
The Complexity of Verbal Languages over Groups
Sanjay Jain

Department of Computer Science
National University of Singapore

Singapore 117417
Email: sanjay@comp.nus.edu.sg

Alexei Miasnikov
Department of Mathematical Sciences

Steven’s Institute of Technology
Hoboken, New Jersey, USA

Email: amiasnik@stevens.edu

Frank Stephan
Department of Mathematics and
Department of Computer Science
National University of Singapore

Singapore 117543
Email: fstephan@comp.nus.edu.sg

Abstract—This paper investigates the complexity of verbal
languages and pattern languages of Thurston automatic groups
in terms of the Chomsky hierarchy. Here the language generated
by a pattern is taken as the set of representatives of all strings
obtained when chosing values for the various variables. For
noncommutative free groups, it is shown that the complexity
of the verbal and pattern languages (in terms of level on the
Chomsky hierarchy) does not depend on the Thurston automatic
representation and that verbal languages cannot be context-free
(unless they are either the empty word or the full group). They
can however be indexed languages. Furthermore, it is shown
that in the general case, it might depend on the exactly chosen
Thurston automatic representation which level a verbal language
takes in the Chomsky hierarchy. There are examples of groups
where, in an appropriate representation, all pattern languages
are regular or context-free, respectively.

Index Terms—Thurston Automatic Groups; Free Groups;
Verbal Languages; Chomsky Hierarchy;

I. INTRODUCTION

Pattern languages are languages given by a pattern (which
is a string of variables and constants) generating the language;
the members of a pattern language are obtained by assigning
values to the variables and replacing each of them consis-
tently by the values assigned; usually these values are strings
over fixed finite alphabet. Angluin [2] introduced the pattern
languages in the realm of learning theory and subsequent
investigations dealt with the question when such a pattern
language is regular or context-free. Reidenbach [12] solved a
long-standing open problem by showing that pattern languages
are not learnable from positive data for certain alphabet sizes
and deepened the research in that field. Reidenbach [13] asked
whether there is a pattern language which is context-free
but not regular; Jain, Ong and Stephan [5] showed that this
depends on the alphabet size — if the alphabet size is 2 or
3 then there are such languages while for alphabet size of at
least 4 such languages do not exist.

Pattern languages, in particular the verbal languages which
are generated by patterns without constants, also play an
important role in group theory [6], [8], [9], [10], [11]. Gilman
[4] studied the low levels of the Chomsky hierarchy for sets
in groups. Verbal sets for groups played an important role
in the recent solution of Tarski’s problem which showed the
decidability of the first order theory of the free groups [7]; it
follows from this result that verbal sets are always decidable,
but their exact complexity in terms of the Chomsky hierarchy
was left open.

The present work continues these investigations and studies,
which verbal languages, and more generally pattern languages,
belong to which level of the Chomsky hierarchy in various
Thurston automatic groups. Thurston automatic groups are
interesting for computer science due to the high degree of
efficiency in their group operations and the word problems;
the Chomsky hierarchy is a well-accepted classification of the
complexity of languages of words which has been studied
thoroughly and extended to many novel language classes
during many decades of investigations in theoretical computer
science. The present work wants to answer fundamental ques-
tions on pattern languages and verbal languages for automatic
groups; it also brings the result of Miasnikov and Romankov
[10] that nontrivial verbal languages in noncommutative free
groups are not regular up to the next level by showing that
they are also not context-free.

In the following the terminology and notation is explained
more in detail. Let Z denote the set of integers. Given a set
Σ of generators and Σ−1 of the inverses of the generators,
one says that a group is Thurston automatic iff there is a
regular subset G of words over Σ∪Σ−1 containing exactly one
representative for each group element such that the mappings
realising the group operation x 7→ ax for each fixed a ∈ G
is an automatic function. A function f : G→ G is automatic
iff there is an automaton reading pairs of strings x, y ∈ G in
parallel, in each cycle one symbol from x and one from y,
such that the automaton accepts at the end iff y = f(x); if the
length of x and y are different then the special symbol # is
provided to the automaton in those cycles where one of x, y is
already read completely and the other one not. The members of
G are called the set of representatives of the group; formally,
representatives are defined as follows: one says v ∼ w if v and
w represent the same group word in the set of all words over
Σ∪Σ−1; then for each v there is a unique word w = reprG(v)
such that w ∈ G ∧ w ∼ v. The empty string ε represents the
neutral element of the group.

For the languages of groups, a pattern π is a string over vari-
ables x1, . . . , xn, their inverses x−11 , . . . , x−1n , the generators
and their inverses. The pattern π = α0x

j1
i1
α1x

j2
i2
α2 . . . x

j`
i`
α`

over variables x1, . . . , xn with all ik ∈ {1, . . . , n} and
all jk ∈ {−1,+1} and α0, α1, . . . , α` ∈ G generates the
language

L = {reprG(α0y
j1
i1
α1 . . . y

j`
i`
α`) : y1, . . . , yn ∈ G}.

Furthermore, the pattern π is called constant-free iff α0 = ε ∧
. . . ∧ α` = ε and a language is called verbal iff it is generated
by a constant-free pattern.

Now some example of patterns: π1 = x1ax
−1
1 bb, π2 =

x1x2x
−1
1 x−12 and π3 = x1x1x2x2. Here π1 contains constants

while π2 and π3 do not. Now bbbab−1 is generated by the
pattern π1 when assigning bbb to x1; two occurrences of b−1

in x−11 cancel out with the two constants bb at the end of the
pattern. So π2 and π3 generate verbal languages but π1 does
not generate a verbal language (as ε is not in the language
generated by π1).

In the following, to simplify the notation for groups, given
any finite subset A of the generators Σ of a group, A∗ always
denotes the strings over all members from A ∪ A−1. More
generally, when talking about an arbitrary subset A ⊆ G, A∗

is the set of all w which are formed as a word over A∪A−1;
without loss of generality, such a w is reduced, that is, it does
not contain substrings of the form vv−1.

Example 1: Let a group have the generators Σ =
{a, b, c, d} with a = a−1, ab = b−1a, ab−1 = ba ac = ca,
ad = da, bc = cb, bd = db, cd = dc and consider
π0 = x1x2x

−1
1 x−12 . If one represents the group by G =

{ε, a} · b∗ · c∗ · d∗ then the language generated by π0 is
the regular language {bb}∗. If one choses the representation
G′ = {ε, a} · (bcd)∗ · c∗ · d∗ then the resulting language is in
G′ of the form {(bcd)2nc−2nd−2n : n ∈ Z} and therefore not
context-free.

A proof for the claims in the above example will be
given below in Section V. For free groups, this problem
does not arise as the level of the Chomsky hierarchy of a
language is independent of the group representation; this is
shown explicitly in Section II. Therefore one can fix the
representatives as the reduced words in Sections III and IV;
here a word w is reduced iff it does not contain any empty
subword of the form vv−1 for v ∈ Σ∪Σ−1. Note that, if one
chooses Σ = {a} then all pattern languages are of the form

Li,j = {w ∈ G : ∃n ∈ Z [w ∼ ai+j·n]}.

To see this, note that the group is commutative and therefore
one can write the pattern in the form aixj11 x

j2
2 . . . xjkk with

j1, . . . , jk > 0 and variables whose powers add up to 0 being
omitted; then a further normalisation permits to choose j as
the greatest common divisor of j1, . . . , jk and j = 0 if there
are no variables. The sets Li,j are all regular for j > 0 as
one can just count (modulo j) the number of occurrences of
a positively and those of a−1 negatively and accept iff the
corresponding counter is i and the word is in G. For j =
0 they are singletons as each group element has only one
representative in G and therefore the sets are again regular.
Therefore Sections III and IV deal only with finitely generated
free groups having at least two generators.

For the case that G is the set of representatives of a free
group with finitely many and at least 2 generators, there are
context-free pattern languages in the group G which are not
regular, but they need constants. Example 9 below shows that
the language generated by the pattern x1ax−11 is context-free.

The main result on finitely generated noncommutative free
groups in the present work is the following: The only context-
free verbal languages are {ε} and G. This improves a result
of Miasnikov and Romankov [10] who had shown that these
are the only regular verbal languages. The proof is given in
Section III. Section IV shows that many nontrivial verbal
languages are context-sensitive; actually they are shown to
be indexed languages. In Section II it is shown that for
any finitely generated free group with Thurston automatic
presentation G and any language L ⊆ G, the level of L
in the Chomsky hierarchy does not change when translating
L from the representation G to another Thurston automatic
representation. This independence result does not hold for all
automatic groups: Example 1 and Section V provide a verbal
language L and a group in which L is either regular or properly
context-free or properly context-senstive depending on the
automatic presentation of the group. Furthermore, this group
has a representation in which all verbal languages are regular;
this contrasts the case of the free group where the verbal
languages cannot be context-free except for the two trivial
cases. Section VI complements these results by exhibiting
a group in which, for a suitable representation, all pattern
languages are context-free; however, for no representation, all
verbal languages of this group are regular.

II. COMPLEXITY OF LANGUAGES OVER FREE GROUPS IN
DEPENDENCE OF THEIR REPRESENTATION

For a free group represented uniquely by a regular set G,
it does not depend on the choice of G which level a set L
takes in the Chomsky hierarchy. This is proven in Theorem 3
below for the lower levels of this hierarchy. Recall that ∼ says
when two group elements are equal. The proof will use the
following auxiliary proposition.

Proposition 2: Let Σ be a finite non-empty set of generators
and Σ∗ be the set of all words over Σ∪Σ−1. Let G be the set
of reduced words over Σ ∪ Σ−1 and G′ be any other regular
set such that for each w ∈ Σ∗ there is exactly one v ∈ G′

with v ∼ w. Then there is a constant s such that for any word
w ∈ G with w = w1w2 . . . w` (each wk consisting of one
symbol in Σ∪Σ−1) there are words u0, u1, . . . , us satisfying
the following: v = u0w1u1w2u2 . . . w`u` ∈ G′ and |uk| ≤
s ∧ uk ∼ ε for each k ∈ {0, 1, . . . , `}.

Proof: The proof mainly uses the following: There is a
maximal number s such that some w ∈ G′ contains some v of
length s as a subword with v ∼ ε. For this let n be the number
of states of the automaton. First it is claimed that there does
not exist a w ∈ G′ satisfying

w = α0α1 . . . αn2αn2+1βn2+1βn2 . . . β1β0 and
αkβk 6= ε ∧ α0α1 . . . αkβk . . . β1β0 ∼ w

for each k ∈ {0, 1, . . . , n2 + 1}. Suppose otherwise,
that there exists such a w. There are two different
k, k′ ∈ {0, 1, . . . , n2} such that the deterministic fi-
nite automaton recognising G′ after processing α0α1 . . . αk
is in the same state as after processing α0α1 . . . αk′

and after processing α0α1 . . . αn2αn2+1βn2+1βn2 . . . βk+1

the automaton is in the same state as after processing

α0α1 . . . αn2αn2+1βn2+1βn2 . . . βk′+1. This follows from the
fact that there are only n2 possible pairs for the states
for each k but n2 + 1 possible values for k; so such
k, k′ can be found; without loss of generality k < k′. At
least one of the parts αk+1αk+2 . . . αk′ and βk′ . . . βk+2βk+1

is different from ε (otherwise, G′ contains two repre-
sentatives for w: α0α1 . . . αn2αn2+1βn2+1βn2 . . . β1β0 and
α0α1 . . . αkαk′+1 . . . αn2+1βn2+1 . . . βk′+1βk . . . β1β0). Now
the string

v = α0α1 . . . αk αk′+1αk′+2 . . . αn2αn2+1

βn2+1βn2 . . . βk′+2βk′+1 βk . . . β1β0

is a member of G′. As α0α1 . . . αk′βk′ . . . β1β0 ∼ w it follows
that

αk′+1αk′+2 . . . αn2αn2+1βn2+1βn2 . . . βk′+2βk′+1 ∼ ε

and v ∼ w. So v, w are two different elements in G′

representing the same group element and such do not exist
by assumption.

For the next step one assumes that there is a w ∈ G′, w =
γ0γ1 . . . γsγs+1 with γ1, . . . , γs consisting each of one symbol
in Σ∪Σ−1 and γ1γ2 . . . γs ∼ ε. It is shown that s ≤ (n+ 1) ·
(2|Σ|)n2+1.

Let δk = reprG(γ1γ2 . . . γk) for k = 1, 2, . . . , s and note
that δ0 = ε and δs = ε. Furthermore, either δk+1 = δkγk+1

or δk = δk+1γ
−1
k+1 for all k ∈ {0, 1, . . . , s− 1}.

Assume by way of contradiction that there is a k with
|δk| > n2. Now choose α0, α1, . . . , αn2+1 and the correspond-
ing β0, β1, . . . , βn2+1 as follows: Let im be the first index
where δim consists of the first m symbols of δk and let jm
be the last index where δjm consists of the first m symbols
of δk; note that i0 = 0 and j0 = s. Now let α0 = γ0
and β0 = γs+1 and, for m ∈ {1, 2, . . . , n2}, let αm =
γim−1+1γim−1+2 . . . γim and βm = γjm+1γjm+2 . . . γjm−1

.
Let αn2+1 = γin2+1γin2+2 . . . γjn2 which has positive length
and βn2+1 = ε. One can now see that these αm and βm would
satisfy the conditions laid out at the beginning of the proof and
hence they cannot exist. Therefore a k as stated does not exist.

Assume now by way of contradiction that there are an
u and n + 1 numbers h0, h1, . . . , hn such that δh0

= u
∧ δh1 = u ∧ . . . ∧ δhn = u. Then one can find two
different numbers k, k′ ∈ {0, 1, . . . , n} with k < k′ and
the automaton recognising G′ being in the same state af-
ter processing γ0γ1 . . . γhk

and γ0γ1 . . . γhk′ . It follows that
v = γ0γ1 . . . γhk

γhk′+1γhk′+2 . . . γs+1 is an element of
G′ as well. Furthermore, as δhk

= δhk′ , it holds that
γhk+1γhk+2 . . . γhk′ ∼ ε and therefore v ∼ w. This again
would contradict the fact that every group element has a unique
representative in G′.

Hence there are at most n indices k for which the corre-
sponding reduced word δk is the same and furthermore each
δk is a word of length up to n2 over Σ ∪ Σ−1. This permits
to estimate that s ≤ n · (2|Σ|)n2+1.

Now let w ∈ G and v ∈ G′ be given such that w ∼ v. Then
w = reprG(v). Let w1, w2, . . . , w` be the symbols making
up w. As w = reprG(v) there are u0, u1, . . . , u` ∼ ε with

v = u0w1u1w2u2 . . . w`u`. As shown above, each uk has at
most length s for some constant s ≤ n · (2|Σ|)n2+1.

Theorem 3: Let Σ be a finite set of generators and Σ∗ be
the set of all words over Σ∪Σ−1. Let G be the set of reduced
words over Σ∪Σ−1 and G′ be any other regular set such that
for each w ∈ Σ∗ there is exactly one v ∈ G′ with v ∼ w.
Let L ⊆ G and L′ = {v ∈ G′ : ∃w ∈ L [v ∼ w]}. Then L is
context-free iff L′ is context-free.

Proof: By Proposition 2 there is a constant s such that
for every v ∈ L′ there is a w = reprG(v) such that w =
w1w2 . . . w` for some ` and there are u0, u1, u2, . . . , u` ∼
ε each of length at most s with v = u0w1u1w2u2 . . . w`u`.
There is a non-deterministic automaton U which is designed
to identify the significant symbols w1, w2, . . . , w` by having
a set Q of specific states such that the following holds: In
each run of U on a v ∈ G′ ending in an accepting state, the
subsequence of symbols from v on which U was after parsing
the corresponding symbol in a state from Q is exactly w1, w2,
. . ., w`. Furthermore, U accepts exactly the members of G′.
Note that the actual choice of the u0, u1, . . . , u` might depend
on the nondeterministic run: if w = a and v = aa−1a then
one can either have u0 = ε ∧ u1 = a−1a or u0 = aa−1 and
u1 = ε. So essentially what U does is telling which symbols
have to be preserved (by being in a state inside Q after having
parsed them) and which have to be omitted (by being in a state
outside Q after having parsed them). Such a non-deterministic
automaton U exists, as it has only to verify three things that
it can guess at suitable positions: First each string of symbols
marked to be omitted (by not being in a state in Q after passing
through them) belongs to the fixed list of strings α with α ∼ ε
and |α| ≤ s; second each two consecutive symbols marked to
be kept (by being in a state in Q after passing over them) are
not inverting each other; third, the overall word is in G′. The
verification that such a non-deterministic finite automaton U
exists is left to the reader.

Assume now that L′ is context-free. Given a context-free
grammar in Chomsky normal form for the language L′, one
constructs the context-free grammar for L as follows. For
each non-terminal A in the grammar for L′, one has triples
(q, A, r) as non-terminals in the grammar for L, where q and
r are states from the non-deterministic automaton U described
above; intuitively, q represents the state the automaton is in
before reading the word generated by A and r describes the
state the automaton is in after reading the word produced by
A.

For a production A → BC in the context-free grammar
for L′, one has the following productions in the grammar for
L: (q, A, r) → (q,B, s)(s, C, r), for all states q, s, r of the
automaton U .

For each production of the form A→ a in the grammar for
L′, one has the following productions in the grammar for L:

(i) all productions of the form (q, A, r)→ ε, where the
non-deterministic automaton U goes from state q to
r on input a and r /∈ Q

(ii) all productions (q, A, r) → a where the non-
deterministic automaton U can go from q to r on

a and r ∈ Q.

Furthermore, the start symbols (they could easily be made
unique if one requires this) of the new grammar for L are all
triples (q, S, r) where S is a start symbol of the grammar for
L′ and q is a starting state of U and r is an accepting state of
U .

It can easily be seen that the resulting grammar generates
L as it preserves the symbols contained in the reduced word
and replaces the other ones by ε in the generated word. The
conditions on the terminals generated ensure that the choices
for omitting or preserving generated symbols are consistent
with a run of the non-deterministic automaton U .

On the other hand, if one has a context-free grammar for
L then one can first replace every symbol c generated by a
non-terminal C which generates all sequences of the form
αcβ with α ∼ ε, β ∼ ε and |α|, |β| ≤ s. Furthermore, if ε
in L then one adds a fixed production from the start symbol
to produce the corresponding word in L′. The so constructed
new language L′′ contains for every word w ∈ L some v ∈ G′
with w ∼ v. Furthermore, for each word v ∈ L′′ it holds that
red(v) ∈ L. Hence L′ = G′ ∩ L′′ and L′ is context-free.

The above theorem can be improved in two directions. First,
one might ask what happens if instead of the generators in
Σ∪Σ−1 one uses some other set {c1, c2, . . . , ck} of generators
representing words w1, w2, . . . , wk in Σ∗ and takes G′′ to be
a regular set of the words over {c1, c2, . . . , ck} such that each
group element has exactly one representation in G′′. For this
case too one can show that a subset L ⊆ G is context-free
iff the corresponding L′′ = {w ∈ G′′ : ∃v ∈ L [v ∼ w]}
is context-free. This can be done as follows. Let f(ch) =
(aa−1)hbb−1wh for h = 1, 2, . . . , k, f(uv) = f(u) · f(v),
G′ = f(G′′) and L′ = {w ∈ G′ : ∃v ∈ L′′ [v ∼ w]}. Now
one can show that G′ is regular and L is context-free iff L′ is
context-free iff L′′ is context-free. Hence one can generalise
Theorem 3 as below; furthermore, one can show that the result
holds not only for context-free languages but also for all levels
of the Chomsky hierarchy.

Theorem 4: Let G and G′ be Thurston automatic pre-
sentations of the same free group and let L ⊆ G. Let
L′ = {w ∈ G′ : ∃v ∈ L [v ∼ w]}. Then L and L′ belong
to the same levels in the Chomsky hierarchy.

Note that Theorem 4 does not say that L ⊆ G is regular iff
L′ = {v ∈ Σ∗ : ∃w ∈ L [v ∼ w]} is regular. This is indeed
false for all non-empty finite subsets L ⊂ G: Such a set is
regular although the corresponding L′ is not regular. Given a
word w ∈ L one cannot decide whether waia−j ∈ L′ due to
the fact that a finite automaton having processed wai does not
remember the exact value of i and therefore cannot compare
it to j.

III. THERE ARE ONLY TWO CONTEXT-FREE VERBAL
LANGUAGES

The main result of this section is the characterisation of
verbal languages of finitely generated free groups with at least
two generators. Suppose that {a, b} ⊆ Σ and G is the set of

reduced words over Σ ∪ Σ−1. The empty string ε represents
the neutral element of G.

Theorem 5: A verbal language L over G is context-free iff
either L = {ε} or L = G.

Proof: Clearly {ε} and G are context-free languages,
indeed they are even regular. So, for a proof of the converse
direction, let L be a context-free verbal language.

In the following let L be a context-free verbal lan-
guage generated by a pattern π = xj1i1x

j2
i2
. . . xj`i` over vari-

ables x1, x2, . . . , xn (which all occur) where j1, j2, . . . , j` ∈
{−1,+1}. Without loss of generality one can assume that all
neighbouring parts xjkikx

jk+1

ik+1
satisfy ik 6= ik+1 or jk = jk+1,

as obviously every subpattern of the form xjkikx
−jk
ik

can be
omitted from the pattern without changing the language gener-
ated. Furthermore, let b+ denote {b, b2, b3, . . .} and b− denote
{b−1, b−2, b−3, . . .}.

Definition 6: Let r = 101 · (2` + 1)2`. For each xi in π,
let Ri = ai b ari+1 b+ ari+2 b+ ari+3 b+ . . . ari+(r−1) b
ai and let R−1i = {x−1 : x ∈ Ri} = a−i b−1 a−r(i+1)+1 b−

a−r(i+1)+2 b− a−r(i+1)+3 b− . . . a−ri−1 b−1 a−i. Further-
more, let R be the regular language of the reduced words in
Rj1i1R

j2
i2
. . . Rj`i` .

The only cancellations which can occur when forming the
reduced words are those which occur when Ri and R−1i′ are
neighbouring; note that in this case i 6= i′. Then the words in
Ri are of the form aibubai and those in R−1i′ are of the form
a−i

′
b−1u′b−1a−i

′
which implies that the words in Ri · R−1i′

are of the form aibubai−i
′
b−1u′b−1a−i

′
and those in R−1i′ ·

Ri are of the form a−i
′
b−1u′b−1ai−i

′
bubai. This illustrates

then that the cancellations in the concatenations are always
limited to the first and last ai / a−i of the Ri and R−1i of
each component.

Claim 7: For each constant s, if one replaces in each
Ri each expression b+ by bs and in each R−1i the ex-
pression b− by b−s then the resulting word is in L ∩
R. This is easily seen by taking for each xi the value
aibari+1bsari+2bsari+3bs . . . ari+(r−1)bai and then consider-
ing the word obtained by evaluating π.

Assume that w is a word in a context-free language and that
in the derivation one has S ⇒ vAw ⇒ vxAyw ⇒ vxzyw.
Then one can also generate every word of the form vxkzykw.
This can also be done by pumping at multiple parts in the
language. Therefore one can get the following more general
pumping lemma: For each context-free language H there is a
constant s with the following properties: each word w ∈ H
longer than s has a partition into v1v2 . . . vkvk+1 such that
no vj is of length longer than s and that there are non-
empty words u1, u2, . . . , uk and an indexing of exponents
e1, e2, . . . , ek such that for all numbers h1, h2, . . . , hk the
word v1u

he1
1 v2u

he2
2 . . . vku

hek

k vk+1 is in H and if ed = ed′

and ed′′ = ed′′′ for d, d′, d′′, d′′′ with d < d′ and d′′ < d′′′

then either d = d′′ ∧ d′ = d′′′ or d < d′ < d′′ < d′′′

or d′′ < d′′′ < d < d′ or d < d′′ < d′′′ < d′ or
d′′ < d < d′ < d′′′. As the pumped parts in R ∩ L cannot
contain any a or a−1 (their number is fixed), one can obtain

the following pumping lemma for R ∩ L.
Claim 8: Given L ∩ R there is a constant s such that

when one replaces b+ by bs and b− by b−s then one obtains
a word w which can be partitioned into v1v2 . . . vkvk+1

such that no part is longer than s and that there are con-
stants c1, c2, . . . , ck > 0 and an indexing of exponents
e1, e2, . . . , ek such that for all numbers h1, h2, . . . , hk the
word v1b

c1·he1 v2b
c2·he2 . . . vkb

ck·hek vk+1 is in L ∩ R and if
ed = ed′ and ed′′ = ed′′′ for d, d′, d′′, d′′′ with d < d′ and
d′′ < d′′′ then either d = d′′ ∧ d′ = d′′′ or d < d′ < d′′ < d′′′

or d′′ < d′′′ < d < d′ or d < d′′ < d′′′ < d′ or
d′′ < d < d′ < d′′′. Furthermore, by taking hk′ = c̃k

′

for a sufficiently large constant c̃, one obtains that any two
intervals of s symbols b or b−1 (with a or a−1 on either side
of the interval) are made so long that they become different
unless they are pumped by the same occurrences of bck′ ·hk′

or respectively b−ck′ ·hk′ in it (that is, either these are pumped
into both intervals or into none of them). Such intervals are
called linked. Let w′ refer to the corresponding word.

As w′ is in L, there are values y1, . . . , yn of the vari-
ables x1, . . . , xn which generate w′. Let Y be the set of
all words obtained by concatenating up to ` copies of
y1, y

−1
1 , . . . , yn, y

−1
n . Note that Y has at most (2n + 1)`

elements. Now one declares k and k + 1 to be invalid if the
following occurs:

• There are words of the form uu′ and u′′u′′′ in Y such
that their concatenation uu′u′′u′′′ equals to uu′′′ after
cancellations and either bari+kbtari+k+1b or its inverse
is a substring of uu′ or u′′u′′′ or uu′′′ in a way that it
spans over both parts of that word (that is, touches u and
u′ or u′′ and u′′′ or u and u′′′, respectively) or one of
bari+kb, bari+k+1b, b−1a−ri−kb−1, b−1a−ri−k−1b−1 is
a substring of uu′′′ in a way that it spans over both parts
of uu′′′.

• For some t and v = bari+kbtari+k+1b, there are either
two occurrences of v in w′ or two occurrences of v−1 in
w′.

The first can happen for at most 100 · |Y |2 many k: For each
pair (uu′, u′′u′′′) there is only one unique way to split the first
word into u and u′ and the second word into u′′ and u′′′ such
that u′ and u′′ are the parts which cancel out. Having these,
one can see that only constantly many ways are there that a
k gets invalid and that the k is determined as being a number
for which one of bari+kb or bari+k+1b or bari+k−1b or the
inverse appears over the middle border in one of the words
uu′, u′′u′′′, uu′′′ or is separated from the middle border only
by some word in b∗. The factor 100 is a safe upper bound of
the optimal constant for this inequality.

The second case can also happen only if there are two
linked intervals of this form and they must both refer to two
instances of xi or two instances of x−1i but not in a mixed
way; furthermore, this happens for each pair of occurrences
of xi only once as the linked intervals cannot be linked in
a overlapping way; hence for each pair of occurrences of
variables there are only two values of k invalidated and so

the overall number of values of k invalidated by this process
is 2`2.

In total at most 100 · (2n+ 1)2` + 2`2 possible values of k
are invalidated. Hence there is a choice of k such that k is not
invalidated and 1 ≤ k < r− 2. Taking r as 101 · (2`+ 1)2` as
done in Definition 6 gives a safe value for r to guarantee the
existence of a k which is not invalidated. There are now two
cases.

The first case is that for every occurrence in w′ of
bari+kbtari+k+1b there is in w′ also an occurrence of
b−1a−ri−k−1b−ta−ri−kb−1. Then the corresponding intervals
of bt and b−t are linked. It follows that one can link each
occurrence of xi to an occurrence of x−1i in π according
to the linkage of these intervals and the linkages are never
overlapping in the sense that xjkik is linked to x

jk′′
ik′′

and x
jk′
ik′

is linked to xjk′′′ik′′′
with k < k′ < k′′ < k′′′. Hence there must

be two neighbouring xjkik and xjk+1

ik+1
which are linked, that is,

ik = ik+1 and jk = −jk+1 in contradiction to the assumption
at the beginning of this section. Hence the first case does not
occur.

The second case is that there is an unlinked occurrence.
Then one has that some substring v = bari+kbtari+k+1b
occurs exactly once in w′. By the choice of k one has that
when forming the word w′ as yj1i1 . . . y

j`
i`

, the number of
occurrences of v in w′ is the sum over all jh times the
occurrences of v in yih where occurrences of v−1 count
negatively. Hence, one can for h = 1, 2, . . . , n choose zh
to be the concatenation of all occurrences of v and v−1 in
yh and then obtains that zj1i1 . . . z

j`
i`

equals v; hence, one can,
by substitution of v by any other reduced word w′′, generate
w′′ with the pattern π. This means that the corresponding
verbal language is the full group. This completes the proof
of Theorem 5.

Example 9: The language generated by x1ax−11 is context-
free but not regular.

Proof: Taking any value u of x1 which does not end
with a or a−1, it is clear that the resulting word uau−1 is
generated in a cancellation-free way. Furthermore, in the case
that x1 = uak one gets again the same value uau−1. Therefore
the language given by x1ax−11 is, for the case of Σ = {a, b},
generated by the following productions starting with S:

S → a|aAa−1|bBb−1|a−1Ca|b−1Db,
A→ aAa−1|bBb−1|b−1Db,
B → aAa−1|a−1Ca|bBb−1|a,
C → a−1Aa|bBb−1|b−1Db and
D → aAa−1|a−1Ca|b−1Db|a.

An easy application of the pumping lemma shows that this
language is not regular.

It is open whether there are any pattern languages (over
some G) which are regular, besides singletons like {w} for
w ∈ G and G itself. Such examples can be obtained for the
more general class of first-order definable languages where the
first-order definition can use constants from G. Existentially
first-order definable languages are given by a set of patterns
π1, . . . , πn in variables x1, . . . , xm such that w ∈ L iff there

are values for the variables such that every pattern generates
w with these values.

Example 10: There are non-trivial regular and properly
context-free existentially first-order definable sets. Examples
are the sets (aa)∗ and a∗b∗ in the case of regular languages
and {bnabn : n ∈ Z} in the case of properly context-free
languages.

Proof: One can define the non-trivial regular set (aa)∗

as (aa)∗ = {w : ∃x1[w ∼ x1x1aa ∧ w ∼ aax1x1]}. One
can define a∗b∗ as a∗b∗ = {w : ∃x1∃x2[w ∼ ax1bx2 ∧ w ∼
x1abx2 ∧ w ∼ ax1x2b ∧ w ∼ x1ax2b]}.

The language of all bnabn is properly context-free and first-
order defined by w ∈ {bnabn : n ∈ Z} iff ∃x1[w ∼ x1bax1b∧
w ∼ bx1abx1].

IV. VERBAL SETS AND INDEXED LANGUAGES

Many verbal languages fall into the class of indexed lan-
guages which are a proper subclass of the context-sensitive
languages. These languages are generated by indexed gram-
mars. Indexed grammars are like context-free grammars except
that there are two kinds of nonterminals. There are ordinary
nonterminals, which play the same role as they do in context-
free grammars; and there are so-called indices, which occur
in sentential forms only to the right of ordinary nonterminals.

Definition 11 (Aho [1]): An indexed grammar consists of a
number of pairwise disjoint finite nonempty sets together with
a designated start symbol. The sets are as follows.

1. A set of terminal symbols Σ = {a, b, c, . . .};
2. A set of ordinary nonterminals ∆ = {A,B,C, . . .};
3. A set of special nonterminals called indices Θ =
{f, g, h, i, j, k, . . .};

4. A set of productions P ⊂ ∆× (Σ + ∆)∗ + ∆×∆Θ +
∆Θ× (Σ + ∆)∗.

The start symbol is a fixed nonterminal in ∆.
The start symbol will be S unless said otherwise and

productions are written as α → β instead of (α, β). Below
are examples of the three types of productions. Notice that
indices are written as subscripts.

A→ BaC a context-free production.
A→ Bi a production which produces an index i.
Aj → BaC a production which consumes an index j.

Productions are applied to sentential forms to yield other
sentential forms by direct derivation. Sentential forms are
strings of terminals and nonterminals in which indices occur
only to the right of ordinary nonterminals. Terminal letters
do not have indices following them. In other words sentential
forms are elements of (Σ+∆Θ∗)∗. The direct derivation works
as follows.

A→ BaC
A→ Bi
Aj → BaC

 applied to
DAjkEmn
yields

 DBjkaCjkEmn
DBijkEmn
DBkaCkEmn

The reflexive transitive closure of direct derivation is called
derivation. Furthermore, let γ → γ′ denote a direct derivation
and γ

∗→ γ′ a derivation in general. The language generated

by a grammar is the set of words over the terminal alphabet
derivable from the start symbol.

Example 12: The language L = {a2n | n ≥ 0} is generated
by the indexed grammar

S → Ti, T → Tj , T → A, Aj → AA, Ai → a.

Indeed it is clear that all derivations begin with S
∗→ Ajmi

and a straightforward induction on m shows that a2
m

is the
unique word in the terminal alphabet derivable from Ajmi.

Theorem 13 (Aho [1]): Indexed languages are closed under
the rational operations of union, product and generation of
submonoid. They are also closed under intersection with
regular languages.

Proposition 14: Let Σ be a finite alphabet with formal
inverses Σ−1 and let ρ be a pattern consisting only of variables
and possibly their negations. Then the language L′ obtained
by chosing for any variable xi a (possibly empty) string
ui,1ui,2 . . . ui,ji over Σ∪Σ−1 and for x−1i the corresponding
inverse string u−1i,ji . . . u

−1
i,2u

−1
i,1 put together by concatenation

(without doing cancellations) has an indexed grammar.
Proof: The basic idea is the following: Suppose the

variables used in the pattern are x0, x1, . . . , xn. One first
generates, for the start symbol S, an index which contains, for
each variable in the pattern, its value in a coded way. Each
of these values are separated by a special character y and the
end of the coding is marked by #. In the next step, the start
symbol S derives a string representing the pattern, where each
symbol stands for one of the variables in the pattern or their
inverses or the constants. Each symbol representing a variable
or its inverse receives a full copy of the index and operates
from now on independently of the other parts of the derivation.

If a symbol represents xk, then the derivation from it skips
all the symbols in the index until y is skipped k times; if the
symbol stands for x0, this skipping phase is void. Once the
above is done, the derivation transforms each current index
symbol to the corresponding group generator / inverted group
generator at the left side of itself until another y or the end
of the index is reached. Afterwards the rest of the index is
ignored and the variable symbol is transformed into ε.

If the symbol stands for x−1k , then the derivation again skips
all symbols in the index until y has been skipped k times.
Then the derivation transforms each current index symbol to
the inverse of the corresponding group generator / inverted
group generator at the right side of the symbol representing the
variable. If the end or another y is reached, the remaining part
of the index is ignored and the variable symbol is transformed
into ε.

Note that in both cases, one employs several nonterminals
in order to code the information about how many y have been
skipped so far.

Now, the construction is shown in detail for the following
illustrative case given by Σ = {a, b}, ρ = XYX−1Y −1 and
L′ = {wvw−1v−1 | w, v are words over Σ∪Σ−1}. It is shown
that L′ is generated by the following indexed grammar.

1. Terminals Σ ∪ Σ−1 = {a, b} ∪ {a−1, b−1};

2. Ordinary nonterminals {S, T, U,X, Y, Z,X−1, Y −1,
Z−1} with start symbol S;

3. Indices {a, b, a−1, b−1, y,#};
4. Productions

(a) S → T#
(b) T → Ta | Tb | Ta−1 | Tb−1 | Uy
(c) U → Ua | Ub | Ua−1 | Ub−1 | XYX−1Y −1
(d) Xi → iX for all indices i = a, b, a−1, b−1

(e) Xy → ε (the empty word)
(f) X−1i → X−1i−1 for all indices i = a, b, a−1, b−1

(g) X−1y → ε
(h) Yi → Y for all indices i = a, b, a−1, b−1

(i) Yy → Z
(j) Zi → iZ for all indices i = a, b, a−1, b−1

(k) Z# → ε (the empty word)
(l) Y −1i → Y −1 for all indices i = a, b, a−1, b−1

(m) Y −1y → Z−1

(n) Z−1i → Z−1i−1 for all indices i = a, b, a−1, b−1

(o) Z−1# → ε (the empty word)
Productions (a)–(c) derive precisely the sentential forms of
XσYσX

−1
σ Y −1σ where σ is a string of indices wyv#, and

w and v are arbitrary words over Σ ∪ Σ−1. Examination of
productions (d)–(g) shows that Xσ derives w and X−1σ derives
w−1. From productions (h), (i) it follows that Yσ derives Zv#
and productions (j), (k) show that Zv# derives v. Likewise
productions (l)–(o) show that Z−1v# derives v−1.

Definition 15: Call a pattern language L cancellation-free
iff there are patterns π1, π2, . . . , πn such that each pattern
generates a subset of L and for each word w ∈ L there is
a pattern πk, 1 ≤ k ≤ n, and an assignment of values to the
variables such that πk generates w in a cancellation-free way
with this assignment.

Theorem 16: Every cancellation-free pattern language L ⊆
G is an indexed language.

Proof: Recall that G is the regular set of all reduced
words over Σ ∪ Σ−1. By Proposition 14 above, the language
Lm of all strings obtained by simply concatenating the values
for the variables in πm (and not doing any cancellations) is
generated by an indexed grammar. The language L equals to
G∩ (L1∪L2∪ . . .∪Ln); as each Lm is an indexed language,
so is their union and also the intersection of that union with
the regular set G.

As examples of cancellation-free pattern language is ax1x1
generated by π1 = ax2x1x1x

−1
2 , π2 = x2x1x1x

−1
2 a and

π3 = x1a
−1x1. Furthermore, the verbal language generated

by x1x1x1 is a cancellation-free pattern language as witnessed
by π1 = x2x1x1x1x

−1
2 . However, not every pattern language

is cancellation-free.
Example 17: Assume that a, b, c, d ∈ Σ. The language L

generated by x1ax−11 bx1cx
−1
1 is not cancellation-free.

Proof: Assume that a pattern ρ generating a sublanguage
of L is generating infinitely many words of the form cnac−nbc
in a cancellation-free way. Each variable xi in ρ must occur
as often uninverted as inverted; the reason is that otherwise
one could assign to xi the value d and to all other variables
the value ε and would then obtain a word in which the

occurrences of d and d−1 are not balanced although L does
not have such a word. Thus a and b must appear as constants,
as otherwise a variable containing a or b in its value would
just occur exactly once without its inverse occurring in ρ.
So each variable takes as value an element of c∗. Now one
changes in the values of the variables all c to d and all c−1 to
d−1. The resulting word y satisfies that before a one has only
occurrences of c and d, between a and b only occurrences of
c−1 and d−1 and after the b there is either one c or one d. As
the variables are not void (for n being sufficiently large), there
occur at least some d. Assume now that x1ax−11 bx1cx

−1
1

generates y and that the value of x1 is of the form uvw
where v is the part from the first to the last occurrence of d
or d−1 in the value of x1. Note that the parts waw−1, u−1bu
and wcw−1 are of odd length and do therefore not vanish
in the word y = uvwaw−1v−1u−1buvwcw−1v−1u−1;
hence the parts v and v−1 are all separted by
nonvoid members of {a, b, c}∗ and do not cancel out.
Therefore, after cancellations, the resulting word is in
{a, b, c}∗v{a, b, c}v−1{a, b, c}∗v{a, b, c}∗v−1{a, b, c}∗ and
there are at least three alternations between d and d−1 in
the word. Hence the resulting word differs from y. This
contradiction shows that no pattern ρ generates a subset
of L and in addition produces cancellation-free infinitely
many words of the form cnac−nbc. Hence L cannot be a
cancellation-free pattern language.

It is unknown whether every verbal language is a cancella-
tion-free language.

V. WHEN REPRESENTATIONS MATTER

While the previous sections dealt with a free group having
at least two and at most finitely many generators, this section
investigates the complexity of verbal sets in a group where
the representation is crucial. The following definition fixes
G,G′, G′′ for this section.

Definition 18: Let a group G = {ε, a} · b∗ · c∗ · d∗ with
generators Σ = {a, b, c, d} have the group operations be
obtained from concatenation by taking the equations a = a−1,
ab = b−1a, ab−1 = ba, ac = ca, ad = da, bc = cb, bd = db
and cd = dc into account. Let G′ = {ε, a} · (bcd)∗ · c∗ · d∗
and G′′ = {ε, a} · (bc)∗ · c∗ · d∗ be alternative representations
of G.

Theorem 19: The group is Thurston biautomatic in rep-
resentation G and Thurston one-sided automatic (but not
biautomatic) in representations G′ and G′′.

Proof: First one has to see that G is a group
(which needs of course only to be done in one
representation). For this, note that that the product
of (ahbkcmdn) · (ah

′
bk
′
cm
′
dn
′
) · (ah

′′
bk
′′
cm
′′
dn
′′
) is

ah+h
′+h′′−2hh′−2hh′′−2h′h′′+4hh′h′′bk(1−2h

′−2h′′+4h′h′′)

· bk
′(1−2h′′)+k′′cm+m′+m′′dn+n

′+n′′ independent of
the order of the group operations and so the law
of associativity holds (where h, h′, h′′ ∈ {0, 1} and
k, k′, k′′,m,m′,m′′, n, n′, n′′ ∈ Z). Furthermore, the inverse
of ahbkcmdn is ahb(2h−1)kc−md−n and all elements in G
are unique group elements with ε being the neutral element.

To see the Thurston automaticity, let x = ahbkcmdn with
h ∈ {0, 1} and k,m, n ∈ Z. Now the following equations
gives the representatives of x and the multiples with the
generators in G, G′ and G′′, respectively:
• x ∼ ahbkcmdn ∼ ah(bcd)kcm−kdn−k ∼
ah(bc)kcm−kdn;

• ax ∼ a1−hbkcmdn ∼ a1−h(bcd)kcm−kdn−k ∼
a1−h(bc)kcm−kdn;

• bx ∼ ahbk+1−2hcmdn ∼ ah(bcd)k+1−2hcm−k−1+2h

dm−k−1+2h ∼ ah(bc)k+1−2hcm−k−1+2hdn;
• cx ∼ ahbkcm+1dn ∼ ah(bcd)kcm−k+1dn−k ∼
ah(bc)kcm−k+1dn;

• dx ∼ ahbkcmdn+1 ∼ ah(bcd)kcm−kdn−k+1 ∼
ah(bc)kcm−kdn+1.

The multiplications with b−1, c−1 and d−1 follow similar
rules. One can see that all operations move each part of the
word only by at most 5 positions (note that a, b, c, d, b−1,
c−1 and d−1 all occupy one position in a word). For the
multiplication from the other side in the representation G, only
the case x 7→ xa is not standard, but this one follows the rule
ahbkcmdn 7→ a1−hb−kcmdn and so the positions shift only
by one and b, b−1 become interchanged. In G′, G′′ this is not
the case as ah(bcd)kcm−kdn−k 7→ a1−h(bcd)−kcm+kdn+k

and correspondingly also for G′′; both mappings are not
automatic.

Theorem 20: In the presentation G all pattern languages are
regular.

Proof: Given a pattern π, one can replace each variable xi
by either yi or ayi where yi is then only of the form bkicmidni .
This gives a finite set of patterns, S, with a restricted range
for the variables. Now, one can use that abk = b−ka and that
the yi all commute with each other and with b, c, d in order
to move the constant parts to the front and sort the variables.
This gives, for each language generated by a pattern in S, a
regular expression of the form

α · bq1k1+q2k2+...+q`k` · cr1m1+r2m2+...+r`m` ·
dr1n1+r2n2+...+r`n` = α · (bq′)∗ · (cr′)∗ · (dr′)∗,

where α consists of all constants in the expression and q′

is the greatest common divisor of q1, q2, . . . , q` and r′ is
the greatest common divisor of r1, r2, . . . , r`. Note that r′

is 0 iff r1, r2, . . . , r` are 0 and accordingly for q′. Now
α = ahbq

′′
cr
′′
dr
′′′

for some constants h ∈ {0, 1} and
q′′, r′′, r′′′ ∈ Z and one can bring the expression into the form

ah · (bq
′
)∗ · bq

′′
· (cr

′
)∗ · cr

′′
· (dr

′
)∗ · dr

′′′

which is then a subset of G. Then the language generated by
π is the finite union of such expressions.

Theorem 21: The language L generated by x1x2x
−1
1 x−12

has different levels in the Chomsky hierarchy in G, G′ and
G′′.

Proof: All occurrences of c, d in x1, x2 cancel out and a
word in L is non-empty in the case that the values of x1 and x2
do not commute, that is, that at least one of them contains an a.
Now abn ·abm ·b−na·b−ma = b2m−2n, abn ·bm ·b−na·b−m =
b−2m and bn · abm · b−n · b−ma = b2n; hence L equals to the

set of all b2n in G, L equals to the set of all (bcd)2nc−2nd−2n

in G′ and L equals to the set of all (bc)2nc−2n in G′′. So the
language corresponding to L is regular in G, properly context-
free in G′′ and not context-free in G′.

Theorem 22: All pattern languages are context-free in G′′.
Proof: As shown in Theorem 20, a given pattern language

in G can be brought into the form

ah · (bq
′
)∗ · bq

′′
· (cr

′
)∗ · cr

′′
· (dr

′
)∗ · dr

′′′

for suitable constants h ∈ {0, 1} and q′, q′′, r′, r′′, r′′′ ∈ Z.
Translated into G′′, this expression gives the set

{ah · (bc)q
′n+q′′ · cr

′m−q′n+r′′−q′′ · dkr
′+r′′′ : m,n, k ∈ Z}

and it is easy to see that this set is context-free.

VI. WHEN ALL PATTERN LANGUAGES ARE
CONTEXT-FREE

In this section it is shown that there is a group with
a representation G such that every pattern language in G
is context-free. Furthermore, this level is optimal: for every
Thurston-automatic representation G′ of the same group, there
is a verbal language which is not regular in G′. Throughout
this section, G and G′ are fixed as in the definition below.

Definition 23: Let G = H · c∗ · d∗ where H = {ε, a, b,
ab, ba, aba, bab, abab} and ac = c−1a, ad = da, bc = db,
bd = cb, cd = dc. Furthermore, for α, β, γ ∈ H it holds that
αβ = γ ⇔ ∀x, y ∈ c∗d∗[αβx = yαβ ⇒ γx = yγ]. All other
multiplications between members of G are derived from these
rules.

Note that each member of H realises a mapping when
moved over an x ∈ c∗d∗ and the members of H are multiplied
according to the concatenations of these mappings.

Remark 24: G with the above defined operation is a
Thurston automatic group.

Theorem 25: Every pattern language L in G is context-free.
Proof: Let π be a pattern in which the variables

x1, x2, . . . , x` occur. As in Theorem 20 one replaces every
variable xi by an expression of the form αic

nidmi and then
considers for each (α1, . . . , α`) ∈ H` the corresponding
pattern ρ which can be brought into the form

α · co1n1+p1m1+...+o`n`+p`m`

· dq1n1+r1m1+...+q`n`+r`m`

where α can then be brought into the form βcsdt with β ∈ H
and s, t ∈ Z. Now one can make the following context-free
grammar for this word (with the additional constraint that bsct

go into the right place): S → βO1, O1 → co1O1d
q1 |P1, P1 →

cp1P1d
r1 |O2, . . ., O` → co`O`d

q` |P`, P` → cp`P`d
r` |csdt;

where S is the starting symbol and O1, . . . , O` and P1, . . . , P`
are the other non-terminals. The language generated by π is
the finite union of such context-free languages.

Note that in the following result the choice of the pattern
depends on the presentation G′ and it can be assumed that this
cannot be avoided.

Theorem 26: Assume that G′ is regular and contains for
every element of v ∈ G exactly one member w ∈ G′ with

w ∼ v. Then there is a verbal language L in G such that the
corresponding language L′ = {w ∈ G′ : ∃v ∈ L [v ∼ w]} is
not regular.

Proof: In the first part of the proof a family of verbal
languages is created and in the second part of the proof it is
shown that given any regular representation G′, one of these
verbal languages is not regular in G′. The first part is done
over G in order to keep notation simple.

First part. For every word x1, note that x41 is a member of
the subgroup represented as c∗d∗. This mainly follows from
the fact that the elements in H have this property and that
the members of c∗d∗ remain in c∗d∗ when a member of H is
moved over them. Note that aa ∼ ε and bb ∼ ε. Hence aba and
bab are also self-inverse. abab ∼ baba as both send cmdn to
c−md−n. Hence abab is self-inverse and (ab)4 ∼ (ba)4 ∼ ε.
Note that due to the permutations of c and d and possible
negations involved, (αcmdn)4 is mapped to either c4md4n or
c2m+2nd2m+2n or c2m−2nd2n−2m or c4m or d4n or ε.

For the next step one introduces two new variables x2, x3
and forms several patterns which map x41, which is equiv-
alent to cm

′
dn
′

derived from m,n as indicated above, as
follows: ρ1 = x41x

2
2x

4
1x
−2
2 , ρ2 = ρ1x

2
3ρ1x

−2
3 , ρ3 =

ρ2x2x3x2x3ρ
−1
2 x−13 x−12 x−13 x−12 , ρ4 = x2ρ3x

−1
2 ρ3 and ρ5 =

x3ρ4x
−1
3 ρ4.

Note that each pattern ρ1, ρ2, ρ3, ρ4, ρ5 takes as values only
members from c∗d∗; furthermore, let β, γ ∈ H be such that x2
is in βc∗d∗ and x3 ∈ γc∗d∗, note that the form of the patterns
make only β and γ be relevant for further investigation. In the
case that one of ρ1, ρ2, . . . , ρ5 is ε then every subsequent one
of these patterns takes the same value.

Assume now that x1, x2, x3 are chosen such that ρ5 is differ-
ent from ε. Then ρ1 6= ε and β2 6= abab as ababx41(abab)−1 ∼
x−41 . Hence β /∈ {ab, ba}. Similarly γ /∈ {ab, ba} as otherwise
ρ2 would take the value ε. Furthermore, for ρ3 6= ε it is needed
that βγβγ 6= ε. So βγ is either ab or ba, as all others are self-
inverses. So βγβγ = abab. Furthermore, neither β nor γ can
be abab or ε, as otherwise again βγβγ = ε. As the fourth
power of every member of H is ε, β 6= γ. As βγ 6= abab
and abab = baba, it cannot be that β = a ∧ γ = bab or
β = b ∧ γ = aba or vice versa. It follows that exactly one
of β, γ has an odd number of a and exactly one has an odd
number of b; note that it cannot happen that one of them has
both, an odd number of a and an odd number of b as then it
would be ab or ba. So one has that one of them is a or bab
and the other one is b or aba. Furthermore, ρ3 = c8m

′
d8n

′
.

For ρ4 and ρ5, see the following table.

β γ ρ4 ρ5
a b d16n

′
c16n

′
d16n

′

a aba d16n
′

c−16n
′
d16n

′

bab b c16m
′

c16m
′
d16m

′

bab aba c16m
′

c16m
′
d−16m

′

b a c8m
′+8n′d8m

′+8n′ d16m
′+16n′

b bab c8m
′+8n′d8m

′+8n′ c16m
′+16n′

aba a c8m
′−8n′d−8m

′+8n′ d−16m
′+16n′

aba bab c8m
′−8n′d−8m

′+8n′ c16m
′−16n′

Recall that one could choose m′, n′ either freely as multiples
of 4 or both as even numbers satisfying m′ = n′ ∨m′ = −n′.
So ρ5 generates {c32kd32k, c32kd−32k, c64k, d64k : k ∈ Z}.

Now let πi,j = (ρ5)ix4(ρ5)jx−14 where x4 ∈ δc∗d∗ for
some δ ∈ H . Note that the value of πi,j only depends on the
value of ρ5 and the δ ∈ H . Here δcdδ−1 = cd for δ ∈ {ε, b},
δcdδ−1 = cd−1 for δ ∈ {ba, bab}, δcdδ−1 = c−1d for δ ∈
{a, ab} and δcdδ−1 = c−1d−1 for δ ∈ {aba, abab}; further-
more, δcd−1δ−1 = cd for δ ∈ {ab, bab}, δcd−1δ−1 = cd−1

for δ ∈ {ε, aba}, δcd−1δ−1 = c−1d for δ ∈ {b, abab} and
δcd−1δ−1 = c−1d−1 for δ ∈ {a, ba}; furthermore, δcδ−1 ∈
{c, c−1, d, d−1} and δdδ−1 ∈ {c, c−1, d, d−1}. Let Li,j be
the language generated by πi,j ; Li,j = (c32(i+j) · d32(i+j))∗
∪ (c32(i+j) · d32(−i+j))∗ ∪ (c32(i+j) · d32(i−j))∗ ∪ (c32(i+j) ·
d32(−i−j))∗ ∪ (c32(i−j) · d32(i+j))∗ ∪ (c32(i−j) · d32(−i+j))∗
∪ (c32(i−j) · d32(i−j))∗ ∪ (c32(i−j) · d32(−i−j))∗ ∪ (c64(i+j))∗

∪ (c64(i−j))∗ ∪ (d64(i+j))∗ ∪ (d64(i−j))∗ ∪ (c64i · d64j)∗ ∪
(c64i · d−64j)∗ ∪ (c64j · d64i)∗ ∪ (c−64j · d64i)∗.

Second part. Now let a regular G′ be given in which every
group element of G has a unique representative. Given a word
w ∼ cmdnα with α ∈ H , let fc(w) = m and fd(w) = n and
fH(w) = α. Furthermore, assume that whenever an automaton
recognising G′ after reading v and w is in the same state then
fH(v) = fH(w); this can easily be obtained by increasing
the number of states. Let p be the number of states of the so
obtained automaton and let q = (128p3)!.

One important property is that, for all x, whenever the
automaton is in the same state after u and ux then there is a
word x′ ∈ c∗d∗ such that uxku′ ∼ x′kuu′ for all u, u′ and
k. Furthermore, fc(ux) and fd(ux) differ each from fc(u)
and fd(u), respectively, at most by the number of symbols in
x. Now one of the following two cases holds for any word
w ∈ G′ with w ∼ cq2`dq`.

Case (a). The word w has a proper splitting
w0w1w2 . . . wpwp+1 such that |w1w2 . . . wp| ≤ 4p3 and
fd(w0w1 . . . wk) is the same for k = 0, 1, . . . , p. Here proper
splitting means that each component is different from ε.

In this case there are i, j with 0 ≤ i < j ≤ p such that the
state of the automaton recognising G′ is the same after the
inputs w0w1 . . . wi and w0w1 . . . wj ; due to the state repetition
one has that w0 . . . wi(wi+1 . . . wj)

+wj+1 . . . wp+1 ⊆ G′ and
the value fd of all these words is the same; in the following
abbreviate this language as ux+u′. Now note that r ≤ 4p3

for r = |fc(u) − fc(ux)|. Furthermore, fH(u) = fH(ux) as
the automaton for G′ is in the same state before and after x;
therefore r > 0 as otherwise uxu′ and uxxu′ would represent
the same group element in G′. Let v = ux · xq·`/ru′; either
v ∼ c(q+1)q`dq` or v ∼ c(q−1)q`dq`.

Case (b). The word w has a proper splitting
w0w1 . . . w2p2w2p2+1 such that |w1w2 . . . w2p2 | ≤ 4p3

and fd(w0w1 . . . wk) takes its maximum or minimum value
(among fd(w0w1 . . . wk′ , for k′ ≤ 2p2) at k = p2 and
fd(w0w1 . . . wk) differs from this extreme value by |p2 − k|
for k = 0, 1, . . . , 2p2.

Now there are i, j with 0 ≤ p2 − i < p2 − j ≤
p2 + j < p2 + i ≤ 2p2 such that the state of the

automaton recognising G′ is the same after w0 . . . wp2−i
and w0 . . . wp2−j as well as the same after w0 . . . wp2+i
and w0 . . . wp2+j . Hence taking u = w0 . . . wp2−i,
x = wp2−i+1 . . . wp2−j , u′ = wp2−j+1 . . . wp2+j , y =
wp2+j+1 . . . wp2+i, u′′ = wp2+i+1 . . . w2p2+1 gives the fol-
lowing properties: fd(uxku′yku′′) = fd(uxu

′yu′′) for all
k > 0, fc(ux

ku′yku′′) is fc(uxu
′yu′′) + (k − 1)r or

fc(uxu
′yu′′) − (k − 1)r for some r with 0 < r ≤ 4p3 and

all k > 0; fH(uxku′yku′′) = ε for all k > 0. Note that
here u′ = ε if j = 0. It follows that v = uxxq`/ru′yyq`/ru′′

satisfies either v ∼ c(q+1)q`dq` or v ∼ c(q−1)q`dq`.
For each `, either Case (a) or Case (b) holds. Assume by

way of contradiction that both cases do not hold. Call a prefix
u of w extremal, if |fd(u)| ≥ p2 and |fd(u)| > |fd(u′)| for
any prefix u′ of u. Now, as Case (a) and (b) do not hold,
for any extremal prefix u of w with |u| ≤ |w| − 2p3, there
exists another extremal prefix u′ of w such that |u| < |u′| ≤
|u|+2p3; otherwise, |fd(u)| ≥ |fd(u′′)|, for each u′′ of length
at most |u| + 2p3, and thus by Case (a) not holding, there
exists a splitting w0w1 . . . w2p2+1 of w such that, for i ≤ 2p2,
w0 . . . wp2 = u, |fd(wi)| = |fd(u)|−|i−p2|, |w0| ≥ |u|−2p3,
and |w2p2 | ≥ |u| − 2p3 and thus Case (b) holds. Note that by
Case (a) not holding, there exists an extremal prefix u of w of
length at most 4p3. Thus, |fd(w)| ≥ −4p3 + |w|−6p3

4p3 , which
contradicts fd(w) = q`, as |w| ≥ q2`.

Now assume by way of contradiction that the G′-version
of the verbal languages Lq/2,q/2−1 and Lq/2+1,q/2 are both
regular. Then so is their union. Let s be the number of states
of an automaton recognising the G′-version L′ of Lq/2,q/2−1∪
Lq/2+1,q/2. Note that w ∈ L.

Taking now ` > s! one has that the v made is of
the form uxxq`/ru′ in the case of (a) and of the form
uxxq`/ru′yyq`/ru′′ in case of (b). One can verify that in both
cases v ∈ L′. Whenever the automaton recognising L′ goes
over at least s! repetitions of x, it is in the same state after
reading s! further x. Hence, for ` > s! and for every t the
word of the form w̃t = uxxq`/r+ts!u′ in case (a) and the
word of the form w̃t = uxxq`/r+ts!u′yyq`/r+ts!u′′ in case (b)
is accepted by the automaton and satisfies fd(w̃t) = fd(w).

There are infinitely many different such w̃t which all represent
different elements but there are only finitely many elements
of L′ which have the same nonzero value of fd.

This contradiction gives that L′ cannot be regular. Hence
one of the G′-versions of the two verbal languages Lq/2,q/2−1
and Lq/2+1,q/2 cannot be regular.

Remark 27: One can use the same argumentation as in
Theorem 4 in order to show that the result of Theorem 26
holds if one uses other generators than a, b, c, d; hence there
is no Thurston automatic presentation of G where all verbal
sets are regular.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referees for
the careful proofreading and useful comments. The current
work was started when A. Miasnikov visited the NUS on
invitation by the Institute of Mathematical Sciences at the NUS
within the IMS programme “Automata Theory and Applica-
tions”. Sanjay Jain was supported in part by NUS grants R252-
000-420-112 and C252-000-087-001. Frank Stephan was sup-
ported in part by NUS grant R252-000-420-112.

REFERENCES

[1] Alfred Aho. Indexed grammars – an extension of context-free grammars.
Journal of the Association for Computing Machinery, 15(4):647–671,
1968.

[2] Dana Angluin. Finding patterns common to a set of strings. Journal of
Computer and System Sciences, 21:46–62, 1980.

[3] David B.A. Epstein, James W. Cannon, Derek F. Holt, Silvio V.F. Levy,
Micheal S. Paterson and William P. Thurston. Word Processing in
Groups. Jones and Bartlett Publishers, Boston, 1992.

[4] Robert Gilman. Formal languages and infinite groups. Geometric and
Computational Perspectives on Infinite Groups (Minneapolis, MN and
New Brunswick, NJ, 1994), DIMACS Series Discrete Mathematics and
Theoretical Computer Science, 25:27–51, 1996.

[5] Sanjay Jain, Yuh Shin Ong and Frank Stephan. Regular patterns, regular
languages and context-free languages. Information Processing Letters
110:1114–1119, 2010.

[6] Olga Kharlampovich, Bakhadyr Khoussainov and Alexei Miasnikov.
From automatic structures to automatic groups. Technical Report, 2011.
http://arxiv.org/abs/1107.3645

[7] Olga Kharlampovich and Alexei Myasnikov. Elementary theory of free
non-abelian groups. Journal of Algebra, 302(2):451–552, 2006.

[8] Olga Kharlampovich and Alexei Myasnikov. Definable subsets in a
hyperbolic group. Technical Report, 2012.
http://arxiv.org/abs/1111.0577

[9] Gennady S. Makanin. Equations in a free group. Izvestiya Akademii
Nauk SSSR Seriya Matematicheskaya 46(6):1199–1273, 1982.

[10] Alexei Myasnikov and Vitaly Romankov. On rationality of verbal
subsets in a group. Technical report, 2011.
http://arxiv.org/abs/1103.4817

[11] Nikolay Nikolov. Algebraic properties of profinite groups. Technical
report, 2012. http://arxiv.org/abs/1108.5130

[12] Daniel Reidenbach. A non-learnable class of E-pattern languages.
Theoretical Computer Science, 350:91–102, 2006.

[13] Daniel Reidenbach. The ambiguity of morphisms in free monoids and
its impacts on algorithmic properties of pattern languages. PhD Thesis,
University of Kaiserslautern, Germany, 2006.

