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Abstract. U-shaped learning deals with a learner first having the cor-
rect hypothesis, then changing it to an incorrect hypothesis and then
relearning the correct hypothesis. This phenomenon has been observed
by psychologists in various studies of children development. In this sur-
vey talk, we will discuss some recent results regarding U-shaped learning
and related criteria.

1 Language Learning

A language is a set of sentences using words over an alphabet. Sentences and
words over an alphabet can be encoded into natural numbers. Thus, one may
model a language as a subset of N , the set of natural numbers. Consider the
following model of learning a language. A learner, over time, receives one by
one elements of the language, in arbitrary order. As the learner is receiving the
data, it conjectures a sequence of grammars, g0, g1, . . ., potentially describing the
input language. One may consider the learner to be successful, if this sequence
of conjectures eventually stabilizes to a grammar g (i.e., beyond certain point all
its conjectures are the grammar g), and this grammar g is a indeed a grammar
for the input language. In our model, we take the learner to be computable. This
criteria of success originated with Gold [16], and is refered to as TxtEx learning
(Txt stands for text, and Ex stands for explanatory learning). Note here that
the learner only gets data about what is in the language, and is not told about
what is not in the language. Thus, such kind of learning is often called learning
from positive data.

It is not so interesting to consider learning of just one language, as a learner
which just outputs the grammar for the single language, will ofcourse be able to
learn it. Thus, one usually considers learnability of a class L of languages, where
the learner is required to learn all the languages L in the class, from all possible
texts for the language L (here a text for L is presentation of all and only the
elements of L, in arbitrary order). This model of learning was first introduced
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by Gold [16] and has then been explored by various researchers, see for example,
[12, 17, 18, 20, 22, 29].

Since Gold, various authors have considered extensions and restrictions of the
above model. Some of the important extensions are as follows. We first consider
behaviourally correct learning in which one requires that the learner semanti-
cally converge to the correct hypothesis rather than the syntactic convergence as
required in explanatory learning. A learner is said to TxtBc-identify a language
L, iff given as input any text for L, the learner outputs an infinite sequence of
conjectures, all but finitely many of which are grammars for the language L. Bc

here stands for behaviourally correct learning. Thus, in the scenario described
above, for all but finitely many n, gn is a grammar for L. This model of learning
was first considered for function learning by [4] and for language learning by
[11, 21].

Another model of learning, called vacillatory learning, can be described as
follows: not only are the conjectures of the learner almost always correct, but
eventually the conjectures come only from a finite set S. The learner is said to
TxtFexn-learn the language L if this set S is of size atmost n. The learner is
said to TxtFex∗-learn the language L, if we just require the set S to be finite.
This model of learning was introduced by [10]. Intuitively, we (eventually) allow
vacillation among at most n correct hypothesis of the language. It can be shown
that TxtEx = TxtFex1 ⊂ TxtFex2 . . . ⊂ TxtFex∗ ⊂ TxtBc.

We now provide the formal definition of above criteria of learning. We first
formally define the notion of sequence of data presented to the learner.

Definition 1. (a) A finite sequence σ is a mapping from an initial segment of
N into N ∪ {#}. An infinite sequence is a mapping from N into N ∪ {#}.

(b) The content of a finite or infinite sequence σ, denoted by content(σ), is
the set of natural numbers occurring in σ.

(c) The length of a sequence σ, denoted by |σ|, is the number of elements in
the domain of σ.

(d) An infinite sequence T is a text for L iff L = content(T ).
(e) T [n] denotes the initial segment of T of length n.
(f) For L ⊆ N , SEG(L) denotes the set of all finite sequences σ such that

content(σ) ⊆ L.

We now define the three criteria of learning presented above.
Let ϕ be an acceptable [24] programming system, and ϕi denote the function

computed by the i-th program in this system. Let Wi = domain(ϕi). Then Wi

can be viewed as the recursively enumerable language accepted/generated by
the i-th grammar in the ϕ-system.

Let E denote the class of all recursively enumerable languages.

Definition 2. [4, 10–12, 16, 21] (a) A language learning machine M is a (possi-
bly partial) computable mapping from SEG(N) into N .

(b) M TxtEx-identifies a language L, iff for all texts T for L, there exists a
grammar e such that We = L and for all but finitely many n, M(T [n]) = e.
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(c) M TxtBc-identifies a language L, iff for all texts T for L, for all but
finitely many n, WM(T [n]) = L.

(d) For b ∈ N , M TxtFexb-identifies a language L, iff for all texts T for L,
there exists a set S of size at most b such that (i) for each i ∈ S, Wi = L and
(ii) for all but finitely many n, M(T [n]) ∈ S. If we only require the above set S

to be finite, then we say that M TxtFex∗-identifies L.
(e) For J ∈ {TxtEx,TxtBc,TxtFexb}, we say that M J-identifies a class

L of languages if it J-identifies each L ∈ L.
(f) For J ∈ {TxtEx,TxtBc,TxtFexb}, we define the criteria J = {L |

(∃M)[M J-identifies L]}.

It is known that TxtEx = TxtFex1 ⊂ TxtFex2 ⊂ · · · ⊂ TxtFex∗ ⊂ TxtBc

and E 6∈ TxtBc.

2 U-shaped Behaviour

A U-shaped learning behaviour is one in which a learner first learns a correct
grammar, then changes its mind to an incorrect grammar and then comes back to
a correct grammar. It other words, it involves learning, unlearning and relearn-
ing. This learning behaviour has been observed by cognitive and developmental
psychologists in various child development phenomena, such as language learn-
ing [6, 19, 26], understanding of temperature [26, 27], understanding of weight
conservation [5, 26], object permanence [5, 26] and face recognition [7]. For ex-
ample in language learning during the process of learning past tense of English
verbs, children first learn correct syntactic forms (call/called, go/went), then
undergo a period of overregularization in which they attach regular verb end-
ings such as ‘ed’ to the present tense forms even in the case of irregular verbs
(break/breaked, speak/speaked) and finally reach a final phase in which they
correctly handle both regular and irregular verbs. U-shaped learning behaviour
has figured so prominently in the so-called “Past Tense Debate” in cognitive
science that models of human learning are often judged on their capacity for
modeling the U-shaped learning phenomenon [19, 23, 28].

In this paper we will illustrate some of the recent results which have been ob-
tained regarding necessity of U-shaped learning (rather than just that it happens
in humans due to some peculiarity in evolution). We will also discuss some of the
related models of learning behaviour which are similar to U-shaped behaviour.
Most of the results of this paper are from [1, 2, 8, 9].

Before formally discussing U-shaped behaviour, let us first consider the re-
lated notion of decisive learning. A learner is said to be decisive if it never returns
to an abandoned conjecture. Note that, using a padding function, one can always
make newer conjectures syntactically different from previous conjectures. Thus
what is more interesting is that we require the learner not to semantically return
to any abandoned hypothesis. Formally,

Definition 3. [20] (a) A learner M is said to be decisive on a text T iff there does
not exist m, n, t such that m < n < t, WM(T [m]) = WM(T [t]), but WM(T [m]) 6=
WM(T [n]).
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(b) A learner M is decisive on L, iff it is decisive on each text T for L.
(c) Suppose J ∈ {Ex,Fexb,Bc}. A learner DecJ-identifies L, iff for each

L ∈ L, M is decisive on L and J-identifies L.

Osherson, Stob and Weinstein [20] asked the natural question whether deci-
siveness is restrictive. Fulk, Jain and Osherson [15] answered this question for
behaviourally correct learning and Baliga, Case, Merkle and Stephan [1] for ex-
planatory learning. Actually, both results can be subsumed in one theorem which
then also covers the case of vacillatory learning as it is between explanatory and
behaviourally correct learning.

Theorem 4. [1] TxtEx 6⊆ DecBc.

The class LEx which witnesses above theorem can be defined as follows.
Let K denote the halting problem. Let M0,M1, . . . be recursive enumeration

of all learning machines. Then one constructs K-recursive sequences e0, e1, . . .

and σ0, σ1, . . . such that

– for all x, σx is a finite sequence and {y | y < x} ⊆ content(σx) ⊂ WMex
(σx) ⊆

{y | y 6= x};
– for all e, if Me TxtBc-identifies infinitely many cosingleton sets and does

not conjecture N on any input, then there is an x with ex = e.

Then, LEx = {content(σx) | x ∈ N}∪ {WMex
(σx) | x ∈ N}, can be used to show

Theorem 4.
Interestingly, if one considers second-time decisive, where a learner is not

allowed to return to a twice abandoned hypothesis, then it is not restrictive in
the context of explanatory learning. However, this notion is still restrictive for
vacillatory learning.

We now formally consider U-shaped behaviour of a learner.

Definition 5. [2] (a) A learner M is non U-shaped on a text T , iff there do not
exist m, n, t such that m < n < t, and WM(T [m]) = WM(T [t]) = content(T ), but
WM(T [n]) 6= content(T ).

(b) A learner M is non U-shaped on a language L if it is non U-shaped on
each text for L.

(c) Suppose J ∈ {Ex,Fexb,Bc}. A learner M NUShJ-identifies L, iff for
each L ∈ L, it is non U-shaped on L and J-identifies L.

One can define the class NUShJ similarly. Intriguingly, unlike the decisive case,
non U-shaped learning does not hurt for explanatory learning.

Theorem 6. [1] NUShEx = TxtEx.

However, non U-shapedness does restrict behaviourally and vacillatory learning
as it is easy to see that the example LBc ∈ TxtBc − DecBc of Fulk, Jain and
Osherson [15] is also not NUShBc-identifiable.

Theorem 7. [1, 15] NUShBc ⊂ TxtBc.
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Theorem 8. [8] Suppose b ∈ {1, 2, . . . , ∗}. Then NUShFexb ⊂ TxtFexb.

In fact, non U-shaped requirement puts severe constraints on vacillatory learning
as [8] showed that NUShFex∗ = NUShTxtEx = TxtEx. Thus, any vacilla-
tory learner for learning the classes in TxtFexb −TxtEx, for b ≥ 2, necessarily
exhibits U-shaped behaviour!

An interesting question is whether non U-shaped requirement can be circum-
vented for classes in TxtFexb−TxtEx if one allows behaviourally correct learn-
ing. Here surprisingly one can circumvent non U-shaped behaviour for classes in
TxtFex2, but not necessarily for classes in TxtFex3!

Theorem 9. [8] TxtFex2 ⊆ NUShTxtBc.

Theorem 10. [8] TxtFex3 6⊆ NUShTxtBc.

The class witnessing the above theorem can be constructed as follows. Let 〈·, ·〉
denote a computable 1–1 pairing function from N×N to N . 〈·, ·〉 can be extended
to triple (and n-tuples) by using 〈x, y, z〉 = 〈x, 〈y, z〉〉.

Let Li,j = {〈i, j, k〉 | k ∈ N}, Ii,j = Wi∩Li,j and Ji,j = Wj∩Li,j for i, j ∈ N .
Then,

L = {Li,j | i, j ∈ N} ∪ {Ii,j , Ji,j | i, j ∈ N ∧ Ii,j ⊂ Ji,j ∧ |Ii,j | < ∞}

witnesses the separation in the above theorem.
On the other hand, it can be shown that there are classes which can be learnt

in non U-shaped manner in behaviourally correct model, but which cannot be
learned, even U-shapedly, in vacillatory learning model. An example is the class
of the graphs of those functions f for which ϕf(0) is defined at almost all inputs
and f is a total extension of ϕf(0).

Theorem 11. NUShBc 6⊆ TxtFex∗.

3 Consistent Learning

Consistency requires that the hypothesis output at any stage by the learner
contains the input seen until then.

Definition 12. [3] (a) M is consistent on L, iff for all texts T for L, for all n,
content(T [n]) ⊆ WM(T [n]).

(b) Suppose J ∈ {Ex,Fexb,Bc}. A learner M ConsJ-identifies L, iff M is
consistent on each L ∈ L, and it J-identifies L.

One may combine consistency also with the decisive or non U-shapedness re-
quirement considered earlier.

Intuitively consistency is a very natural expectation. However for explaina-
tory learning it is a severe restriction, as ConsEx ⊂ TxtEx. Interestingly, every
class in ConsEx can also be decisively learnt (while preserving consistency).
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Theorem 13. [9] ConsEx = DecConsEx.

On the other hand one can show that

Theorem 14. [9] DecEx 6⊆ ConsEx.

Note that every behaviourally correct learner can be trivially made consistent,
by just patching the input. Thus,

Proposition 15. NUShBc ⊂ ConsBc.

As mentioned above, every behaviourally correct learner can be trivially made
consistent, by patching the input. However this patching may not preserve non U-
shapedness. A more involved construction can be used to show the following.

Theorem 16. [9] NUShBc = NUShConsBc.

4 Team Learning

Smith [25] studied learning by teams of machines. Intuitively, a team of machines
is successful in learning, if some predetermined number of members of the team
are successful in learning.

Definition 17. [25] A class L is in [m, n]TxtEx iff there is a team, M1,M2,

. . . ,Mn, of n machines such that for all L ∈ L, for every text T for L, at least
m of the n machines in the team converge on T to a grammar for L.

A non U-shaped learner does not make a mind change from a correct hypothesis
to an incorrect one. For learning by a team in non U-shaped manner, we require
such a property from each member of the team.

Definition 18. [8] A class L is in [m, n]NUShEx iff there are n machines such
that on any text for any language L in L

(a) at least m machines in the team converge to a grammar for L and
(b) no machine in the team makes a mind change from a grammar for L to

a grammar for some other language.

The following result characterizes vacillatory learning in terms of teams.

Theorem 19. [8] L ∈ TxtFexn iff there exists a team M1, . . . ,Mn of n ma-

chines such that

(a) M1, . . . ,Mn witness that L ∈ [1, n]NUShEx, and

(b) each of M1, . . . ,Mn converge on each text for every L ∈ L.

However note that TxtFexm ⊂ [1, m]NUShEx, and thus we cannot drop the
requirement (b) from above characterization. Here is another result:

Theorem 20. [8] For m ≥ 1, TxtFexm ⊆ [2, m + 1]NUShEx.

6



It follows that [2, 3]NUShEx 6⊆ NUShEx. For team learning, it can be shown
that non U-shapedness is a restriction.

Theorem 21. [8] For m ≥ 2, [1, m]NUShEx ⊂ [1, m]TxtEx.

However, one can mitigate the above by considering larger teams as follows.

Theorem 22. [8] For m ≥ 1 and n ≥ m, [m, n]TxtEx ⊆ [m, m+n]NUShEx.

In particular, we have the following hierarchy for non U-shaped team learning.

Theorem 23. [8] For n ≥ 1, [1, n]NUShEx ⊂ [1, n + 1]NUShEx.

5 Some Related Criteria

U-shaped learning can be seen as a special case of more general situation where
a learner abandons an hypothesis and comes back to it later. One may put
different requirements on which type of abandoned conjectures a machine may
return to. Non-U-shaped learning concerns the situation when the learner is
not allowed to return to abandoned correct conjectures. As a dual, one can
consider the situation when a learner is not allowed to return to abandoned wrong
conjectures. When a learner returns to correct conjecture, one may view this as
being dictated by the requirements of learning the input – however, returning
to wrong conjectures seems to put in unnecessary inefficiency in the learner.
Examples of this kind of apparently inefficient behaviour have been documented
by developmental psychologists in the context of infants’ face recognition. For
example, it has been shown that children exhibit an “inverted-U-shaped” (wrong-
correct-wrong) learning curve for recognition of inverted faces and an “N-shaped”
(wrong-correct-wrong-correct) learning curve for recognition of upright faces [13,
14]. Formally one can define non-return to wrong hypothesis as follows.

Definition 24. [9] (a) We say that M is decisive on wrong conjectures (ab-
breviated Wr-decisive) on text T , if there do not exist any m, n, t such that
m < n < t, and WM(T [m]) = WM(T [t]) 6= content(T ) and WM(T [m]) 6= WM(T [n]).

(b) We say that M is Wr-decisive on L if M is Wr-decisive on each text for L.

(c) Suppose J ∈ {Ex,Fexb,Bc}. A learner M WrDJ-identifies L, iff for
each L ∈ L, M is Wr-decisive on L and J-identifies L.

One can similarly define the class WrDJ.

Interestingly for explanatory learning Wr-decisive learning coincides with de-
cisive learning. Thus, if one could learn a class by not returning to wrong conjec-
tures, then one may as well learn the class without returning to any conjectures,
correct or wrong.

Theorem 25. [9] WrDEx = DecEx.

7



As a corollary we have that restricting return to wrong conjectures does hurt
explanatory learnability.

For vacillatory learning, non-return to wrong conjectures forces its collapse
to WrDEx = DecEx.

Theorem 26. [9] WrDFex∗ = DecEx.

Thus, for both explanatory and vacillatory learning, allowing return to wrong
conjectures is more crucial than allowing return to correct conjectures. On the
other hand for behaviourally correct learning, these two notions are incompara-
ble!

Theorem 27. [9] WrDBc 6⊆ NUShBc and NUShBc 6⊆ WrDBc.

In fact, WrDBc does not even contain TxtEx.
As mentioned earlier, inverted-U-shaped learning (wrong-correct-wrong se-

quence of conjectures) has also attracted attention of from psychologists for face
recognition by children. This leads us to the following definition.

Definition 28. [9] (a) We say that M is non inverted-U-shaped on text T , if
there do not exist any m, n, t such that m < n < t, WM(T [m]) = WM(T [t]) 6=
WM(T [n]) = content(T ).

(b) We say that M is non inverted-U-shaped on L if M is non inverted-U-
shaped on each text for L.

(c) Suppose J ∈ {Ex,Fexb,Bc}. A learner M NInvUJ-identifies L, iff for
each L ∈ L, M is non inverted-U-shaped on L and it J-identifies L.

Note that this definition does not rule out all wrong-correct-wrong sequences of
conjectures but only returning to an equivalent wrong hypothesis after having
conjectured a correct one. So every non U shaped learner is also non inverted-U-
shaped but the converse does not hold. For that reason, NInvUEx = TxtEx

follows directly from NUShEx = TxtEx. Furthermore, one can show that
non inverted-U-shaped learning is also not restrictive for behaviourally correct
learning which stands in contrast to the fact that non U-shaped behaviourally
correct learning is restrictive.

Theorem 29. [9] NInvUEx = TxtEx and NInvUBc = TxtBc.

On the other hand,

Theorem 30. [9] NInvUFex∗ = NInvUEx = TxtEx ⊂ TxtFex∗.

Overgeneralization is one of the crucial concerns in language learning from pos-
itive data: as a learner is not getting negative data, a learner may not be able
to restrict its conjecture after overgeneralizing, based on data available. So an
interesting variant to consider is whether one can avoid return to overgeneralized
conjectures. We consider two variants here.
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Definition 31. [9] (a) We say that M is decisive on overinclusive conjectures

(abbreviated OI-decisive) on text T , if there do not exist m, n, t such that m <

n < t, WM(T [m]) = WM(T [t]) 6⊆ content(T ) and WM(T [m]) 6= WM(T [n]).
(b) We say that M is OI-decisive on L if M is OI-decisive on each text for L.
(c) Suppose J ∈ {Ex,Fexb,Bc}. A learner M OIDJ-identifies L, iff for each

L ∈ L, M is OI-decisive on L and it J-identifies L.

Definition 32. [9] (a) We say that M is decisive on overgeneralizing conjectures

(abbreviated OG-decisive) on text T , if there do not exist m, n, t such that
m < n < t, WM(T [m]) = WM(T [t]) ⊃ content(T ) and WM(T [m]) 6= WM(T [n]).

(b) We say that M is OG-decisive on L if M is OG-decisive on each text
for L.

(c) Suppose J ∈ {Ex,Fexb,Bc}. A learner M OGDJ-identifies L, iff for
each L ∈ L, M is OG-decisive on L and it J-identifies L.

For explanatory and behaviourally correct learning both the above forms are
not restrictive. For vacillatory learning, OIDFex∗ coincides with OIDEx and
is thus restrictive.

Theorem 33. [9] (a) OIDEx = TxtEx and OGDEx = TxtEx.

(b) OIDBc = TxtBc and OGDBc = TxtBc.

(c) OIDFex∗ = TxtEx ⊂ TxtFex∗.

While these results fit into what was already observed for the notion of non
inverted-U-shaped learning, forbidding return to overgeneralized hypothesis is a
bit different. It is restrictive for vacillatory learning but not as much as some of
the other constraints we have discussed above.

Theorem 34. [9] (a) TxtFex2 6⊆ OGDFex∗.

(b) For m ≥ 1, OGDFexm+1 6⊆ TxtFexm.
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