such that rng(o) is a subset of the union of @1(Lg) with @1(L;), but not a subset
of either of the sets. Then M (o) is equal to 2" for some n € N, and M (7) remains equal to 2"
for all 7 € SEQ that extend o and that are initial segments of a text for @1(Lan+1) (the learner
cannot change its mind as Lon+1 C Lon); therefore M fails to learn &(I).

The following theorem gives a characterisation of every translation of an automatic class being
strong-monotonically consistently learnable in terms of the class being well-ordered under inclu-
sion. For an ordinal o, we say that an ordered set A is of type a, if its ordering is isomorphic to
the ordering of a.

Theorem 24. Given an automatic class I = (L;);er, the three conditions below are equivalent.

1. FEvery translation of 1 is strong-monotonically consistently learnable.
2. FEwvery text-preserving translation of 1 is strong-monotonically consistently learnable.
3. {L;:i € 1} is C-well-ordered and of type w at most.

Proof. Assume that 3. holds. Given an automatic I-translator @, consider a learner that on
input o € SEQ, outputs the index of the C-least member L of {L; : i € I} with rg(o) C &1(L),
if such an L exists. It is easily verified that this learner is consistent and strong-monotonic and
learns I. Hence, 3. implies both 1. and 2.

To complete the proof of the theorem, it suffices to show that 2. implies 3. So assume that 2.
holds. We first show that for any members ¢ and j of I, L; and L; are C-comparable. Suppose
otherwise for a contradiction, and fix 4, j such that L; € L; and L; € L;. Consider a first-order
formula @ (with = as unique free variable and parameters X for the input language and Y, for
the r-th element L, of the indexing) which expresses the conjunction of the two conditions that
follow:
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— If X intersects Y; \ Y; or Y; \ Y;, then either x is the empty string or z is of the form Oy for
some y € X.
— If X intersects neither Y; \ Y; nor Y; \ Y;, then x is of the form Oy for some y € X.

It is easily verified that @ is an automatic I-translator and is text-preserving. Let M be a
consistent and strong-monotonic learner that learns @(I).

Since M is consistent, M must output, in response to the input sequence consisting of the
empty string e, a member k of I with ¢ € &1(Ly). By definition of @, L, contains an element
outside L; or an element outside L;. Hence, @1(Ly) € P1(L;) or Pr{Ly) € P1(L;). It follows that
M cannot be strong-monotonic as it must be able to switch its hypotheses from k to i or j when
it is presented with a text for @1(L;) or @1(L;), respectively.

Next we show that for all ¢ € I such that L; is not C-minimal, there exists j € I with L; C L;
such that there exists no k € I with L; C Ly C L;. Assume otherwise for a contradiction, and
choose i € I for which this property does not hold. Consider a first-order formula ¢’ (with x as
unique free variable and parameters X for the input language and Y, for the r-th element L, of
the indexing) which express that

x € X and (z ¢ Y; or there exists j € [ with x € Y; and Y; C V).

We now show that for all j € I and k € I,if L; € Ly, then &1(L;) € P1(Ly,). Clearly, it suffices to
verify that for all j € I, if L; C L; then @{(L;) C @{(L;). So let j € I be such that L; C L;. By
the choice of i, there exists k € I with L; C L, C L;. Let x € L;, \ L; be given. Then = belongs
to @((L;); hence, x € &1(L;) \ P1(L;). Hence, ¢ is noninclusion preserving for members of I; it
follows easily that @' is an automatic I-translator and is text-preserving. However, as @;(L;) is
the ascending union of the sets of the form @{(L;) with L; C L;, ¢'(I) cannot be learnable [1,
5], a contradiction.

To complete the proof of the theorem, it suffices to show that for all ¢« € I, there exist only
finitely many j € I with L; C L;. For a contradiction, assume otherwise. Let R be the set of all
t € I for which there exist infinitely many j € I with L; C L;. By assumption, R is not empty
and by the previous paragraph, there is no ¢ € R such that L; C L; for all j € R. Consider a
first-order formula @” (with x as unique free variable and parameters X for the input language
and Y, for the r-th element L, of the indexing) which expresses that

— if there exists z € X and j € R such that z ¢ Y], then z is either the empty string or of the
form Oy for some y € X;
— iffor all z € X and j € R, z € Y}, then x is of the form Oy for some y € X.

It is easily verified that @” is an automatic I-translator and is text-preserving.

Since M is consistent, M must output in response to the input sequence consisting of the
empty string ¢ a member ¢ of I with ¢ € &{(L;). So thereis a j € R and y € L; with y ¢ Lj;
hence, L; C L;. Furthermore, there is k € R with Ly C L;; so there exists z € L; \ Lj, implying
that ¢ € @{(L;). We infer that M overgeneralised in response to (¢), in contradiction with
the assumption that M is strongly-monotonic and learns @”(I). We conclude that R is empty,
completing the proof of the theorem. [
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The following theorem characterises when some translation of an automatic class is consistently
and strong-monotonically learnable in terms of the existence of least upper bounds whenever
every finite collection of languages in the class are bounded (with respect to inclusion) by a
language in the class.

Theorem 25. Let an automatic class I = (L;);er be given. Consider the following clause

(%) For all finite F C I, if there exists i € I with L, C L; for all k € F, then there
exists 1 € I such that L, C L; for all k € F', and

fOT(llle], ngL]<=>Vk€F(LkgL])

which expresses that every finite subset of 1 which is C-bounded in 1 has a (necessarily unique)
C-least upper bound in I. Then statements 1, 2 below hold.

1. There exists an automatic I-translator @ such that &(I) is consistently and strongly-mono-
tonically learnable iff (x) holds.

2. Suppose that the class 1 is strongly-monotonically learnable. Then some text-preserving au-
tomatic translation of 1 is strongly-monotonically and consistently learnable iff (%) holds.

Proof. It is convenient to prove both results together. For this, some notation is needed. If I is
not strong-monotonically learnable then for all @ € I, let F; = L;. If I is strong-monotonically
learnable then for all i € I, let E; = () if L; = (); otherwise let E; = {y € L; : y <y z} for the
<u-least z € L; such that for all j € I, if {y € L, : y <; 2} C L; then L; C L; (such a z exists
as any strong-monotonic learner must conjecture ¢ based on a finite input o for L;). Note that
in both cases above, for all i € I, FEj; is first-order definable from L;.

Now sufficiency is shown. So assume that (x) holds and, in case of 2., that I is also strong-
monotonically learnable and the sets FE; are therefore finite. Consider a first-order formula @
(with = as unique free variable and parameters X for the input language and Y, for the r-th
element L, of the indexing, where F; is obtained as above) expressing that E, is a subset of
X. Hence, &1(L) = {z € I : E, C L}. It is easily verified that ¢ is an automatic I-translator.
Furthermore, in the case of 2., the sets F;, ¢ € I, are finite and @ is text-preserving.

We now show that @(I) is strongly-monotonically and consistently learnable. Define a learner
M as follows. Presented with a finite set F' of data, M outputs the member 7 of I such that L; is
the C-least upper bound of the sets Ly with k£ € F', which exists by (x). Note that in case F' = &,
M still can output a conjecture as (%) implies that there is a C-least language in I. To see that
M learns @(I), note that whenever M is presented with a text for @1(L;), then i occurs in the
text and from that point onwards, M outputs i since L; is the C-least upper bound of any class
of languages which contains L; and which only contains sets L; satisfying F; C L,;. Hence, M
learns @1(L;). Clearly, M is consistent. Furthermore, M is strong-monotonic: if F C F’ then also
the C-least upper bound of {L, : j € F'} is a subset of the C-least upper bound of {L; : j € F'}.
This completes the proof of sufficiency for the claims given in 1. and 2., respectively.

For necessity, note that by Theorem 22, it is necessary in the case of 2. that I is strong-
monotonically learnable. Hence, it suffices to show (x) in both cases. Let @ be an automatic I-
translator that in the case of 2., is text-preserving. Let M be a consistent and strong-monotonic
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learner that learns @(I). Let F' be a finite subset of I. For each j € F', there is a finite subset G,
of &1(L;) such that &1(L;) C &r(Ly) whenever G; C @1(Ly). Now assume that M is presented
with data that include the union of all sets G; with 7 € F' — it is a finite set. Then M
outputs a conjecture ¢ such that @1(L;) contains all data seen so far. As M is strong-monotonic,
&r(L;) C P1(Ly) for all k where @1(Ly) contains the data seen so far. Hence, ®&1(L;) is a C-least
upper bound, in ¢(I), of the sets @1(L;) with j € F. As & preserves inclusions and noninclusions
within I, it follows that L; is the C-least upper bound of all the L; with j € F. Hence, (%)
holds. [

Note that a class that contains an infinite ascending chain is not confidently learnable. The
following theorem follows from this observation along with the results about strong-monotonic
learning shown above.

Theorem 26. Given an automatic class I = (L;);er, statements 1-4 below hold.

1. Assume that the class 1 is strong-monotonically learnable. Now the class 1 is confidently
learnable iff it contains no infinite ascending chain.

2. Every translation of 1 is strong-monotonically and confidently learnable iff 1 does not contain
infinite ascending chains and for all i € I, there exists b; € I such that for all j € I, if
L; & L; then there is k <y b; with L; C Ly and L; ¢ Ly,.

3. Some translation of 1 is strong-monotonically and confidently learnable iff 1 contains no
infinite ascending chain.

4. If some text-preserving translation of 1 is strong-monotonically and confidently learnable,
then T atself is strong-monotonically and confidently learnable.

As an immediate corollary of the above we get the following corollary.

Corollary 27. The three statements below hold.

1. FEvery translation of an automatic class 1 is consistently, confidently and strong-monotonically
learnable iff 1 is a finite chain of languages.

2. Some translation of an automatic class 1 is consistently, confidently and strong-monotonically
learnable iff T has no infinite ascending chain and every C-bounded finite subclass of 1 has
a C-least upper bound, that is, for all finite F' C I, if there is i € I with |J,cp Li C L, then
there is i € I with Jycp L € Ly and L; € Ly, for all h € I with \J,cp L € L.

3. Some text-preserving translation of an automatic class 1 is consistently, confidently and
strong-monotonically learnable iff 1 satisfies the conditions in 2. and 1 itself is strong-
monotonically learnable.

These results give a full characterisation on how confident learnability combines with strong-
monotonic learning. We should also observe the fact that every translation of a class being
confidently learnable does not imply that the class is strong-monotonically learnable:

Example 28. Consider the automatic class I which contains the set {0}* and for all n > 0 the
sets {0™ :m < n}U{1"} and {0}* U {1™ : m > n} . This class is not strong-monotonically
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learnable as any learner that learns I must output the index for {0}* after secing a finite sequence
of suitable examples. But then, for sufficiently large n, it is necessary to make a mind change to
the index for {0™ : m < n} U{1"} to learn that set from any text for it which extends o.

Still for every automatic I-translator @, @(I) is confidently learnable by a learner M that
proceeds as follows. As long as the data is consistent with @1({0}*), M conjectures the index for
D1 ({0}*). If there exists (a necessarily unique) n > 0 such that the data seen so far is consistent
with the set @r({0™ : m < n}U{1"}) but not with &1({0}*U{1™ : m > n}), then M outputs the
index for @1({0™ : m < n}U{1"}). Otherwise, if presented with some data that is consistent with
&1 (0* U {1™ : m > n}) for all n € N, but not with ¢1(0*), M outputs its previous hypothesis.
Otherwise, M conjectures the index for @1({0}* U {1™ : m > n}) where n > 0 is largest for
which the set is consistent with the input data; n might go down as more data are presented,
but will eventually stabilise. Hence, &(I) is confidently learnable.

9 Confident learning

A characterisation of classes every of whose translations is confidently learnable by a computable
learner is open. Theorem 30 deals with the case of general learners.

Theorem 29. Fvery translation of an automatic class 1 is confidently, conservatively and con-
sistently learnable iff 1 is finite.

Proof. Assume that every translation of I is confidently, conservatively and consistently learn-
able. Confidence implies that I contains no infinite ascending chain of languages. Conservative-
ness and consistency imply that I has no infinite descending chain of languages. For a contra-
diction, assume that I contains an infinite antichain.

By arguments similar to those in the proof of Theorem 19, there is an infinite regular set
R which consists of indices of an antichain. Consider a first-order formula @ (with = as unique
free variable and parameters X for the input language and Y, for the r-th element L, of the
indexing) which expresses that

x is either of the form Oy for some y € X or of the form 1+101™ for some i € R and
n € N such that either ¥; C X or there is a j € R with |j| > |i{| +2+n and Y; C X.

It is easily verified that @ is an automatic I-translator.

Note that if a language L is a superset of L; for infinitely many j € I with j € R, then &1(L)
contains all strings of the form 1/7#101". Furthermore, for every finite set £ of such strings and
almost all j € R, E C &1(L;). These two facts will now be used to disprove that I is confidently,
conservatively and consistently learnable.

Present all strings of the form 111+101" to a consistent learner M that learns &(I). If M
converges to an index k, then @1(Lj) contains infinitely many sets of the form &1(L;) with
1 € R. As k is output after finitely many data have been received, there exists ¢ € R such that
L; C Ly and k has been output after only data from @1(L;) have been received; hence, M cannot
be conservative. If M does not converge to an index k, then M is not confident. Hence, there
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is no consistent, conservative and confident learner that learns @(I). Hence, I does not have
an infinite antichain. As every infinite class contains an infinite ascending chain or an infinite
descending chain or an infinite antichain, I must be finite.

For the sufficiency, assume that I is finite. Then for all automatic I-translators @, @(I) is
finite, and by Theorem 19, there exists a consistent and conservative learner M that learns &(I).
Without loss of generality, this learner never returns to the index for a language that has been
conjectured and then abandoned. As there are only finitely many indices, M is also confident. [J

The following result is the only one that involves general learners rather than computable learn-
ers. Recall the definition of @"¢ from Example 7.

Theorem 30. Let I = (L;);er be an automatic class all of whose translations are learnable.
Then both conditions below are equivalent.

— Fwvery translation of I is confidently learnable by some general learner.
— There exists no nonempty subset J of I such that for all © € J and finite subsets F of
Qpe(L;), there exists j € J with FU {i} C OF(L;).

Proof. First one tries to build by induction along the ordinals o below w; a sequence of distinct
indices 4, and corresponding bounds b, such that for each L;, and j € I\ {ig: 8 < a}, P7°(L;)
does not contain the union of {i,} with {k € ®7°(L;,) : k <y b, }. This induction stops at some
ordinal v < wy (that is, i,,b, do not get defined, but i, and b, get defined for all & < 7). Now
let J =1\ {i,:a <~}. There are two cases:

(a) J is empty. Let @ be any automatic I-translator. Then one can build the following learner
M which is a restriction of the learner M., defined in Example 14 on the class ¢(I). After seeing
some data, M conjectures i, iff M., conjectures i, on the same data and for each k <; b,
with k € &7¢(L;,, ), some member of &1(L; ) \ P1(Ly) has been observed in the data seen so far;
otherwise M is undefined. Then M learns every language @1(L;,) as on a text for L, , after
some finite time M., has converged to i, and for all k& <; b, with k € ®7(L; ), some datum
in &1(L;,) \ P1(Lk) has been observed; hence, M outputs i, from then onward as well. To see
that M is confident, consider any two hypotheses i, and iz consecutively output by M on some
text. Assume for a contradiction that § > «. By definition of i, and b,, there exists k € [
with & <y by such that k € {io} UPP*(Ly,) \ P1°(Li,). If k = iy then L;, C L;,, and, hence,
P1(Li,) € P1(L;,). This is in contradiction with the following facts taken together:

— i, and ig are consecutively output by M.,;
— M., never makes a mind change from a hypothesis for a set to a hypothesis for a proper
subset of that set.

Otherwise, if k € @7°(L;,) then L;; C Ly, P1{Li;) € P1(Lx) and i, is output only after observing
some data outside @1(Ly); hence, M does not output the hypothesis ig, which is then inconsistent
with the data observed before. From this contradiction it follows that 8 < «; hence, the ordinals
by which the indices in I are indexed go down with every new hypothesis. It follows that the
learner M is confident.

(b) In case J is not empty, one can show that every general learner M that learns {&7¢(L;) :
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i € I} is not confident. To see this, consider such a general learner and pick iteratively some
members jo, ji, ...of J as follows. The inductive definition has the following invariants for any
fixed jo € J and n € N:

— rng(o,) C P7(L,,) and M(0,,) = jn;
— Op g On+1 and ]n € rng<0n+1);
— mg(0,) U {jn} € 27(Lj,,,)-

Note that j,;1 can always be picked from the set J as otherwise one could take i, = j, and
b, = <y-maximal element of (rng(c,) U {j,}) in the definition at the beginning of the proof,
and thus extend the induction, which by assumption could not be extended at . As &7°(L;,.,)
contains rng(o,,) and j, € ¢7°(L;, ), there exists a 0,41 extending o,,¢ j,, such that rng(oy,41) C
D1°(Lj,,,) and M(0n41) = Jjnt1. This completes the inductive definition. It follows that M is
not a confident learner.

We conclude that either every translation of I is confidently learnable by a general learner,
or the subset J of I considered in the proof witnesses that for all ¢+ € J and finite subsets F' of
D1¢(L;), there exists j € J with FFU{i} C &p°(L;).

On the other hand, if the second item in the statement of the theorem does not hold, then
J # () in the construction at the beginning of the proof, and thus I is not confidently learnable
by any general learner. This completes the proof of the theorem. [

10 Finite learning

A more restrictive notion of learning is finite learning where the very first conjecture output by
the learner has to correctly identify the set to be learnt. Obviously, finitely learnable classes are
antichains as otherwise one could see the data for a set L; and conjecture an index for this set
only to find out later that the set to be learnt is actually a superset of L;. So a key question is
to characterise the size of these antichains.

Theorem 31. Let an automatic class 1 be given. Statements 1-3 below hold.

1. FEvery text-preserving translation of 1 is finitely learnable iff 1 is a finite antichain.
2. Some translation of 1 is finitely learnable iff 1 is an antichain.
3. If 1 has a finitely learnable text-preserving translation, then I itself is finitely learnable.

Proof. Let I = (L;);e; be an automatic class.

1. Finite antichains are clearly finitely learnable by a learner M that waits until there is a
unique ¢ € I such that for each j € I distinct from 4, some member of L; \ L; is part of the
input, at which point M correctly conjectures 1.

For the converse direction, assume that I is an infinite antichain. Let @"¢ be the text-
preserving automatic I-translator defined in Example 7. For all i € I, &7¢(L;) is equal to I\ {i}.
Thus, ¢"(I) is not finitely learnable.

2. Suppose that I is an antichain. Consider the first-order formula @ (with x as unique free
variable and parameters X for the input language and Y, for the r-th element L, of the indexing)
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which expresses that Y, C X. It is easily verified that @ is an automatic I-translator. Then for
all i € I, ®(L;) is the singleton {i}. Obviously, @(I) is finitely learnable.

Conversely, let @ be an automatic I-translator and let M be a learner such that M finitely
learns @(I). Then for all ¢ € I, there exists a finite sequence o of members of @1(L;) U {#} such
that M (o) = 4, and rng(c) is not contained in @r(L;) for any j € I satisfying ¢1(L;) # P1(L;).
Hence, &1(L;) ¢ @1(L;) for all j € I. Thus, L; ¢ L; for all j € 1.

3. Assume that @ is a text-preserving automatic I-translator which maps I to a finitely learn-
able class. Let M be a learner that finitely learns &(I). Then for every i € I, there is a finite
subset F; of ®&1(L;) such that M outputs ¢ on some finite input sequence containing only mem-
bers of E;. Let i € I be given. Then there exists a finite subset F; of L; with E; C @1(F;). Now
F; € L, for all j € I\ {i}. One can give the following first-order definition of a finite set G; with
the same property:

Gi={reLi:Fel\{i}Vy<uzlye Li=yecLj}

Hence, there is a finite learner which outputs ¢ iff 7 is the <;-least member of I such that G; is
contained in the data observed. Thus I is finitely learnable. [

11 Learning from queries

Whereas learnability in the limit offers a model of passive learning, learning from queries allows
agents to play an active role by questioning an oracle on some properties that the target language
might have, and sometimes getting further clues [2]. Four kinds of queries are usually used, alone
or in combination. In a given context, the selection of queries that the learner is allowed to
make is dictated by the desire to obtain natural, elegant and insightful characterisations. Some
studies have compared the passive and active models of learning, which usually turn out to be
different [19]. Interestingly, in our model both families of paradigms bind tightly as learnability
of a class of languages from superset queries is equivalent to learnability from positive data of
every translation of the class (Corollary 42 below).

Definition 32. Let T be the set of queries of at least one of the following types:

Membership query: is x € L? Subset query: is L, C L?
Superset query: is L, O L? Equivalence query: is L, = L?

Let an automatic class I = (L;);e; be given.

An I-query learner of type T is a machine M such that, for all ¢ € I, when learning L;, M
makes finitely many queries from 7', possibly taking into account the answers to earlier queries,
with all queries answered correctly w.r.t. L = L;, and eventually outputs a member of I.

An I-query learner of type T learns I iff for all 7 € I, 7 is the member of I that M eventually
outputs when learning L;. A query learner of type T for 1 is an I-query learner of type T that
learns I.

I is learnable from queries of type T iff a query learner of type T for I exists.

When T is clear from the context, we omit to mention “of type T'.”
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Remark 33. Let an automatic class I = (L;)ic; and an automatic I-translator ® be given. Note
that @ preserves C relation, that is, L; C L; iff @1(L;) C $1(L;). As our queries do not involve
counterexamples, for query types T consisting only of subset, superset and equivalence queries,
it immediately follows that “learnability of 1 from queries of type T and “learnability of P(I)
from queries of type T” have the same answer. Observe that subset, superset and equivalence
queries are only with reference to languages in 1, or &(I), respectively.

We immediately have the following result.
Theorem 34. Fvery automatic class is learnable from equivalence queries.
We illustrate query learning with a few examples of automatic classes.

Example 35. All translations of the classes below are learnable from membership queries:
— {{z € {0,1}* : 2 is a prefix of y V y is a prefix of z} : y € {0,1}*}.
{fopu{lm:m<n}:n>0}u{{0m™:m>n}:n>0}.

— Any finite class.

Example 36. Given an automatic class I, let @™ be the text-preserving automatic I-translator
defined in Example 7. Then ¢"°(I) is learnable from membership and subset queries by searching
for the unique ¢ € I which satisfies that i ¢ ®7(LYAPT(L;) C @7¢(L). Indeed, a negative answer
to the membership query for ¢ implies @7¢(L) C &7¢(L;) and so &7(L;) = P7°(L).

Example 37. Let an automatic class I be given and let @ be a, not necessarily text-preserving,
automatic I-translator satisfying @1(L) = {i € I : L; C L} for all languages L. Then &(I) is
learnable from membership and superset queries: a @(I)-query learner can search for the unique
i € I N&(L)y with &1(L) C &1(L;). This i satisfies 1(L;) = @1(L) and can be found when the
learner is allowed both kinds of queries.

Example 38. Consider the automatic class I consisting of {0,1}* and all co-singletons of the
form {0,1}*\ {«} with € {0,1}*. Then none of I's text-preserving translations is learnable
from superset and membership queries. Let @ be a text-preserving I-translator, and assume for a
contradiction that a query learner M for &(I) outputs an index for @1({0, 1}*) after finitely many
superset and membership queries on z, xo, ..., x,. Here, the superset query “is ¢1({0,1}*) D
L?” receives the answer “yes”, and for all ¢ € [ with L; # {0,1}*, the superset query “is
&1(L;) O L7 receives the answer “no”. Furthermore, the membership queries “is x, € L?”
receives the answer based on whether z; € @1({0,1}*). Now for each 5 € @1({0,1}*), there is
a finite subset Ej, of {0, 1}* with z), € ®1(E}). Consider any y € {0, 1}* satisfying the following
conditions:

— for all £ € I such that M has queried the membership of z; to the target language when
learning @I<{07 1}*>7 Y ¢ Ek;

— the superset query “is @1(L) C &1({0,1}*\ {y})?” has not been asked by M when learning
Pr({0,1}).
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Then all queries would have received the same answer if the language L to be learnt was
@1({0,1}* \ {y}); therefore M cannot distinguish @;({0,1}* \ {y}) from &1({0,1}*). Hence, M
is incorrect and &(I) is not learnable from superset and membership queries.

Theorem 39. Fvery automatic class has a translation learnable using membership queries.

Proof. Let I = (L;);c; be an automatic class. Consider a first-order formula @ (with z as unique
free variable and parameters X for the input language and Y, for the r-th element L, of the
indexing) which expresses that either z is of the form ¢0 for some i € I with X ¢ Y;, or x is of
the form i1 for some ¢ € I with ¥; C X. It is easy to verify that @ is an automatic I-translator;
note that @ is not text-preserving. In order to learn @(I), a @(I)-query learner can search for
the first ¢ € I such that i0 ¢ &1(L) A il € @r(L). Since i0 ¢ $(L), L C L;. Since il € $r(L),
L; C L. Hence, i is uniquely determined and is such that ¢1(L) = &1(L;). O

The theorem and corollary that follow characterise learnability from subset and superset queries.
These results have a similar flavour as Theorems 4, 5 and 10 in [16], obtained in the context of
indexable classes of r.e. languages and a broader class of queries.

Theorem 40. Let an automatic class 1 = (L;)ie; be given. Then 1 is learnable from subset
queries iff for all © € I, there exists b; € I such that for all j € I with L; C Lj, there exists
kel with k<yb, and Ly, ng/\Lkg_Li-

Proof. Suppose that for all « € I, there exists b; € I that satisfies the condition of the theorem.
Note that there exists a computable function that maps any ¢ € I to a member b; of I that satisfies
the condition of the theorem. Hence, an I-query learner can, using subset queries L; C L where
L is the language to be learnt, find and output the first ¢ € I such that L; C L and for all k €
with k <, b;, Ly C L iff L, C L;. Obviously L; = L. Note that testing whether L, C L; is
recursive as the structure is automatic.

Conversely, assume that there exists ¢ € I such that no b; € I satisfies the condition of the
theorem. For a contradiction, suppose that M is a query learner for I that uses subset queries.
Then there exists b; € I such that M outputs ¢ after asking subset queries of the form L, C L
only for L; with k <; b;, answered w.r.t. L = L;. By the choice of i, there exists 7 € I such
that L; C L; and there exists no member k of I with & <;; b;, L, € L; and L gZ L;. Hence, all
queries involving indices k <;; b; are answered in the same way when learning L. = L; and when
learning L = L;. Hence, the algorithm would give the same answer ¢ when learning L; and thus
cannot be correct. [l

A similar result can be obtained when using superset queries only:

Corollary 41. Let an automatic class I = (L;);er be given. Then 1 is learnable from superset
queries iff for all © € I, there exists b; € I such that for all j € I with L; O L;, there exists
kel with k<;b; and Ly QLj/\Lk 2[/1

The following corollary is a consequence of Theorem 17.
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Corollary 42. An automatic class 1 is learnable from superset queries iff every translation of
1 is learnable from positive data.

Given an automatic class I of languages all of whose text-preserving translations are learnable
from superset and membership queries, I-query learners that ask superset queries do not benefit
from also asking membership queries:

Theorem 43. If every text-preserving translation of an automatic class 1 is learnable from
membership and superset queries, then 1 itself is learnable from superset queries.

Proof. Suppose I = (L;);c;. Let & be the text-preserving automatic I-translator defined in
Example 7. When learning ¢™¢(I), a @"°(I)-query learner can replace every membership query of
the form “is i € @"(L)7” by the superset query “is @"¢(L) C ¢"°(L;)?” and reverse the answer.
Hence, membership queries can be simulated and ¢"¢(I) can be learnt by using superset queries
alone. As learnability from superset queries is invariant under translations, I can also be learnt
from superset queries alone. [J

One has an analogous result for subset queries, but considering all translations rather than all
text-preserving translations of the class, thanks to a (non text-preserving) automatic I-translator
@ that satisfies @1(L) = {i € I : L; C L} for all languages L. Indeed a membership query of the
form “is i € &1(L)?” is then equivalent to the subset query “is @1(L;) C $(L)?":

Theorem 44. If every translation of an automatic class 1 is learnable from membership and
subset queries, then I itself is learnable from subset queries only.

In the previous result, restriction to text-preserving translations is impossible:

Theorem 45. Let I be the automatic class {@} U {{0,1}*\ {z} : = € {0,1}*}.

1. Every text-preserving translation of 1 is learnable using membership and subset queries.
2. Some translation of 1 is not learnable using membership queries only.
3. 1 is not learnable using subset queries only.

Proof. Given an automatic I-translator @, the translation ¢(I) can be learnt from membership
queries and subset queries as follows. There is a finite subset S of {0,1}* \ {0} such that @1(S)
contains an element y outside @1(@). Now for every x ¢ S, y belongs to @1({0,1}*\ {z}). Hence,
a @(I)-query learner can first use the membership query “is y € @(L)?”. If the answer is “yes”,
then the query learner goes on querying whether @1({0, 1}*\ {z}) C L until the answer is again
“yes” for some x, and then the correct language is found. If the answer is “no” then the query
learner knows that @1(L) is either @1(2&) or @1({0,1}*\{z}) for one of the finitely many members
x of S, and these finitely many cases can be distinguished using membership queries.

For the second item, consider an automatic I-translator @ such that @1({0, 1}*\ {z}) = {x}
and @1(@) = &. In order to learn @ from queries only, a ®(I)-query learner M can make only
finitely many membership queries before it concludes that @ is the language L to be learnt.
The answers to these queries are consistent with L being one of infinitely many singletons (the
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individuals whose membership to the target language has been queried are excluded) rather than
@. Hence, M cannot learn &(I).

Finally, T cannot be learnt from subset queries only: if finitely many queries of the form “is
{0,1}* \ {z} C L?” have all been answered negatively, then an I-query learner still does not
know whether L = @& or whether L = {0,1}*\ {y} for some y such that no corresponding query
has been made yet. [J

We end this section with a characterisation of the automatic classes all of whose translations are
learnable from membership queries.

Theorem 46. Given automatic class I = (L;);er, every translation of 1 is learnable from mem-
bership queries iff

(V2)(3b;)(Vj # )3k <y b)) [(Lj € Ly AL € L)V (Ly, € Ly ALy € Ly)].

Proof. Assume that the condition of the theorem holds. We exhibit a query learner M for I
that uses membership queries. Since translations of automatic classes preserve inclusion between
languages, we have that for all I-translators @, the condition of the theorem also holds for &(I),
and M can be modified into a query learner for &(I) that uses membership queries.

Let M ask membership queries for individuals taken in length lexicographic order until it
finds the <;-minimal ¢ € I such that L; is consistent with the answers to the queries asked so
far and for all £ <j; b;, both the following conditions hold:

— If L; € Ly, then M got the answer “Yes” to some query of the form “Is x € L” with = ¢ Ly;
- If L, Q L; then M got the answer “No” to some query of the form “Is x € L” with x € Lj.

Then, M outputs i. By the assumed condition, M is well defined. To see that M learns I, let
ip € I be given and assume that L;, is the language to be learnt. Consider any j € I\ {io}. Let
k € I, with k < b;, be such that

[(Liy CLeANL; € L) V (L, € Lig ALy € Ly)].

If L, C Ly and L; € Ly, then M cannot find an « € L such that o & Ly;if L, C L;, and Ly, € L;,
then M cannot find an = ¢ L, with x € L;. Thus, based on the definition of M above, M will
not eventually conjecture j. Furthermore, as the requirements above are eventually satisfied for
1 =19, M eventually does conjecture ¢5. Thus, M learns I.

For the converse, suppose that the condition of the theorem does not hold. Let ¢ € I be such
that for all b; € I, it is not true that

Vi#i3k <ubi [(L; CLyAL € L)V (Le € L ALy € Ly)).

Consider a first-order formula ¢ (with x as unique free variable and parameters X for the input
language and Y, for the r-th element L, of the indexing) which expresses that one of the following
conditions holds:
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1. x is of the form (a, ) for a, f € I with Y, C X and o < f3;

2. there exists a <j;-least member j of I such that X CY; and Y;\Y; # @, and x is of the form
(o, B) for a, B € I with a <;; 8 <;yjand Y, CY;

3. there exists no member j of I such that X C Y; and Y; \ Y; # @, and x is of the form (a, /)
for a, f € I with a <y f and Y, CY;.

Note that for all members j, k of I, if L; ¢ Ly then @1(Ly) contains no pair of the form (j, 3)
with 8 >y k, and, hence, L contains only finitely many elements of the form (j, 5). This implies
that the second item in Definition 4 holds, and the first item easily follows from the definition
of @.

For a contradiction, assume that M is a query learner for &(I). Let b; € I be such that
M makes membership queries only about elements («, 3) with a, 8 <j;-smaller than b; when
learning @1(L;). Let j € I\ {i} be such that

Vk <y b [(Ly € LV Li € L) AN(Li, € Ly V Ly, € Ly)]

holds. We claim that ¢1(L;) agrees with @1(L;) on all elements <;-smaller than b;, and, hence,
cannot be distinguished from ®1(L;) by M, contrary to the assumption that M learns &(I). First,
D1(L;) \ P1(L;) contains no element of the form (a, 5) with o <;; b; and 8 < b;: indeed, only
1. above in the definition of @ could introduce such an element; however, no a <; b; satisfies
L, C L; but L, € L;, and thus there is no such element. Second, consider a member («, )
of &1(L;) with a, f <y-smaller than b;,. By 2. above in the definition of @, ¢1(L;) also contains
(o, B) as otherwise, there would exist a k € I with k <j; b; such that L; C Ly and L; € L.
Hence, @1(L;) agrees with ¢1(L;) on all elements <;-smaller than b;, as needed. [

12 Conclusion

A notion of learnability is robust if it is immune to natural transformations of the class of objects
to be learned. The associated notion of transformation of languages has been defined as a func-
tion, called a translator, that maps languages to languages and preserves the inclusion structure
of the languages in the original class. Our study has focused on automatic classes of languages, as
automaticity is invariant under translation and as this restriction allows one to obtain appealing
characterisations of robust learning under many classical learning criteria, namely the following:
consistent and conservative learning, strong-monotonic learning, strong-monotonic consistent
learning, finite learning, learning from subset queries, learning from superset queries and learn-
ing from membership queries. The characterisations are natural as they express a particular
constraint on the inclusion structure of the original class. In many cases, they are especially
strong as they also deal with learnability under those translations that are text-preserving, in
that they can be generated from an enumeration of a language without necessitating the latter
to be “seen as a whole.” In some of the characterisations, learning from every translation turned
out to be equivalent to learning from every text-preserving translation: Theorem 17 (standard
learnability), Theorem 20 (strong-monotonic learnability) and Theorem 24 (strong-monotonic
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and consistent learnability). Though there are some similarities in the proofs, we do not know
of a general characterisation of learning criteria for which such a result applies. A further open
question is in relation to confident learning: we found a characterisation for nonrecursive learners,
but none for recursive ones. Also, it would be interesting for further work to address complexity
issues, in particular in the context of learning from queries.
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