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Abstract

The paper deals with the following problem: is returning to wrong conjectures nec-
essary to achieve full power of algorithmic learning? Returning to wrong conjectures
complements the paradigm of U-shaped learning [3,7,9,24,29] when a learner returns
to old correct conjectures. We explore our problem for classical models of learning
in the limit from positive data: explanatory learning (when a learner stabilizes in
the limit on a correct grammar) and behaviourally correct learning (when a learner
stabilizes in the limit on a sequence of correct grammars representing the target
concept). In both cases we show that returning to wrong conjectures is necessary
to achieve full learning power. In contrast, one can modify learners (without losing
learning power) such that they never show inverted U-shaped learning behaviour,
that is, never return to old wrong conjecture with a correct conjecture in-between.
Furthermore, one can also modify a learner (without losing learning power) such
that it does not return to old “overinclusive” conjectures containing non-elements
of the target language. We also consider our problem in the context of vacillatory
learning (when a learner stabilizes on a finite number of correct grammars) and
show that each of the following four constraints is restrictive (that is, reduces learn-
ing power): the learner does not return to old wrong conjectures; the learner is
not inverted U-shaped; the learner does not return to old overinclusive conjectures;
the learner does not return to old overgeneralizing conjectures. We also show that
learners that are consistent with the input seen so far can be made decisive [3,25]:
on any text, they do not return to any old conjectures — wrong or right.
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1 Introduction

U-shaped learning is a well-known pattern of learning behaviour in which the
learner first learns the correct target behaviour, later abandons it, and fi-
nally returns to the correct target behaviour once again. The phenomenon of
U-shaped learning has been observed by cognitive and developmental psychol-
ogists in many different cases of child development, such as language learn-
ing [7,24,29], understanding of temperature [29,30] and face recognition [8].
The ability of models of human learning to accommodate U-shaped learning
has progressively become one of the important criteria of their adequacy; see
[24,26] and the recent [31]. Renewed interest in U-shaped learning is also wit-
nessed by the fact that the Journal of Cognition and Development dedicated
its first issue in the year 2004 to this phenomenon.

Cognitive and developmental psychology deals primarily with the problem
of designing models of learning that adequately accommodate U-shaped be-
haviour. Baliga, Case, Merkle, Stephan, and Wiehagen [3] who initiated the
study of U-shaped learning in the context of Gold-style algorithmic learning,
asked a different question: is U-shaped behaviour really necessary for full learn-
ing power? In particular, they showed that U-shaped behaviour is avoidable for
so-called TxtEx-learning (explanatory learning) — when the learner stabilizes
in the limit on a single correct conjecture. This result contrasts with the result
by Fulk, Jain, and Osherson [17] who demonstrated that U-shaped learning is
necessary for the full power of so-called TxtBc-learners (behaviourally correct
learners) that stabilize on a (possibly infinite) sequence of different grammars
representing the target language. In a sequel paper [9], Carlucci, Case, Jain,
and Stephan investigated U-shaped behaviour with respect to the model of
vacillatory (or TxtFex) learning, where the learner is required to stabilize
on a finite number of correct conjectures. Vacillatory learning, introduced by
Case [11], features a hierarchy of more and more powerful learning criteria
between TxtEx and TxtBc identification. It was shown in [9] that disal-
lowing U-shaped behaviour for vacillatory learners makes the whole hierarchy
collapse to simple TxtEx-learning, i.e. nullifies the extra power of allowing
vacillation between a finite number of conjectures.

The U-shaped pattern of learning that we have discussed so far (i.e., a correct–
incorrect–correct pattern) is only a species of a more general learning be-
haviour, that also goes under the name of U-shaped learning. This more gen-
eral meaning of U-shaped learning is explicitly introduced, for example, at

Email addresses: carlucci5@unisi.it (LorenzoCarlucci,),
sanjay@comp.nus.edu.sg (Sanjay Jain,), kinbere@sacredheart.edu
(EfimKinber), fstephan@comp.nus.edu.sg (FrankStephan).
1 Supported in part by NSF grant number NSF CCR-0208616.
2 Supported in part by NUS grant number R252–000–127–112.
3 Supported in part by NUS grant number R252–000–212–112.

2



the beginning of [29], the main reference in the psychological literature for the
study of U-shaped behaviour. In this more general sense, U-shaped learning
refers to any learning behaviour in which the learner first adopts some (not
necessarily correct) behaviour, then abandons it, and, later, returns to it once
again. The original interest in this phenomena, for developmental psycholo-
gists, is their “non-monotonic” character. Some particular cases of this general

kind of U-shaped learning have been recently experimentally documented by
developmental psychologists in the context of infants’ face recognition. For ex-
ample, it has been shown that children exhibit an “inverted-U-shaped” learn-
ing curve (a wrong-correct-wrong pattern) for recognition of inverted faces
and an “N-shaped” learning curve (a wrong-correct-wrong-correct pattern)
for recognition of upright faces [14,15].

Both these examples of U-shaped behaviour feature return to a wrong previ-
ously abandoned behaviour. This kind of learning behaviour is, prima facie,
definitely less reasonable than returning to previous correct conjectures. If a
learner returns to a correct conjecture that the learner has previously aban-
doned, it is, of course, dictated by the goal of correctly learning the target
concept. On the other hand, when a learner returns to a previously aban-
doned wrong conjecture, this is not desirable if a learner wants to be efficient.

Partially motivated by the experimental findings mentioned above, in the
present paper we study the following general question: if and when return-
ing to wrong conjectures is necessary for the full power of computational
learnability?

In particular, we answer the latter question in the context of the following
main models.

(a) a model in which a learner cannot return to any previously abandoned
wrong conjecture;

(b) a model in which a learner cannot return to a previously abandoned conjec-
ture that is “overinclusive” in the sense of containing elements not belonging
to the target concept.

We also study the following less restrictive natural variant of model (a).

(a′) a model in which a learner cannot return to a previously abandoned wrong
conjecture if a correct conjecture has been made in-between.

Model (a′) is directly inspired by the above-mentioned concrete cases of in-
verted-U-shaped and N-shaped behaviour documented in the psychological
literature [14,15]. It also represents the exact inverse of the original non U-
shaped model studied in [3,9].

Finally, we study the following natural variant of (b).

(b′) a model in which a learner cannot return to a previously abandoned
conjecture that “overgeneralizes” in the sense of being a proper superset of
the target language.
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The latter model is motivated by the fact that overgeneralization is one of
the major concerns in the study of learning behaviour [24] (note also that
Karl Popper, see [27], considered refutation of overgeneralizing conjectures as
an important part of learning and scientific discovery processes). It is also
interesting to observe how overgeneralization plays a role at the technical
level as well: one can note in fact that the necessary overgeneralization of
learning machines is an essential ingredient in the proof showing that U-shaped
behaviour is unavoidable for the full learning power of TxtBc-learning (see
[17,3]), as well as in our proof of Theorem 36.

We compare the new models with regular types of learning in the limit and
provide a full answer to the following question: when and how is returning

to wrong conjectures necessary? The results that we obtained lead us to the
following general conclusions. If we take TxtEx or TxtBc identification as a
model of learning behaviour, then, returning to previously abandoned wrong
conjectures is necessary to achieve full power of learnability; however, inverted
U-shapes are redundant and it is not necessary to return to old overinclusive
conjectures or to old overgeneralizing conjectures. On the other hand, for
vacillatory identification, returning to wrong conjectures, inverted U-shapes
and returning to overinclusive conjectures are all necessary in a very strong
sense: disallowing this kind of U-shapes collapses the whole TxtFex-hierarchy
to simple TxtEx-learning. In contrast, if returning to previously conjectured
proper supersets is disallowed, no such collapse occurs, but, still, returning
to such overgeneralizing conjectures is necessary for full learning power at
each level of the vacillatory hierarchy. We compare more thoroughly these
conclusions with results from [9] on returning to correct conjectures.

While being admittedly less central than TxtEx and TxtBc, we believe that
vacillatory learning (introduced in [11]) is both an interesting candidate for a
model of human learning, and a mathematically natural formal criterion. It has
often been observed that syntactic convergence as featured in TxtEx might be
a too restrictive condition for human learning, while allowing convergence to
infinitely many correct conjectures as in TxtBc-learning might be a too liberal
condition. The hierarchy of vacillatory learning criteria sits strictly between
those two extremes. Also, in the study of U-shaped learning, the vacillatory
hierarchy has shown to exhibit non-trivial properties that distinguish it from
both Ex and TxtBc. For example, the study of non U-shaped learning in [9]
gave rise to an interesting and quite rare phenomenon in algorithmic learning
theory: that one parameter-free criterion covers the second but not the third
level of some hierarchy. This example is that all classes in TxtFex2 can be
TxtBc-learned without U-shapes, but this is no longer true for some classes
in TxtFex3. We will show that this difference does not hold when returning
to wrong conjectures is considered (see Theorem 34).

The present paper has the following structure. Section 2 contains necessary
notations and basic definitions. Section 3 contains definitions of all variants
of previously known models of non U-shaped learning, as well as the models
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introduced in the present paper. In Section 4 we explore our variants of non U-
shaped learning in the context of TxtEx-learning — when learners stabilize
on one correct grammar for the target language. First we show that return-
ing to wrong conjectures is necessary for the full power of TxtEx-learning. To
prove this result, we establish that learners not returning to wrong conjectures
are as powerful as so-called decisive learners — the ones that never return to
any previously abandoned conjecture, wrong or right (Theorem 21). Decisive
learners are known [3] to be generally weaker than general TxtEx-learners. On
the other hand, any TxtEx-learner can be replaced by a learner not return-
ing to overinclusive conjectures (Theorem 22). From this result we also obtain
that any TxtEx-learner can be replaced by a learner not returning to over-
generalizing conjectures and by a learner not showing an inverted-U-shaped
behaviour as well (Corollaries 23 and 25 respectively).

In Section 5 we consider our four variants of non U-shaped learning in the con-
text of the vacillatory learning criteria TxtFexb — when a learner stabilizes
on no more than b grammars describing the target language. The vacillatory
criteria form a hierarchy of more and more powerful learning criteria strictly
between TxtEx and TxtBc, increasing in the parameter b. The more vacil-
lation is allowed, the more learning power is possible [11]. We extend a result
of Section 4 to show that vacillatory learners without returning to wrong con-
jectures do no better than just decisive TxtEx-learners. As for vacillatory
learners not returning to overinclusive conjectures and for vacillatory learners
that do not show an inverted-U-shaped behaviour, they turn out to be do-
ing no better than regular TxtEx-learners with the same restrictions. It was
shown in [9] that the same collapse of the vacillatory hierarchy occurs when
returning to correct conjectures is disallowed. Thus, disallowing returning to
wrong conjectures, disallowing returning to overinclusive conjectures and dis-
allowing inverted-U-shapes each nullifies the extra power of finite vacillation
with respect to convergence to a single correct conjecture. In contrast, we
show that disallowing returning to overgeneralizing conjectures restricts the
power of vacillatory learners in a less severe sense: for each b > 0 there are
classes of languages that are learnable with vacillation between at most b + 1
correct conjectures in the limit by a learner not returning to old overgeneral-
izing conjectures, but not learnable by any learner who is allowed to vacillate
between at most b correct conjectures (Theorem 30). Also, we show that there
are classes of languages that are learnable with vacillation between at most
b + 1 correct conjectures but such that any such learner must return to old
overgeneralizing conjectures (Theorem 31). Hence if one disallows returning to
old overgeneralizing conjectures on level 2 or above of the vacillatory learning
hierarchy, then the power of the resulting criterion is weaker than the original
one but still more powerful than explanatory learning.

In Section 6 we explore our four variants of non U-shaped learning in the
context of TxtBc-learnability — when learners stabilize on (possibly infi-
nite) sequences of grammars correctly describing the target language. First,
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we show that there exist TxtEx-learnable classes of languages that cannot
be learned without returning to wrong conjectures even by TxtBc-learners.
From this Theorem and results from [3], it follows that TxtBc-learners not
returning to correct conjectures sometimes do better than those never return-
ing to wrong conjectures. On the other hand, we show that, interestingly,
TxtBc-learners not returning to wrong conjectures can sometimes do better
than those never returning to correct conjectures. Therefore these two forms
of non U-shaped behaviour (not returning to wrong conjectures and not re-
turning to correct conjectures) are of incomparable strength in the context of
TxtBc-learning. In contrast, we show that inverted U’s are unnecessary in the
context of TxtBc-learning (Theorem 44). The main result of this section is
that, as in the case of TxtEx-learnability, returning to old overinclusive con-
jectures can be circumvented: every TxtBc-learner can be replaced by one not
returning to overinclusive conjectures (Theorem 48). As a corollary, we obtain
that returning to proper supersets of the target language is not necessary for
full learning power in the TxtBc context (Corollary 49).

In Section 7 we discover a relationship between the strongest type of non U-
shaped learners, that is decisive learners, and consistent learners [4,25], whose
conjectures are required to be consistent with the input data seen so far.
Consistent learnability is known to be weaker than general TxtEx-learnability
[4,25]; moreover, sacrificing consistency, one can learn pattern languages faster
than any consistent learner, under the assumption of P 6= NP (see [22]).
We show that consistent TxtEx-learners can be made consistent and decisive
(Theorem 53). The result is surprising, since not returning to already used
conjectures and being consistent with the input seen so far does not seem to
be related — at least on the surface. On the other hand, some decisive learners
cannot be made consistent (even if we sacrifice decisiveness).

In the concluding Section 8 we summarize our results, briefly consider their
possible relevance from a cognitive science perspective, and formulate some
open questions.

2 Notation and Preliminaries

Any unexplained recursion theoretic notation is from [28]. The symbol N
denotes the set of natural numbers, {0, 1, 2, 3, . . .}. The symbols ∅, ⊆, ⊂, ⊇,
and ⊃, denote empty set, subset, proper subset, superset and proper superset,
respectively. The cardinality of a set S is denoted by card(S). card(S) ≤ ∗
denotes that S is finite. The maximum and minimum of a set are denoted by
max(·), min(·), respectively, where max(∅) = 0 and min(∅) = ∞.

We let 〈·, ·〉 stand for Cantor’s computable, bijective mapping 〈x, y〉 = 1
2
(x+y)

(x + y + 1) + x from N × N onto N [28]. Note that 〈·, ·〉 is monotonically
increasing in both of its arguments. We define π1(〈x, y〉) = x and π2(〈x, y〉) =
y.
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By ϕ we denote a fixed acceptable programming system for the partial-recursive
functions mapping N to N [23,28]. By ϕi we denote the partial-recursive func-
tion computed by the program with number i in the ϕ-system. The symbol R
denotes the set of all recursive functions, that is total computable functions.
By Φ we denote an arbitrary fixed Blum complexity measure [6,19] for the
ϕ-system. A partial recursive function Φ(·, ·) is said to be a Blum complexity
measure for ϕ, iff the following two conditions are satisfied:

(a) for all i and x, Φ(i, x)↓ iff ϕi(x)↓.

(b) the predicate: P (i, x, t) ≡ Φ(i, x) ≤ t is decidable.

By convention we use Φi to denote the partial recursive function x → Φ(i, x).
Intuitively, Φi(x) may be thought as the number of steps it takes to compute
ϕi(x). ϕi,s denotes the complexity-bounded version of ϕi, that is, ϕi,s(x) =
ϕi(x), if x < s and Φi(x) < s; ϕi,s(x) is undefined otherwise.

By Wi we denote domain(ϕi). That is, Wi is the set of all numbers on which
the ϕ-program i halts. Note that all acceptable numberings are isomorphic and
thus one could also define Wi to be the set generated by the i-th grammar.
The symbol E will denote the set of all r.e. languages. The symbol L ranges
over E . By L, we denote the complement of L, that is N − L. The symbol L
ranges over subsets of E . By Wi,s we denote the set {x < s | Φi(x) < s}.

We now present concepts from language learning theory. The next definition
introduces the concept of a sequence of data.

Definition 1 (a) A sequence σ is a mapping from an initial segment of N
into (N ∪ {#}). The empty sequence is denoted by λ.

(b) The content of a sequence σ, denoted content(σ), is the set of natural
numbers in the range of σ.

(c) The length of σ, denoted by |σ|, is the number of elements in σ. So, |λ| = 0.

(d) For n ≤ |σ|, the initial sequence of σ of length n is denoted by σ[n]. So,
σ[0] is λ.

Intuitively, the pause-symbol # represents a pause in the presentation of data.
We let σ, τ and γ range over finite sequences. We denote the sequence formed
by the concatenation of τ at the end of σ by στ . Sometimes we abuse the no-
tation and use σx to denote the concatenation of sequence σ and the sequence
of length 1 which contains the element x. SEQ denotes the set of all finite
sequences. We let δ0, δ1, . . . denote a standard recursive 1–1 listing of all the
finite sequences. We assume that max(content(δi)) ≤ i. We let ind(σ) denote
i such that δi = σ.

We let SEG(L) denote the set {σ | content(σ) ⊆ L}. σ � τ (σ ≺ τ) denotes
that σ is an initial portion of (strict initial portion of) sequence τ .

Definition 2 [18] (a) A text T for a language L is a mapping from N into
(N ∪ {#}) such that L is the set of natural numbers in the range of T . T (i)
represents the (i + 1)-st element in the text.
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(b) The content of a text T , denoted by content(T ), is the set of natural
numbers in the range of T ; that is, the language which T is a text for.

(c) T [n] denotes the finite initial sequence of T with length n.

Definition 3 [18] A learning machine (or just learner) is an algorithmic de-
vice which computes a mapping from SEQ into N .

We let M range over learning machines. We note that, without loss of gen-
erality, for all criteria of learning discussed in this paper, except for criteria
involving consistent learning discussed in Section 7, a learner M may be as-
sumed to be total. M(T [n]) denotes the hypothesis of the learner M after it
has seen the first n members of T . It is expected that these hypotheses reflect
more and more the nature of the set to be learned and this expectation will
be made more formal in the following definitions.

There are several criteria for a learning machine to be successful on a language.
Below we define some of them.

Definition 4 (Explanatory Learning, [12,18]) (a) M TxtEx-identifies a

text T just in case (∃i | Wi = content(T )) (∀∞n)[M(T [n]) = i].

(b) M TxtEx-identifies an r.e. language L (written: L ∈ TxtEx(M)) just in
case M TxtEx-identifies each text for L.

(c) M TxtEx-identifies a class L of r.e. languages (written: L ⊆ TxtEx(M))
just in case M TxtEx-identifies each language from L.

(d) TxtEx = {L ⊆ E | (∃M)[L ⊆ TxtEx(M)]}.

Definition 5 (Behaviourally Correct Learning, [12])

(a) M TxtBc-identifies a text T just in case (∀∞n)[WM(T [n]) = content(T )].

(b) M TxtBc-identifies an r.e. language L (written: L ∈ TxtBc(M)) just in
case M TxtBc-identifies each text for L.

(c) M TxtBc-identifies a class L of r.e. languages (written: L ⊆ TxtBc(M))
just in case M TxtBc-identifies each language from L.

(d) TxtBc = {L ⊆ E | (∃M)[L ⊆ TxtBc(M)]}.

Definition 6 (Vacillatory Learning, [11]) Suppose a ∈ N ∪ {∗}.

(a) M TxtFexa-identifies a text T just in case there exists a set D, card(D) ≤
a and (∀i ∈ D)[Wi = content(T )], such that (∀∞n)[WM(T [n]) ∈ D].

(b) M TxtFexa-identifies an r.e. language L (written: L ∈ TxtFexa(M))
just in case M TxtFexa-identifies each text for L.

(c) M TxtFexa-identifies a class L ⊆ E (written: L ⊆ TxtFexa(M)) just in
case M TxtFexa-identifies each language from L.

(d) TxtFexa = {L ⊆ E | (∃M)[L ⊆ TxtFexa(M)]}.

It is known that TxtEx ⊂ TxtFex2 ⊂ TxtFex3 ⊂ . . . ⊂ TxtFex∗ ⊂ TxtBc
(see [11–13]).
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Some of our proofs use the notion of stabilizing and locking sequences, as
defined below.

Definition 7 (a) [16] σ is said to be a stabilizing sequence for M on L iff
content(σ) ⊆ L, and for all τ ⊇ σ such that content(τ) ⊆ L, M(σ) = M(τ).

(b) [5] σ is said to be a TxtEx-locking sequence for M on L iff σ is a stabilizing
sequence for M on L, and WM(σ) = L.

(c) (Based on [5]) σ is said to be a TxtBc-locking sequence for M on L iff
content(σ) ⊆ L, and for all τ ⊇ σ such that content(τ) ⊆ L, WM(σ) = L.

(d) (Based on [5]) Let b ∈ N ∪ {∗}. σ is said to be a TxtFexb-locking sequence

for M on L iff (i) content(σ) ⊆ L and (ii) there exists a set D of grammars
for L, with card(D) ≤ b, such that (∀τ ⊇ σ | content(τ) ⊆ L)[M(σ) ∈ D].

Lemma 8 [5] If M TxtEx-identifies L, then there exists a TxtEx-locking

sequence for M on L.

A similar result as the above can be proved for TxtBc- and for TxtFexa-
learning.

Let INITk denote the set {x | x ≤ k}. Let INIT = {INITk | k ∈ N}.

3 Decisive, Non U-Shaped and Related Criteria of Learning

Firstly, we define the strongest type of non U-shaped behaviour — when a
learner is not allowed to return to any old conjectures.

Definition 9 (Decisive Learner, [25]) (a) We say that M is decisive on
text T , if there do not exist any m,n, t such that m < n < t, WM(T [m]) =
WM(T [t]) and WM(T [m]) 6= WM(T [n]).

(b) We say that M is decisive on L if M is decisive on each text for L.

(c) We say that M is decisive on L if M is decisive on each L ∈ L.

Now we define non U-shaped learning.

Definition 10 (Non U-shaped Learner, [2]) (a) We say that M is non U-

shaped on text T , if there do not exist any m,n, t such that m < n < t,
WM(T [m]) = WM(T [t]) = content(T ) and WM(T [m]) 6= WM(T [n]).

(b) We say that M is non U-shaped on L if M is non U-shaped on each text
for L.

(c) We say that M is non U-shaped on L if M is non U-shaped on each L ∈ L.

Now we define our four models of non U-shaped learning when a learner is
not allowed to return to previously used wrong conjectures (“Wr” in the next
definition stands for “wrong”).

Definition 11 (Wr-Decisive Learner) (a) We say that M is decisive on

wrong conjectures (abbreviated Wr-decisive) on text T , if there do not exist
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any m,n, t such that m < n < t, WM(T [m]) = WM(T [t]) 6= content(T ) and
WM(T [m]) 6= WM(T [n]).

(b) We say that M is Wr-decisive on L if M is Wr-decisive on each text for L.

(c) We say that M is Wr-decisive on L if M is Wr-decisive on each L ∈ L.

Now we define our model of non inverted-U-shaped learning.

Definition 12 (Non inverted-U-shaped Learner) (a) We say that M is
non inverted-U-shaped on text T , if there do not exist any m,n, t such that
m < n < t, WM(T [m]) = WM(T [t]) 6= WM(T [n]) = content(T ).

(b) We say that M is non inverted-U-shaped on L if M is non inverted-U-
shaped on each text for L.

(c) We say that M is non inverted-U-shaped on L if M is non inverted-U-
shaped on each L ∈ L.

We now define our model of learning disallowing returning to conjectures
containing elements outside the target language (“OI” in “OI-decisive” below
stands for “overinclusive”).

Definition 13 (OI-Decisive Learner) (a) We say that M is decisive on

overinclusive conjectures (abbreviated OI-decisive) on text T , if there do not
exist m,n, t such that m < n < t, WM(T [m]) = WM(T [t]) 6⊆ content(T ) and
WM(T [m]) 6= WM(T [n]).

(b) We say that M is OI-decisive on L if M is OI-decisive on each text for L.

(c) We say that M is OI-decisive on L if M is OI-decisive on each L ∈ L.

We now introduce our model in which returning to proper supersets is disal-
lowed (“OG” in “OG-decisive” below stands for “overgeneralizing”).

Definition 14 (OG-Decisive Learner) (a) We say that M is decisive on

overgeneralizing conjectures (abbreviated OG-decisive) on text T , if there do
not exist m,n, t such that m < n < t, WM(T [m]) = WM(T [t]) ⊃ content(T ) and
WM(T [m]) 6= WM(T [n]).

(b) We say that M is OG-decisive on L if M is OG-decisive on each text for L.

(c) We say that M is OG-decisive on L if M is OG-decisive on each L ∈ L.

We now define the learning criteria formed by placing the various constraints
described above on the learner. Note that the definition used for decisive
learning is the class version of decisive, that is, decisiveness is required to
hold only for texts for the languages in the class. We do this to make it
consistent with the definitions of non U -shaped, Wr-decisive, non inverted-
U -shaped, OI-decisive and OG-decisive criteria, where only the class version
seems sensible.

Definition 15 (a) [25] We say that M DecEx-identifies L (written: L ∈
DecEx(M)), iff M TxtEx-identifies L, and M is decisive on L.

We say that M DecEx-identifies L, iff M DecEx-identifies each L ∈ L.

DecEx = {L | (∃M)[L ⊆ DecEx(M)]}.
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(b) [2] We say that M NUShEx-identifies L (written: L ∈ NUShEx(M)),
iff M TxtEx-identifies L, and M is non U-shaped on L.

We say that M NUShEx-identifies L, iff M NUShEx-identifies each L ∈ L.

NUShEx = {L | (∃M)[L ⊆ NUShEx(M)]}.

(c) We say that M WrDEx-identifies L (written: L ∈ WrDEx(M)), iff M
TxtEx-identifies L, and M is Wr-decisive on L.

We say that M WrDEx-identifies L, iff M WrDEx-identifies each L ∈ L.

WrDEx = {L | (∃M)[L ⊆ WrDEx(M)]}.

(d) We say that M NInvUEx-identifies L (written: L ∈ NInvUEx(M)), iff
M TxtEx-identifies L, and M is non inverted-U-shaped on L.

We say that M NInvUEx-identifies L, iff M NInvUEx-identifies each L ∈ L.

NInvUEx = {L | (∃M)[L ⊆ NInvUEx(M)]}.

(e) We say that M OIDEx-identifies L (written: L ∈ OIDEx(M)), iff M
TxtEx-identifies L, and M is OI-decisive on L.

We say that M OIDEx-identifies L, iff M OIDEx-identifies each L ∈ L.

OIDEx = {L | (∃M)[L ⊆ OIDEx(M)]}.

(f) We say that M OGDEx-identifies L (written: L ∈ OGDEx(M)), iff M
TxtEx-identifies L, and M is OG-decisive on L.

We say that M OGDEx-identifies L, iff M OGDEx-identifies each L ∈ L.

OGDEx = {L | (∃M)[L ⊆ OGDEx(M)]}.

One can similarly define DecJ, WrDJ, NInvUJ, OIDJ, OGDJ and NUShJ,
for J ∈ {Fexa,Bc}.

The following result is easy to verify.

Proposition 16 Suppose a ∈ N ∪ {∗} and J ∈ {Ex,Fexa,Bc}.

(a) DecJ ⊆ WrDJ ⊆ OIDJ ⊆ OGDJ ⊆ J.

(b) DecJ ⊆ WrDJ ⊆ NInvUJ ⊆ J.

(c) DecJ ⊆ NUShJ ⊆ NInvUJ ⊆ J.

For our proofs, we will be using the following results from [3].

Lemma 17 [3] Suppose M TxtEx-identifies L, and g is a recursive function

such that

(i) Wg(i) 6= Wg(j), for i 6= j,

(ii) for all finite sets S, there exist infinitely many i such that S ⊆ Wg(i),

(iii) WM(σ) 6∈ {Wg(i) | i ∈ N}, for all σ.

Then, L ∈ DecEx.

Proposition 18 [3] Suppose L ∈ TxtEx and N ∈ L. Then, L ∈ DecEx.
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4 Explanatory Learning

Our first goal is to show that, in the context of TxtEx-learnability, learners
not returning to wrong conjectures do no better than decisive learners. To
prove this, we first establish two lemmas.

Lemma 19 Suppose there exists a finite set A such that L does not contain

any extension of A. Then L ∈ TxtEx ⇒ L ∈ DecEx.

Proof. Suppose L ⊆ TxtEx(M). Without loss of generality suppose M never
outputs an extension of A: This can be achieved by converting any grammar
i to f(i) where

Wf(i) =
⋃

s∈N

Xs and Xs =
{

Wi,s, if A 6⊆ Wi,s;
∅, otherwise.

Clearly, Wf(i) does not contain A. Furthermore, Wi = Wf(i), if A 6⊆ Wi.

Let m = max(A), and let Wg(i) = {0, 1, . . . ,m+ i}∪{m+ i+2}, so that Wg(i)

is an extension of A and is not an initial segment of N . Wg(i) are pairwise dis-
tinct and every finite set is extended by infinitely many Wg(i)’s. Furthermore,
{Wg(i) | i ∈ N} is disjoint from {WM(σ) | σ ∈ SEQ}. Therefore by Lemma 17,
L ∈ DecEx.

Lemma 20 Suppose every finite set has at least two extensions in L. Sup-

pose a ∈ N ∪ {∗} and J ∈ {Ex,Fexa,Bc}. Then, L ⊆ DecJ(M) iff L ⊆
WrDJ(M).

Proof. Suppose by way of contradiction that L ⊆ WrDJ(M), L 6⊆ DecJ(M).
Thus, M is not decisive. Let τ1 ≺ τ2 ≺ τ3 be such that WM(τ1) = WM(τ3) 6=
WM(τ2). Let L be an extension of content(τ3) such that WM(τ1) 6= L and L ∈ L.
Such an L exists by the assumptions on L. Let T be a text for L extending
τ3. Then T witnesses that M does not WrDJ-identify L since M returns to
the wrong conjecture WM(τ1) on text T . A contradiction. The Lemma is thus
proved.

Now we can establish one of our main results.

Theorem 21 DecEx = WrDEx.

Proof. Suppose L ∈ WrDEx. We consider the following cases.

Case 1: L contains at least two extensions of every finite set. Then by Lem-
ma 20, L is in DecEx.

Case 2: Not Case 1, and N ∈ L. Then by Proposition 18, we have that
L ∈ DecEx.

Case 3: Neither Case 1 nor Case 2.

Since Case 1 does not hold, there is a finite set A such that L contains at most
one extension of A. If such an extension L of A exists, then L 6= N and thus
there is an element w /∈ L. If such an extension L of A does not exist then let
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w = 0. Now L does not contain any superset of A ∪ {w} and L ∈ DecEx by
Lemma 19.

As DecEx ⊂ TxtEx [3], we conclude that some families of languages in
TxtEx cannot be learned without returning to wrong conjectures.

However, if we allow returning to subsets of the target language (that is, wrong
conjectures that are not overinclusive), then all classes of languages in TxtEx
become learnable, as the following result shows.

Theorem 22 TxtEx ⊆ OIDEx.

Proof. Suppose L ∈ TxtEx.

If N ∈ L, then by Proposition 18, L ∈ DecEx. Thus, by Proposition 16,
L ∈ OIDEx. So assume N 6∈ L. Let M be a machine such that, (i) M
TxtEx-identifies L ∪ INIT, and (ii) all texts for L ∈ L ∪ INIT, start with a
TxtEx-locking sequence for M on L, and (iii) for all k, if σ is a stabilizing
sequence for M on INITk, then content(σ) = INITk.

Note that Fulk [16] shows that this can be assumed without loss of generality
when N 6∈ L, (where property (iii) above can be obtained by slight modifica-
tion of his proof — by assuming that special indices for INIT are used when
the content of input segment is for a member of INIT).

Below we will define M′ which OIDEx-identifies L. Intuitively, the idea of
the proof is to basically follow conjectures of M, if the relevant initial segment
T [n] of input text T (on which the conjecture is based) seems to be a locking
sequence for the conjecture; otherwise we choose an appropriate member of
INIT to be the conjecture of M′, which allows us to preserve non-repetition
of over-inclusive conjectures. We now proceed formally.

For a segment σ, let f(σ) = min(N −content(σ)). We say that T [m] is valid if
m = 0 or M(T [m − 1]) 6= M(T [m]). Let consseq = {T [m] | content(T [m]) ⊆
WM(T [m])}. Let gram be a recursive function such that

Wgram(T [m]) =







































∅,
if content(T [m]) 6⊆ WM(T [m]);

WM(T [m]),
if T [m] is a stabilizing sequence for WM(T [m]);

INIT〈ind(T [m]),w〉,
otherwise, for some w ≥ f(T [m]).

It is easy to verify that for T [m] ∈ consseq, content(T [m]) ⊆ Wgram(T [m]) (in
the second clause, this follows by definition of stabilizing sequence; in the third
clause, this follows as ind(T [m]) ≥ max(content(T [m])), by the definition of
indexing of finite sequences considered in Section 2, and the monotonicity of
pairing function).

Define M′ as follows. M′(T [n]) = gram(T [m]), for the largest m ≤ n, such
that T [m] is valid and WM(T [m]),n ⊇ content(T [m]) (there exists such an m,
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as m = 0 satisfies the constraints). Note that the mapping from n to that m
for which M′(T [n]) = gram(T [m]), is monotonically non-decreasing in n on
its domain.

It is easy to verify that M′ TxtEx-identifies L using the assumptions (i), (ii)
and (iii) about M. Thus, it remains to show that M′ is OI-decisive.

Suppose T is a text for L ∈ L. We now show that if WM′(T [m′]) = WM′(T [n′]) 6=
WM′(T [s′]), for m′ < s′ < n′, then WM′(T [m′]) ⊆ L.

So suppose m′, s′, n′ as above are given. Suppose M′(T [m′]) = gram(T [m]),
M′(T [s′]) = gram(T [s]), and M′(T [n′]) = gram(T [n]). By monotonicity prop-
erty of M′ mentioned above, m′ < s′ < n′ implies m ≤ s ≤ n. If m = n, then it
yields a contradiction, as M′(T [s′]) would also be equal to gram(T [m]). Thus,
m < n. As T [n] is valid and content(T [n]) ⊆ Wgram(T [n]) (by remark just after
the definition of gram), we immediately have that T [m] is not a stabilizing se-
quence for M on WM(T [m]) = WM(T [n]) ⊇ content(T [n]). Thus, gram(T [m])
follows the third clause in the definition of gram. Since, 〈ind(T [m]), ·〉 6=
〈ind(T [n]), ·〉, for m 6= n, it follows that gram(T [n]) must follow the second
clause, and thus T [n] is a stabilizing sequence for WM(T [n]). As Wgram(T [m])

(= Wgram(T [n])) is in INIT, it follows that content(T [n]) = Wgram(T [n]) (since σ
being stabilizing sequence for M on INITk implies that content(σ) = INITk).
Thus, Wgram(T [m]) = Wgram(T [n]) = content(T [n]) ⊆ L.

It follows that M′ OIDEx-identifies L.

By definition of OGDEx we have the following Corollary.

Corollary 23 TxtEx ⊆ OGDEx.

Recall the following result about non U-shaped learners from [3].

Theorem 24 [3] (a) TxtEx 6⊆ DecBc.

(b) TxtEx = NUShEx.

Clearly, NUShEx ⊆ NInvUEx ⊆ TxtEx. Thus from Theorem 24 we have
the following.

Corollary 25 NInvUEx = TxtEx.

Theorems 24 and 21 imply that disallowing returning to abandoned wrong con-
jectures is more restrictive than disallowing returning to abandoned correct
conjectures in the context of TxtEx-learning. From Theorem 22, Corollar-
ies 23 and 25, the latter requirement of disallowing returning to abandoned
correct conjectures is equivalent to disallowing inverted U’s and to disallowing
returning to abandoned overinclusive or to overgeneralizing conjectures. We
summarize these observations in the following immediate corollary.

Corollary 26 (a) WrDEx ⊂ NUShEx.

(b) NUShEx = OIDEx = OGDEx = NInvUEx.
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5 Vacillatory Learning

In this section we show that when returning to wrong conjectures is not allowed
in vacillatory learning, then the vacillatory hierarchy TxtFex1 ⊂ TxtFex2 ⊂
. . . ⊂ TxtFex∗ collapses to TxtFex1 = TxtEx, so that the extra learning
power given by vacillation is lost. That the same collapse occurs when return-
ing to correct abandoned conjectures is disallowed was shown in [9].

Theorem 27 (a) WrDFex∗ ⊆ WrDEx.

(b) NInvUFex∗ ⊆ TxtEx.

(c) OIDFex∗ ⊆ TxtEx.

Proof. (a) Suppose M WrDFex∗-identifies L, L ∈ L and T is a text for the
language L.

Let us define a symmetric relation Ea as follows: Ea(i, j) holds iff there exist
n1, n2, n3, n4 such that n1 < n2 < n3 < n4 ≤ a, M(T [n1]) = M(T [n3]),
M(T [n2]) = M(T [n4]) and {M(T [n1]),M(T [n2])} = {i, j} where a ∈ {0, 1, 2,
. . . , ∗}. That is, Ea(i, j) holds if the learner alternates at least three times
between these two hypotheses with possibly other hypotheses conjectured in
between and this alternation occurs on an initial segment of length up to a;
this last restriction on the length of the initial segment is void for a = ∗.

Note that Ea(i, j) implies Wi = Wj: assuming by way of contradiction that
Wi 6= Wj, the learner would return to the abandoned hypotheses Wi and Wj;
by definition of WrDFex∗, each of these hypothesis could not be wrong; thus
both would have to be correct, and hence equal, contrary to the assumption.

By taking reflexive and transitive closure of Ea, we get an equivalence relation
Ẽa. Note that still Wi = Wj whenever Ẽa(i, j).

Now a new learner M′ is built by defining M′(T [n]) to be a canonical index
for the union of those We for which e satisfies Ẽn(e,M(T [n])).

First note that M′ is well-defined since there are only finitely many such e
with Ẽn(e,M(T [n])). Each such e has to be of the form M(T [m]) for some
m ≤ n.

Second, WM′(T [n]) = WM(T [n]) for all n. To see this note that e = M(T [n])

satisfies Ẽn(e,M(T [n])) and thus the union is over a nonempty class of sets.
Furthermore, all the sets in this class are equal since Ẽn(e,M(T [n])) implies
We = WM(T [n]). So the union of the sets We with Ẽn(e,M(T [n])) is the set
WM(T [n]).

Third, as M WrDBc-identifies L from T so does M′.

Fourth, it is easy to verify that all grammars i, which are output infinitely
often by M on text T , belong to the same Ẽ∗-equivalence class D. Since, M
WrDFex∗-identifies L, this set D is finite. Also, there is an m such that for all
n ≥ m, for all i, j ∈ D, Ẽn(i, j). Thus M′(T [n]) is the same index for the union
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of the We, with e ∈ D, whenever n ≥ m and M(T [n]) ∈ D. As M TxtFex∗-
identifies L, M(T [n]) ∈ D for almost all n. Thus, M′ even WrDEx-identifies
L from T .

In particular, M′ is a WrDEx-identifier for L.

(b) The proof is analogue to (a) with the following differences: The relation
Ẽa(i, j) does not imply that Wi = Wj but just that Wi = L ⇔ Wj = L. So D
contains only correct indices and M′ is a TxtEx-identifier for L, but it is not
guaranteed that the NInvU-property is preserved. In particular the second
item of the verification breaks down, but the third and fourth items can make
use of the fact that all members of D are correct indices and thus the union
of the sets with indices in D is the set L to be learned.

(c) This part is similar to part (b), except that in this case, we have that
Ea(i, j) implies Wi ⊆ L ⇔ Wj ⊆ L. This follows from the definition of
OIDFex-identification as either Wi = Wj or both are subsets of the input
language. Finally all indices which are output infinitely often are correct, so
D contains at least one correct index and perhaps some additional indices of
subsets of L. So the union of the sets with indices in D gives the set L.

Since every explanatory learner is by definition also a vacillatory learner, the
inclusion (a) of the previous Theorem is not proper. Furthermore, using Theo-
rem 21 from the previous section, we actually get decisiveness on the right side
of the equality. Furthermore, the second and third inclusion of the previous
Theorem can be improved by using the equalities OIDEx = NInvUEx =
TxtEx (see Theorems 22 and 24).

Corollary 28 (a) WrDFex∗ = DecEx.

(b) OIDFex∗ = OIDEx.

(c) NInvUFex∗ = NInvUEx.

From the above Corollary we can conclude that, as was the case for TxtEx-
learning, WrD is more restrictive than NUSh while NInvU and OID are
equivalent to NUSh.

A subtler difference between returning to wrong conjectures and returning
to correct conjectures in the context of vacillatory learning can be observed.
Recall the following result from [9].

Theorem 29 [9] TxtFex2 ⊆ NUShBc; TxtFex3 6⊆ NUShBc.

Thus, returning to correct conjectures is avoidable for the TxtFex2 level of
the vacillatory hierarchy by shifting to the more liberal criterion of TxtBc
identification, while this is not the case for TxtFexb with b ≥ 3. In the next
section we prove (Theorem 34) that there are TxtEx-learnable classes that
cannot be TxtBc-learned by any WrD-learner 4 . Thus, the necessity of re-
turning to wrong abandoned conjectures is not avoidable by allowing infinitely

4 Observe that this result is not a trivial consequence of TxtEx 6⊂ DecBc from
[3], since we show in the next section (Corollary 39) that DecBc ⊂ WrDBc.
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many correct grammars in the limit, not even for the TxtFex2 level of the
vacillatory hierarchy. In this sense, we can say that the necessity of returning
to wrong conjectures is even deeper than the necessity of returning to correct
conjectures.

We now show that disallowing returning to old overgeneralizing conjectures
still restricts the full learning power of vacillatory learning, but in a different
and less severe way. First we show that, for each n > 0, there are classes that
are OGD-learnable with vacillation between at most n+1 correct conjectures
but not learnable at all with vacillation between at most n conjectures. Thus
the vacillatory hierarchy does not collapse when returning to overgeneralizing
hypotheses is disallowed.

Theorem 30 For n > 0, OGDFexn+1 6⊆ TxtFexn.

Proof. D0, D1, . . . , denotes a canonical recursive indexing of all the finite
sets [28, Page 70], such that the elements and the size of Dj can be effectively
determined from j. For each j let Xj = {〈j, x〉 | x ∈ N}. Let L = {L |
(∃j)[∅ ⊂ L ⊆ Xj and card(Dj) ≤ n + 1 and (∃p ∈ Dj)[L = Wp] and (∀k ∈
Dj)[L 6⊂ Wk]]}.

Clearly, L ∈ OGDFexn+1, as, on input σ with non-empty content, a learner
can first obtain a j such that L ⊆ Xj, and then output the p ∈ Dj which
maximizes |τp|, where τp is the maximal prefix of σ such that content(τp) ⊆
Wp,|σ|. If content(σ) = ∅, then the learner outputs a hypothesis for ∅. This
learner clearly OGDFexn+1-identifies L.

The diagonalization proof is essentially based on the proof of TxtFexn+1 6⊆
TxtFexn from [11]. Suppose by way of contradiction that M TxtFexn-iden-
tifies L. Then, by (n + 1)-ary recursion theorem [28] there exist distinct
e1, . . . , en+1 such that We1 , . . . ,Wen+1 may be defined as follows. Let j be such
that Dj = {e1, . . . , en+1}. Initially let σ0 be such that content(σ0) = {〈j, 0〉},
and enumerate 〈j, 0〉 in each of Wei

, 1 ≤ i ≤ n + 1. For any sequence σ, let
Lastn(σ) denote the set of the last n grammars output by M on input σ. That
is Lastn(σ) = {M(τ) | τ � σ ∧ card({M(τ ′) | τ � τ ′ � σ}) ≤ n}. Go to
stage 0.

Stage s
1. Dovetail steps 2 and 3 until, if ever, step 2 succeeds. If and when step 2

succeeds, stop step 3 and go to step 4.
2. Search for an extension τ of σs such that content(τ) ⊆ Xj and Lastn(τ) 6=

Lastn(σs).
3. For r = 1 to ∞ Do

Begin For k = 1 to n + 1, enumerate 〈j, 〈k, r〉〉 into Wek
End.

4. Let S be the set of all the elements enumerated into We1 ∪ We2 ∪ . . . Wek

up to now.
Let σs+1 be an extension of τ such that content(σs+1) = content(τ) ∪ S.
For k = 1 to n + 1, enumerate content(σs+1) into Wek

.
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Go to stage s + 1.
End stage s.

We now consider the following cases.

Case 1: There exist infinitely many stages.

In this case, clearly, We1 = We2 = . . . = Wen+1 , and M does not converge to a
set of n grammars on

⋃

s∈N σs, a text for L = We1 , which is a member of L.

Case 2: Stage s starts but never ends.

In this case consider Lk = Wek
, for 1 ≤ k ≤ n + 1. Note that Lk ⊆ Xj and for

1 ≤ k, k′ ≤ n + 1, k 6= k′: Lk 6⊆ Lk′. Thus, each Lk belongs to L. Furthermore
for 1 ≤ k ≤ n + 1, for any text T for Lk which extends σs, all grammars
which are output by M on T beyond σs, are from Lastn(σs) (otherwise step 2
would succeed as Lk ⊆ Xj). Thus, M fails to TxtFexn-identify at least one
of Lk, 1 ≤ k ≤ n + 1 (since Lastn(σs) can contain grammars for at most n of
L1, . . . , Ln+1).

It follows from above cases that M cannot TxtFexn-identify L.

Next we show that the learning power of each level of the vacillatory hi-
erarchy is restricted when returning to overgeneralizing conjectures is disal-
lowed. More precisely, there are classes that are learnable with vacillation
between two correct indices in the limit but such that no vacillatory learner
can learn those classes without returning to overgeneralizing conjectures, no
matter what amount of vacillation is allowed.

Theorem 31 TxtFex2 6⊆ OGDFex∗.

Proof. Let Li = {〈i, x〉 | x ∈ N}. Let Si = {〈i, x〉 | x ≤ card(Wi)} (thus, if
card(Wi) = ∞, then Si = Li).

Let L = {Li | i ∈ N} ∪ {Si | i ∈ N}. It is easy to verify that L ∈ TxtFex2.

Now suppose by way of contradiction that M OGDFex∗-identifies L. Then we
show that Inf = {i | card(Wi) = ∞} is Σ2, a contradiction to Π2 completeness
of Inf (see [28] for definition of Σ2, Π2 and Π2 completeness of Inf).

Since M OGDFex∗ identifies Li, there exists a σ and a finite set D such that
(i) σ ∈ SEG(Li), (ii) (∀j, j ′ ∈ D)(∃τ1, τ2, τ3)[τ1 � τ2 � τ3 � σ and M(τ1) =
j,M(τ2) = j′,M(τ3) = j] and (iii) (∀τ ∈ SEG(Li))[M(στ) ∈ D].

Such σ can be obtained by just choosing a locking sequence σ for M on Li,
where each of the final grammars have alternated with each other. D can be
taken to be the set of final grammars. Here note that D contains a grammar
for Li.

Let us denote by Propi(σ,D), the combination of three properties (i), (ii),
(iii).

Now if there exists a σ,D satisfying Propi(σ,D) and card(Wi) ≥ max({x |
〈i, x〉 ∈ content(σ)}), then Wi is infinite (otherwise on σ, which is a member
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of SEG(Si), M returns to a conjecture for Li with grammar for Si in between;
to see this note that D contains a grammar for both Si and Li and by clause
(ii) above, M alternates between grammars for Li and Si on prefixes of σ).

On the other hand, if there do not exist σ and D satisfying Propi(σ,D) and
card(Wi) ≥ max({x | 〈i, x〉 ∈ content(σ)}), then clearly, card(Wi) is finite
(since σ,D satisfying Propi(σ,D) would then show the finiteness of Wi).

The check whether

(∃σ,D)[Propi(σ) and card(Wi) ≥ max({x | 〈i, x〉 ∈ content(σ)})]

is a Σ2 property. This gives us the desired contradiction.

Corollary 32 For all a ≥ 2, OGDFexa ⊂ TxtFexa.

Corollary 33 For all n > 0, n ∈ N , OGDFexn+1 and TxtFexn are incom-

parable.

6 Behaviourally Correct Learning

Our first result shows that, in the context of TxtBc-learnability, similarly to
TxtEx-learnability, disallowing returning to wrong conjectures significantly
limits the power of a learner: even TxtEx-learners can sometimes learn more
than any TxtBc-learner that is not allowed returning to wrong conjectures.
The reason is that the class L in TxtEx − DecBc from [3] contains two
distinct extensions of every finite set and thus the next theorem follows from
Lemma 20.

Theorem 34 TxtEx 6⊆ WrDBc.

Now we compare non U-shaped learning (when a learner cannot abandon a cor-
rect conjecture) with learning by disallowing returning to wrong conjectures.
From the previous Theorem and from the fact that TxtEx = NUShEx ⊆
NUShBc, we have the following.

Corollary 35 NUShBc 6⊆ WrDBc.

We now show that, interestingly, the converse is true: WrD learners can some-
times do better than NUSh learners in the TxtBc setting. So WrD and
NUSh are incomparable restrictions in the context of TxtBc-identification.

Theorem 36 WrDBc 6⊆ NUShBc.

Proof. The proof uses the same class as in the proof of TxtBc 6= DecBc from
[17]. The proof that this class witnesses the theorem is a minor modification of
the proof of Fulk, Jain, and Osherson [17]. We give the details for completeness.

Let M0,M1, . . . denote a recursive enumeration of total learning machines,
where for all L ∈ NUShBc, there exists a j such that L ⊆ NUShBc(Mj).
One can construct such an enumeration of total learning machines as done for
the TxtEx case (for example, see [25]).
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Let Lj = {〈j, x〉 | x ∈ N}. Let σj,k = (〈j, 0〉, ..., 〈j, k〉), L1
j,k = {〈j, i〉 | i ≤ k},

and L2
j,k = WMj(σj,k).

Let P (j, k) be the property that L1
j,k ⊂ L2

j,k ⊆ Lj.

If (∃k)[P (j, k)], then let kj be the least k such that P (j, k) holds, and then let
Sj = {L1

j,kj
, L2

j,kj
}; otherwise, let Sj = {Lj}. Let L =

⋃

j∈N Sj.

We will show that L ∈ WrDBc− NUShBc.

The proof of L ∈ WrDBc is based on utilization of the fact that, if (∃k)[L1
j,k ⊂

L2
j,k ⊆ Lj], then the least such k can be found in the limit.

Claim 37 L ∈ WrDBc.

Proof. Note that L ∈ Sj ⇒ L ⊆ Lj.

Let Candn
j = {k ≤ n | L1

j,k ⊂ WMj(σj,k),n ⊆ Lj}.

Consider M which behaves as follows:

M on input T [n]
If content(T [n]) = ∅
Then output a grammar for ∅.
Else let j be such that content(T [n]) ⊆ Lj.
(* If there is no such j, then the input language is not in the class L.*)

If Candn
j = ∅

Then let M(T [n]) be a grammar for Lj.
Else

Let kn
j = min(Candn

j );
If content(T [n]) ⊆ L1

j,kn
j

Then let M(T [n]) = f(j, kn
j , n), where f is as defined below.

Else let M(T [n]) = g(j, kn
j , n), where g is as defined below.

Endif
Endif

Endif
End M

In the above, f and g are such that:

Wf(j,k,n) =

{

L1
j,k, if (∀m > n)[min(Candm

j ) = min(Candn
j )];

Lj, otherwise.

Wg(j,k,n) =

{

L2
j,k ∩ Lj, if (∀m > n)[min(Candm

j ) = min(Candn
j )];

Lj, otherwise.

We claim that M WrDBc-identifies L. Let T be a text for L ∈ Sj. Now
consider the following cases.

Case 1: (∀k)[¬P (j, k)].

20



In this case L = Lj. Furthermore, for all n, either Candn
j = ∅ or there exists an

m > n such that min(Candn
j ) 6= min(Candm

j ). Thus, if M outputs f(j, k, n)
or g(j, k, n), then [Wf(j,k,n) = Wg(j,k,n) = Lj]. Thus M on T [n] always outputs
a grammar for Lj, except for the case when content(T [n]) = ∅. Thus, M
WrDBc-identifies L.

Case 2: P (j, k) holds for some k.

Let kj be minimal such that P (j, k) holds. Let m be minimal such that for all
n > m, min(Candn

j ) = min(Candm
j ) = kj.

Now, for n < m, either Candn
j = ∅ or for some n′ > n, min(Candn

j ) 6=

min(Candn′

j ). Thus, if content(T [n]) 6= ∅, then by definition of M and f(j, k, n)
and g(j, k, n), the grammar output by M(T [n]) is for Lj.

For n ≥ m, such that content(T [n]) 6= ∅, M(T [n]), outputs f(j, kj , n) or
g(j, kj , n), based on whether content(T [n]) ⊆ L1

j,kj
or not.

Thus, if L = L1
j,kj

, then the sequence of grammars output by M on T are
initially for ∅ (while content(T [n]) = ∅), followed by grammars for Lj (while
n < m and content(T [n]) 6= ∅), and eventually for L1

j,kj
(when n ≥ m and

content(T [n]) 6= ∅). Thus, M WrDBc-identifies L1
j,kj

.

On the other hand, if L = L2
j,kj

, then the sequence of grammars output by M
on T are initially for ∅ (while content(T [n]) = ∅), followed by grammars for Lj

(while n < m and content(T [n]) 6= ∅), followed by grammars for L1
j,kj

(while

n ≥ m and ∅ ⊂ content(T [n]) ⊆ L1
j,kj

), and then eventually grammars for L2
j,kj

(when n ≥ m and content(T [n]) 6⊆ L1
j,kj

). Thus, again M WrDBc-identifies

L. Note that L2
j,kj

might be equal to Lj, and thus decisiveness does not hold.

Claim 38 L 6∈ NUShBc.

Proof. Suppose by way of contradiction that machine Mj NUShBc-identifies
L.

Now consider Sj.

If (∀k)[¬P (j, k)], then Lj ∈ L which is not TxtBc-identified by Mj.

If (∃k)[P (j, k)], then let kj be the least such k. Now L1
j,kj

, L2
j,kj

∈ L. Since on

σj,kj
Mj outputs a grammar for L2

j,kj
6= L1

j,kj
, there must be extension σ of

σj,kj
such that content(σ) = L1

j,kj
and WMj(σ) = L1

j,kj
. Also there must be an

extension σ′ of σ, such that content(σ′) ⊆ L2
j,kj

and WMj(σ′) = L2
j,kj

(since Mj

identifies both L1
j,kj

, L2
j,kj

). But then Mj is U -shaped on L2
j,kj

. This proves the
claim.

The theorem follows from above claims.

Observe that, in contrast to the case of TxtEx and TxtFex-learning, Theo-
rem 36 implies that WrDBc does not coincide with DecBc. We have in fact
the following corollary of Theorem 36.

Corollary 39 DecBc ⊂ WrDBc.
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We next show that, as was the case for Ex, inverted-U-shapes are redundant
for full Bc-learning power. In fact we have NInvUBc = TxtBc. For this, we
first establish Corollary 43 below based on work of [21].

Definition 40 [16] M is said to be rearrangement independent iff for all σ, τ
such that content(σ) = content(τ) and |σ| = |τ |, M(σ) = M(τ).

Definition 41 [21] A sequence σ is normalized if x ∈ content(σ) ⇒ x ≤ |σ|.

A text T is normalized if T [n] is normalized for all n.

Theorem 42 [21] Suppose M is given. Then we can effectively define M′

such that:

(a) If L ∈ TxtBc(M), then for all normalized texts T for L, for all but finitely

many n, M′(T [n]) is a grammar for L.

(b) M′ is rearrangement independent.

Corollary 43 Suppose L ∈ TxtBc. Then there exists a machine M′ such

that M′ TxtBc-identifies L, and every text T for L ∈ L starts with a TxtBc-
locking sequence for M′ on L.

Proof. Suppose M TxtBc-identifies L on normalized texts and M is re-
arrangement independent (by Theorem 42 such M exists). Let M′ be de-
fined as follows. M′(σ) = M(τ), where |τ | = 2 ∗ |σ| + max(content(σ)) and
content(τ) = content(σ), and τ is normalized. Clearly, M′ is rearrangement
independent.

Now consider any text T for L ∈ L. Furthermore, let α be a TxtBc-locking
sequence (on normalized texts) for M on L. Let n be such that content(α) ⊆
content(T [n]), and |α| ≤ n. Consider any σ such that content(σ) ⊆ L. Thus,
we have that

M′(T [n]σ) = M(α#rT [n]σ),

where r = |σ|+n−|α|+max(content(T [n]σ)). Thus, M′(T [n]σ) is a grammar
for L. Hence, T [n] is a TxtBc-locking sequence for M′ on L and M′ TxtBc-
identifies L on T .

Theorem 44 TxtBc ⊆ NInvUBc.

Proof. Suppose M TxtBc-identifies L. Without loss of generality (by Corol-
lary 43) assume that every text for L ∈ L starts with a TxtBc-locking se-
quence for M on L. By the s-m-n Theorem [28], there exists a recursive func-
tion f such that Wf(σ) =

⋃

s∈N As
σ, where As

σ is defined as follows.

A0
σ = content(σ).

As+1
σ = As

σ ∪
⋃

τ∈{τ ′:σ⊆τ ′,|τ ′|≤s, and content(τ ′)⊆As
σ}

WM(τ),s.

Intuitively, Wf(σ) is the smallest set S such that S contains content(σ) and
WM(τ) for every τ satisfying: σ � τ , and content(τ) ⊆ S.

Let M′(σ) = f(σ).

Now, it is easy to verify that if σ is a TxtBc-locking sequence for M on L,
then Wf(στ) = L, for any τ such that content(τ) ⊆ L. Thus, using the property
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that every text T for L starts with a TxtBc-locking sequence for M on L, we
have that M′ TxtBc-identifies L.

The following claim follows from the closure property of Wf(σ).

Claim 45 If σ � τ , and content(τ) ⊆ Wf(σ), then Wf(τ) ⊆ Wf(σ).

Now suppose T is a text for L ∈ L, and σ � τ � γ � T , are such that
Wf(σ) = Wf(γ) 6= Wf(τ). Then, we have

(i) content(τ) ⊆ content(γ) ⊆ Wf(γ) = Wf(σ) and thus, by Claim 45 Wf(τ) ⊆
Wf(σ).

(ii) If content(γ) ⊆ Wf(τ) then by Claim 45, Wf(γ) ⊆ Wf(τ), and thus using
(i) we would have Wf(τ) = Wf(σ). A contradiction. Thus, content(γ) 6⊆ Wf(τ).

It immediately follows from (ii) that Wf(τ) is not a grammar for L.

It follows from above analysis that M′ NInvUBc-identifies L.

Our next goal is to show that any TxtBc-learner can be transformed into one
that does not return to overinclusive conjectures. For this, we first establish
Lemmas 46 and 47.

Lemma 46 Suppose M is given. Then, for any σ ∈ SEQ, there exists an r.e.

set P (σ) such that

• A grammar for P (σ) can be effectively obtained from σ;

• If σ is a TxtBc-locking sequence for M on WM(σ), then P (σ) contains only

grammars for WM(σ);

• If σ is not a TxtBc-locking sequence for M on WM(σ), then P (σ) is either

empty, or contains grammars for at least two distinct languages.

Proof. Define P (σ) as follows.

If content(σ) 6⊆ WM(σ), then let P (σ) = ∅.

Otherwise let P (σ) = {M(τ) | σ � τ, content(τ) ⊆ WM(σ)}.

Now if σ is a TxtBc-locking sequence for M on WM(σ), then P (σ) consists
only of grammars for WM(σ). On the other hand if σ is not a TxtBc-locking
sequence for M on WM(σ), then either P (σ) is empty or it contains grammars
for at least two distinct languages.

Lemma 47 Suppose M is given. Then, there exists a recursive function g
such that:

(a) If σ is a TxtBc-locking sequence for M on WM(σ), then Wg(σ) = WM(σ).

(b) If σ is not a TxtBc-locking sequence for M on WM(σ), then Wg(σ) is finite.

Proof. For a finite set X and number s, let

• CommonTime(X, s) = max({t ≤ s | (∀p, p′ ∈ X)[Wp,t ⊆ Wp′,s]});
• CommonElem(X, s) =

⋂

p∈X Wp,CommonT ime(X,s).

Let f be a recursive function such that, Wf(X) =
⋃

s∈N CommonElem(X, s).
Here we assume that Wf(∅) = ∅.
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Intuitively, CommonTime(X, s) finds the largest time t such that all ele-
ments enumerated up to time t by some grammars in X are included in all
languages enumerated by grammars in X up to time s. CommonElem(X, s)
then gives the set of the elements enumerated by all grammars in X up to
time CommonTime(X, s). Note that

(i) lims→∞ CommonTime(X, s) is infinite iff all grammars in X are for the
same language;

(ii) If X ⊆ X ′, then CommonTime(X, s) ≥ CommonTime(X ′, s);
(iii) If Wp 6= Wp′ then for all s, CommonTime({p, p′}, s) is bounded by the

least t such that Wp,t ∪ Wp′,t 6⊆ Wp ∩ Wp′ .

Suppose X0 ⊆ X1 ⊆ . . . is given. Let Y be the set of all y such that there is
an s ≥ y, such that y ∈ Wf(Xs). Note that (ii) and (iii) above imply that if
{p, p′} ⊆

⋃

i∈N Xi and Wp 6= Wp′ , then Y is finite. On the other hand, if all
p, p′ ∈

⋃

i∈N Xi are grammars for the same language, then Y = Wp for any
p ∈

⋃

i∈N Xi.

Let P be as in Lemma 46 and let Ps(σ) denote P (σ) enumerated in s steps.

Now let g(σ) be such that Wg(σ) =
⋃

s∈N [{y | y ≤ s ∧ y ∈ Wf(Ps(σ))}]. It is
now easy to verify that Lemma holds.

Now we can prove one of our main results: any TxtBc-learner can be replaced
by one not returning to overinclusive conjectures.

Theorem 48 TxtBc ⊆ OIDBc.

Proof. Suppose M TxtBc-identifies L. Without loss of generality (Corol-
lary 43) assume that for any text T for L ∈ L, there exists a σ � T , such
that σ is a TxtBc-locking sequence for M on L. Intuitively, the proof employs
two tricks. The first trick (as given by g in Lemma 47) is to make sure that
the learner outputs a conjecture for an infinite language only on σ’s which are
TxtBc-locking sequences for the conjectured language. This automatically en-
sures that no semantic mind changes occur between different grammars output
for the same infinite language by the learner. The second trick makes sure that
all finite languages that are conjectured by the learner and that go beyond
what is seen in the input at the time of conjecture, are pairwise distinct.

We now proceed formally.

Let g be as in Lemma 47.

Let q0, q1, . . . denote an increasing sequence of primes.

Now define M′′ as follows. M′′(σ) = h(σ), where Wh(σ) is defined as follows. We
assume without loss of generality that for all i and s, Wi,s+1−Wi,s contains at
most one element. This ensures that when Wg(σ) is infinite, then card(Wg(σ),s)
would be of form (qind(σ))

k, for infinitely many s.

Wh(σ)

1. Enumerate content(σ)
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2. Loop
Search for s such that Wh(σ) enumerated up to now is a proper subset of

Wg(σ),s, and card(Wg(σ),s) is (qind(σ))
k for some k.

If and when such s is found, enumerate Wg(σ),s.
Forever

End

Thus, Wh(σ) is Wg(σ) if Wg(σ) is infinite. Furthermore, if Wh(σ) is finite, then it
is either content(σ) or has cardinality a power of qind(σ).

It follows that if Wh(σ) = Wh(τ), for σ ≺ τ , then either Wh(σ) is infinite and
σ is a TxtBc-locking sequence for M on Wg(τ) = Wg(σ) = Wh(σ), and thus,
there is no semantic mind change by M′′ in between σ and τ , or Wh(σ) is finite,
and thus, it must be the case that Wh(σ) = Wh(τ) = content(τ) (otherwise,
qind(σ) 6= qind(τ) would imply that Wh(σ) 6= Wh(τ)).

It follows from above cases that M′′ does not return to overinclusive hypothe-
ses. To see TxtBc-identification of L ∈ L, let T be a text for L. Let T [n] be a
TxtBc-locking sequence for M on L (such an n exists by assumption on M).
Thus, g(T [n]) is a grammar for L. If L is finite, then without loss of gener-
ality we also assume that n is large enough such that L ⊆ content(T [n]).
Now consider any m ≥ n. It is easy to verify that if L is infinite then
Wh(T [m]) = Wg(T [m]) = L. On the other hand, if L is finite, then again Wh(T [m])

does not enumerate anything beyond first step, and thus equals L.

Corollary 49 TxtBc ⊆ OGDBc.

7 Consistency

Consistency is a natural and important requirement in the context of TxtEx-
and of TxtBc-learning. While, for the latter, consistency can be easily achiev-
ed, it is known to be restrictive for TxtEx-learnability [4,25]. In this section we
establish a new interesting boundary on consistent TxtEx-learnability — in
Theorem 53 we show that consistent TxtEx-learners can be made consistent
and decisive — contrast this result with Theorem 24.

Definition 50 [4,25] M is said to be consistent on T iff, for all n, M(T [n])↓
and content(T [n]) ⊆ WM(T [n]).

M is said to be consistent on L iff, M is consistent on each text for L.

Definition 51 (a) [4,25] M ConsTxtEx-identifies L iff M is consistent on
L, and M TxtEx-identifies L.

(b.1) [4] M ConsTxtEx-identifies L iff M ConsTxtEx-identifies each L ∈ L.

(b.2) ConsTxtEx = {L | (∃M)[M ConsTxtEx-identifies L]}.
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Note that for M to ConsTxtEx-identify a text T , it must be defined on
each initial segment of T . One can similarly define a combination of consis-
tency with decisiveness (called ConsDecEx) and other related criteria such
as ConsNUShEx,ConsOIDEx,ConsWrDEx, etc.

Two other versions of consistency have been considered in the literature,
namely RCons [20], where the learner must be total but might be incon-
sistent on data not belonging to the class to be learned, and T Cons [32],
where the learner must be total and consistent on every text, whether it is for
some language to be learned or not.

Our simulations results below (Theorem 53 to Corollary 58) hold for T Cons
replacing Cons. We do not yet know whether Theorem 53 holds for RCons,
and correspondingly whether Corollary 58 also holds for RCons. Theorem 57
does hold for RCons also. Theorems 54, 55, and 56 hold for T Cons, and thus
for RCons too.

Our diagonalization results Theorem 60 and Theorem 61(a) also hold for
T Cons. Theorem 61(b) holds for RCons, but is known not to hold for
T Cons replacing Cons. We omit the details, and will not consider RCons
and T Cons from now on.

Definition 52 We say that σ is self-stabilizing for M if σ is a TxtEx-locking
sequence for M on WM(σ).

Theorem 53 ConsTxtEx ⊆ ConsDecEx.

Proof. Suppose M ConsTxtEx-identifies L. An easy modification of the
proof of Lemma 19 of the current paper (along with corresponding modifica-
tion of Lemma 17) can be used to show that, if there exists a finite set A such
that no extension of A is in L then L ∈ ConsDecEx.

On the other hand, if L contains an extension of every finite set A, then M is
total, and consistent on all inputs. Now, for each σ, we define:

Fσ(x) =
{

1, if M(σx) = M(σ);
0, otherwise.

Clearly, Fσ is total for each σ. Furthermore, if σ is self-stabilizing for M, then
F−1

σ (1) = WM(σ). Thus, L ⊆ {F−1
σ (1) | σ ∈ SEQ}.

Let G(2x) = 0 and G(2〈i, x〉 + 1) = 1 − Fδi
(2〈i, x〉 + 1). Thus, for all σ, G is

not a finite variant of Fσ (that is, G differs from Fσ on infinitely many inputs),
and G is 0 on all even inputs.

Let sσ = min({t | (∃τ)[content(τ) ⊆ WM(σ),t ∧ |τ | ≤ t ∧ M(σ) 6= M(στ)]}).
Thus, sσ = ∞ iff σ is self-stabilizing for M. Moreover, one can effectively
determine if sσ ≤ t, for any given t. Now define h(σ), g(σ) as follows.
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ϕh(σ)(x) =



















Fσ(x), if x ≤ sσ;
G(x), if x > sσ and x is odd;
1, if x > sσ and x = 2 ∗ 〈2 ∗ ind(σ), 1 + sσ〉;
0, otherwise;

ϕg(σ)(x) =



















1, if x ∈ content(σ);
G(x), if x 6∈ content(σ) and x is odd;
1, if x = 2 ∗ 〈2 ∗ ind(σ) + 1, max(content(σ))〉;
0, otherwise.

Intuitively, the aim of ϕh(σ) is to follow Fσ, if σ is self-stabilizing. Otherwise,
it computes a finite variant of G. The third clause in the definition of ϕh(σ)

above is used to ensure that the ϕh(σ)’s which compute a finite variant of G
are pairwise distinct. g(σ) is used below only for maintaining consistency, in
case one cannot find an appropriate program h(σ). Again, the third clause
in the definition of ϕg(σ) is to ensure that different ϕg(σ)’s and ϕh(σ)’s which
compute a finite variant of G are pairwise distinct.

It can be easily verified, using the definition of g and h above, that

(1) If σ is self-stabilizing for M, then ϕh(σ) = Fσ.

(2) If σ is not self-stabilizing for M, then ϕh(σ) is a finite variant of G (that is,
ϕh(σ) and G differ only on finitely many inputs), and max({x | ϕh(σ)(2x) = 1})
is of form 〈2 ∗ ind(σ), ·〉. Note that 2 ∗ ind(σ) in the pair makes function ϕh(σ)

different from ϕg(σ) and ϕh(σ′)/ϕg(σ′), for σ 6= σ′.

(3) ϕg(σ) is a finite variant of G, and max({x | ϕg(σ)(2x) = 1}) is of form
〈2 ∗ ind(σ) + 1, ·〉. Note that 2 ∗ ind(σ) + 1 in the pair makes function ϕg(σ)

different from ϕh(σ) and ϕh(σ′)/ϕg(σ′), for σ 6= σ′.

Now define M′ on T as follows. Let

σ〈i,j〉 =
{

δi, if content(δi) ⊆ content(T [〈i, j〉]);
λ, otherwise.

Above gives a special enumeration of all finite segments whose content are
contained in content(T ).

Let gram be a recursive function such that Wgram(i) = ϕ−1
i (1).

M′(T [n]) =































gram(h(σmn
)), for the least mn ≤ n such that

sσmn
≥ n, and

content(T [n]) ⊆ F−1
σmn

(1), and

content(T [n]) ⊆ ϕ−1
h(σmn)(1);

gram(g(T [n])), otherwise, if there is no such mn ≤ n.

It is easy to verify that M′ is consistent. Moreover, M′ TxtEx-identifies L,
since for any text T for L ∈ L, for the least m such that σm is a TxtEx-locking
sequence for M on L, M′ stabilizes to gram(h(σm)). We now show that M′

is decisive. Note that mn (when defined) is increasing in n. Suppose, by way
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of contradiction, WM′(T [n1]) = WM′(T [n3]) 6= WM′(T [n2]), where n1 < n2 < n3.
Note that if M′(T [n1]) = gram(g(T [n1])) or M′(T [n3]) = gram(g(T [n3])),
then WM′(T [n1]) 6= WM′(T [n3]) (by definition of g(·), and properties (2) and (3)
above). Thus, WM′(T [n1]) = Wgram(h(mn1)) and WM′(T [n3]) = Wgram(h(mn3)). If
mn1 = mn3, then by monotonicity we will also have mn2 = mn1, and thus
WM′(T [n2]) = WM′(T [n1]). On the other hand, if mn1 6= mn3, then σmn1

and
σmn3

must both be self-stabilizing for M, since, otherwise, Wgram(h(σmn1
)) 6=

Wgram(h(σmn3
)) (by (1), (2) above and the fact that G is not a finite variant of Fσ

for any σ). But, then content(T [n3]) 6⊆ F−1
σmn1

(1) = Wh(σmn1
) (by definition of

h, and the fact that σmn1
is not a stabilizing sequence for M on content(σmn3

)),
a contradiction to Wgram(h(σmn1

)) = Wgram(h(σmn3
)) ⊇ content(T [n3]). It follows

that M′ must be decisive.

Theorem 54 NUShBc = ConsNUShBc.

Proof. Suppose M NUShBc-identifies L. Let E(σ) = {τ � σ | content(τ) =
content(σ)} and define M′ as follows.

WM′(σ) =
{

WM(σ), if (∀τ ∈ E(σ))[content(σ) ⊆ WM(τ)];
content(σ), otherwise.

Clearly, M′ is consistent.

We now show that M′ NUShBc-identifies L. To see this, consider any text T
for L ∈ L. Let n be the least number such that WM(T [n]) = L. It follows from
M being non U-shaped that, for all m ≥ n, L = WM(T [m]). We now consider
two cases.

Case 1: L = content(T [n]).

In this case, for all m ≥ n, WM′(T [m]) = L, (based on either clause of the
definition of M′). Thus, M′ TxtBc-identifies T . Now suppose there exists an
m′ < n such that WM′(T [m′]) = L. Then, since WM(T [m′]) 6= L, we have that
WM′(T [m′])(= L) = content(T [m′]) = content(T [n]), and content(T [m′]) 6⊆
WM(T [r]), for some r ≤ m′, T [r] ∈ E(T [m′]). It follows by definition of M′

that for all m′′ such that m′ ≤ m′′ ≤ n, WM′(T [m′′]) = content(T [m′′]) = L. It
follows that M′ is non-U-shaped on T .

Case 2: Not Case 1 (that is content(T [n]) ⊂ L).

In this case, let n′ ≥ n be minimal such that content(T [n]) 6= content(T [n′]).
Clearly, for all m ≥ n′, M′(T [m]) is a grammar for L. Thus, M′ TxtBc-
identifies T . Furthermore, for all m ≤ n − 1, M′(T [m]) is not a grammar
for L (using either clause of the definition of M′). Furthermore, for all m
such that n ≤ m < n′, M′(T [m]) will be a grammar for L iff for all T [s] ∈
E(T [n]), content(T [n]) ⊆ WM(T [s]) (by definition of M′, and using the fact
that content(T [n]) ⊆ L = WM(T [m′]), for n ≤ m′ < n′). It follows that M′ is
non-U-shaped on T .

We note that the proof of Theorem 44 also shows the following inclusion.
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Theorem 55 TxtBc ⊆ ConsNInvUBc.

The proof of Theorem 48 also shows the following inclusion.

Theorem 56 TxtBc ⊆ ConsOIDBc.

The proof of Theorem 27 also works for the case when we are considering
consistent identification.

Theorem 57 (a) ConsWrDFex∗ ⊆ ConsTxtEx.

(b) ConsOIDFex∗ ⊆ ConsTxtEx.

Corollary 58 (a) ConsWrDFex∗ ⊆ ConsDecEx.

(b) ConsOIDFex∗ ⊆ ConsDecEx.

Next we show that decisive learning is stronger than consistent learning.

Theorem 59 DecEx 6⊆ ConsTxtEx.

Proof. Without loss of generality assume ϕ0(0)↑ (and thus ϕ0(0) 6= 0).

Let C = {f | (∀∞x)[f(x) = 0]}∪ {f | f is monotonically increasing, ϕf(0) = f ,
and for all x, Φf(0)(x) < f(x + 1)}. For a function f , let Lf = {〈x, f(x)〉 | x ∈
N}. Let L = {Lf | f ∈ C}. It is well known that C 6∈ ConsEx (for function
version of consistency, see for example [4]), and hence L 6∈ ConsTxtEx.

On the other hand, L ∈ DecEx can be shown as follows. Let p be a recursive
function such that

ϕp(i)(x) =



















i, if x = 0 and ϕi(0) = i;
ϕi(x), if x > 0, ϕi(y) is defined for all y ≤ x, and

(∀y < x)[max({Φi(y), ϕi(y)}) < ϕi(y + 1)];
↑, otherwise.

Now, M on input σ behaves as follows:

M(σ)
1. If 〈0, e〉 6∈ content(σ) for any e

Then output a grammar for ∅.
2. Else If 〈x, y0〉, 〈x, y1〉 ∈ content(σ), for some x, and y0 6= y1,

Then output a grammar for N .
3. Else

4. Let 〈0, e〉 ∈ content(σ) (here such e is unique).
5. If ϕe,|σ|(0) 6= e or [content(σ)−content(σ[Φe(0)]) ⊆ {〈z, 0〉 | z ∈ N}],

Then output a grammar for

L = content(σ) ∪ {〈x, 0〉 | (∀y > 0)[〈x, y〉 6∈ content(σ)]}.

6. Else let m = max({x | (∃y)[〈x, y〉 ∈ content(σ)]}).
Let m′ be such that 〈m,m′〉 ∈ content(σ).
7. If (∀x | 0 < x < m)[Φe(x) < m′ and

max({Φe(x − 1), ϕe(x − 1)}) < ϕe(x)] and
(∀〈x, y〉 | x < m, 〈x, y〉 ∈ content(σ))[ϕe(x) = y],
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Then output a grammar for Lϕp(e)
.

8. Else Output a grammar for

L = content(σ) ∪ {〈x, 0〉 | (∀y > 0)[〈x, y〉 6∈ content(σ)]}.

9. Endif
10. Endif

11. Endif
End

It is easy to verify that M TxtEx-identifies L. To see decisiveness, note that
a grammar for ∅ is output only until some 〈0, x〉 appears in the input. Fur-
thermore, if a grammar for N is output on some σ, then, for all τ ⊇ σ,
M outputs a grammar for N . Once 〈0, e〉 appears in the input for some e,
with ϕe(0) = e (and it is known that the previous conjecture of M is wrong,
see step 5), Lϕp(e)

is output as long as it is consistent with the input, and it
seems that ϕe ∈ {f | f is monotonically increasing, ϕf(0) = f , and for all
x, Φf(0)(x) < f(x + 1)}. Thus, once Lϕp(e)

, is abandoned, it is never conjec-
tured again. Furthermore, trivially, outputs in step 5 and 8 are monotonic in
the input. Thus, M is decisive.

We note that the proof of Theorem 36 also shows the following.

Theorem 60 ConsWrDBc 6⊆ NUShBc.

The proof of Theorem 31 gives us part (a) of the following theorem. The proof
of Theorem 30 can be easily modified to give part (b) of the following theorem
(we just need to make the learner given there consistent, assuming that the
input language is from the class).

Theorem 61 (a) ConsTxtFex2 6⊆ OGDFex∗.

(b) ConsOGDFexn+1 6⊆ TxtFexn.

8 Summary and Open Problems

We summarize our results on the impact of the WrD, NInvU, OID, and
OGD variants of non U-shaped behaviour and how they compare to previous
results about the original notion NUSh from [3] and [9]. We also tentatively
consider their possible significance from a cognitive science perspective.

Returning to abandoned wrong conjectures turned out to be necessary for full
learning power in all three of the models TxtEx,TxtFex, and TxtBc. Ad-
mittedly, disallowing return to any kind of wrong conjecture is, a priori, quite
a strong requirement on a learning machine. Thus, mathematically, these sep-
aration results might not be too surprising. However, from the viewpoint of
developmental psychology, they seem to suggest a very deep necessity of an
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apparently inefficient learning behaviour. This might also suggest that prin-
ciples of “economy” are at work in the hypothesis formulation process. The
learner might tend to keep a hold on a few different hypotheses, going back
and forth between them before converging to a correct one.

It is certainly premature to draw from our results any hypothesis on why

returning to wrong conjectures might be necessary for human learning power.
We can however note that the necessity of overgeneralization for learning
machines, as well as the interplay between learning finite tables and learning
possibly infinite sets are, interestingly, a key ingredient in the proof of our
separation result for TxtBc, Theorem 36, showing the necessity of returning to
wrong conjecture to maintain full learning power. The same is the case for the
proof of the necessity of returning to correct conjectures for TxtBc-learners
(see [17,3]). The key role of overgeneralization — and, in particular, of incorrect

overgeneralization — in U-shaped learning phenomena, is also illustrated by
our Theorem 53, showing that TxtEx-learners that are consistent with the
current data can be made decisive. Analogously, Theorem 54 shows that non
U-shaped TxtBc-learners can be made non U-shaped and consistent.

On the other hand, we have shown that inverted-U-shaped learning , returning
to abandoned overinclusive conjectures and returning to abandoned overgen-

eralizing conjectures are necessary only for the vacillatory case and avoidable
otherwise. Note that these results, when coupled with the previous separations
results, imply that, for example, any TxtEx- or TxtBc-learner that avoids
overinclusive conjectures will necessarily return (on some text for some lan-
guage in some class) to a conjecture for a proper subset of the target language.
It might be interesting to further investigate which non U-shaped features can
be simultaneously satisfied by a single TxtEx or TxtBc-learner. In particu-
lar, whether inverted U-shapes and return to overinclusive conjectures can be
simultaneously avoided for all classes in TxtEx or TxtBc. This analysis could
give us more information on what the reason for the necessity of returning to
wrong conjectures might be.

The above summarized results can be compared to results in [3] and [9] show-
ing that returning to abandoned correct conjectures is avoidable in the TxtEx
case while being necessary for vacillatory and behaviourally correct identifi-
cation. The results of [9] and of the present paper have proved that the vacil-
latory learning hierarchy is extremely sensitive to non U-shaped restrictions.
Instead, explanatory and behaviourally correct learning are sensitive only to
the strongest forms of U-shaped learning considered, i.e., to the decisive and
the wrong-decisive restrictions. This might be seen as an argument in favour
of vacillatory learning as a possible candidate model of human learning. As
already observed, the capacity of a candidate learning model to account for
U-shaped learning is widely recognized in the cognitive science literature as
an argument in favour of the proposed model.

Also, we can conclude that disallowing returning to abandoned wrong conjec-
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WrDEx ↔ DecEx ↔ WrDFex∗

6

6

NUShFex∗ ↔ NInvUFex∗ ↔ OIDFex∗

6? 6?

Ex ↔ OGDEx ↔ OIDEx

6? 6?

NUShEx ↔ NInvUEx

6

OGDFex2 → Fex2 �
�

�
�

�
�

���

6 6

OGDFex3 → Fex3

...
... @@I 6

DecBc

WrDBcNUShBc

66

OGDFex∗ → Fex∗

6

Bc ↔ OGDBc ↔ NInvUBc ↔ OIDBc

Fig. 1. Summary of the results. We have dropped the word Txt from the cri-
teria TxtEx,TxtFexa,TxtBc for ease of notation. An arrow indicates proper
inclusion, a bidirectional arrow indicates equality. It is still open whether
OGDFexa ⊆ NUShBc, for a ≥ 3.

tures is more restrictive than disallowing returning to correct conjectures in
the TxtEx and in the TxtFex models, while the two restrictions are incompa-

rable in the TxtBc case. On the other hand, disallowing inverted U’s, disallow-
ing returning to wrong overgeneralizing conjectures, and disallowing returning
to overinclusive conjectures are equivalent to disallowing returning to correct
conjectures for TxtEx. For TxtFex-identification, instead, disallowing re-
turning to overgeneralizing conjectures is less restrictive than, equivalently,
disallowing returning to correct or overinclusive conjectures, and disallowing
inverted U’s.

Also, while, for the second level, TxtFex2, of the vacillatory hierarchy the
necessity of returning to correct conjectures is avoidable by allowing infinitely
many correct conjectures in the limit, the necessity of returning to wrong
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conjectures is not avoidable in this way: there are TxtFex2-learnable classes
that cannot be TxtBc-learned by any WrD- learner. This and the above ob-
servations may again suggest that freedom of returning to wrong abandoned
conjectures is even more central, for full learning power, than freedom of re-
turning to correct conjectures.

The above results are illustrated in Figure 1, where an arrow indicates proper
inclusion, a double arrow indicates equality and the absence of (transitive
chains of) arrows indicates incomparability, except that it is open whether,
for a ≥ 3, OGDFexa ⊆ NUShBc.

The following three questions are open:

(a) ConsWrDBc = WrDBc?

(b) ConsDecBc = DecBc?

(c) For a ≥ 3 or a = ∗, is OGDFexa ⊆ NUShBc?

Also, the question of how many non U-shaped features can be simultaneously

satisfied has not been investigated in full detail, except for the case of coupling
consistency with various non U-shapedness requirements.
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