
Some natural conditions on incremental

learning

Sanjay Jain a,1, Steffen Lange b, and Sandra Zilles c,2,∗
aSchool of Computing, National University of Singapore, Singapore 117543

bFachbereich Informatik, Hochschule Darmstadt, Haardtring 100,
64295 Darmstadt, Germany

cAlberta Ingenuity Centre for Machine Learning, Department of Computing
Science, University of Alberta, Edmonton, Alberta, Canada T6G 2E8

Abstract

The present study aims at insights into the nature of incremental learning in the con-
text of Gold’s model of identification in the limit. With a focus on natural require-
ments such as consistency and conservativeness, incremental learning is analysed
both for learning from positive examples and for learning from positive and nega-
tive examples. The results obtained illustrate in which way different consistency and
conservativeness demands can affect the capabilities of incremental learners. These
results may serve as a first step towards characterising the structure of typical classes
learnable incrementally and thus towards elaborating uniform incremental learning
methods.

Key words: Inductive inference, iterative learning, formal languages, recursion
theory

1 Introduction

Considering data mining tasks, where specific knowledge has to be induced
from a huge amount of more or less unstructured data, several approaches have

∗ corresponding author
Email addresses: sanjay@comp.nus.edu.sg (Sanjay Jain),

s.lange@fbi.h-da.de (Steffen Lange), zilles@cs.ualberta.ca (Sandra Zilles).
1 Sanjay Jain was supported in part by NUS grant number R252-000-127-112 and
R252-000-212-112.
2 Sandra Zilles carried out most of her work on this article at the German Research
Center for Artificial Intelligence (DFKI), Kaiserslautern, Germany.

Preprint submitted to Elsevier 11 October 2007

been studied empirically in machine learning and formally in the field of learn-
ing theory. These approaches differ in terms of the form of interaction between
the learning machine and its environment. For instance, scenarios have been
analysed, where the learner receives instances of some target concept to be
identified, see Gold [6] and Valiant [11] for two different approaches, or where
the learner may pose queries concerning the target concept, see Angluin [2].
For learning from examples, one critical aspect is the limitation of a learn-
ing machine in terms of its memory capacity. In particular, if huge amounts
of data have to be processed, it is conceivable that this capacity is too low
to memorise all relevant information during the whole learning process. This
has motivated the analysis of so-called incremental learning, as proposed by
Wiehagen [12] and studied, e. g., by Case et al. [4], Gennari et al. [5], Kinber
and Stephan [7], Lange and Grieser [8], Lange and Zeugmann [9], where in
each step of the learning process, the learner has access only to a limited num-
ber of examples. Thus, in each step, its hypothesis can be built upon these
examples and its former hypothesis, only. Other examples seen before have to
be ‘forgotten’.

It has been analysed how such constraints affect the capabilities of learning
machines, thus revealing models in which certain classes of target concepts are
learnable, but not learnable in an incremental manner. However, some quite
natural constraints for successful learning have mainly been neglected in the
corresponding studies. These constraints are (a) the requirement for consistent
learning, i. e., the demand that none of the intermediate hypotheses a learner
explicates should contradict the data processed so far, and (b) the requirement
for conservative learning, i. e., the demand that each intermediate hypothesis
should be maintained as long as it is consistent with the data seen.

The fact that there is no comprehensive analysis of how these demands af-
fect the capabilities of incremental learners can be traced back to a lack of
knowledge about the nature of incremental learning. In particular, there is no
formal basis explaining typical or uniform ways for solving learning tasks in
an incremental way. In terms of learning theory, incremental learning is one of
the very few models, for which no characterisation of the typical structure of
learnable classes is known. For other models of learning from examples, char-
acterisations and uniform learning methods have often been the outcome of
analysing the impact of consistency or conservativeness, see, e. g., Zeugmann
and Lange [13]. Thus, also in the context of incremental learning, it is conceiv-
able that studying these natural requirements may yield insights into typical
learning methods. In other words, analysing consistency and conservativeness
may be the key for a better understanding of the nature of incremental learn-
ing and may thus, in the long term, provide characterisations of learnable
classes and uniform incremental learning methods.

The present study aims at insights into the nature of incremental learning

2

in the context of Gold’s model of learning in the limit from examples, see
Gold [6]. For that purpose, we analyse Wiehagen’s version of incremental
learning, namely iterative learning [12] with a focus on consistent and con-
servative learners. In Gold’s approach, learning is considered as an infinite
process, where in each step the learner is presented an example en for the
target concept and is supposed to return an intermediate hypothesis. In the
limit, the hypotheses must stabilise on a correct representation of the target
concept. Here, in step n + 1 of the learning process, the learner has access to
all examples e0, . . . , en provided up to step n plus the current example en+1.
In contrast, an iterative learner has no capacities for memorising any exam-
ples seen so far, i. e., its hypothesis hn+1 in step n + 1 is built only upon the
example en+1 and its previous hypothesis hn.

The present paper addresses consistency and conservativeness in the context
of iterative learning. Here several possible ways to formalise the demands
for consistency and conservativeness become apparent. Assume an iterative
learner has processed the examples e0, . . . , en+1 for some target concept and
returns some hypothesis hn+1 in step n + 1. From a global perspective, one
would define hn+1 consistent, if it agrees with the examples e0, . . . , en+1. But
since the learner has not memorised e0, . . . , en, it might be considered natural
to just demand that hn+1 agrees with the current example en+1. This is justified
from a rather local perspective. Similarly, when defining conservativeness from
a global point of view, one might demand that hn+1 = hn in case hn does
not contradict any of the examples e0, . . . , en+1, whereas a local variant of
conservativeness would mean to require that hn+1 = hn in case hn does not
contradict the current example en+1. Note that local consistency is a weaker
requirement than global consistency, whereas local conservativeness is stronger
than global conservativeness.

In the present paper, we restrict our focus on recursive languages as target con-
cepts. 3 In particular, the target classes are required to be indexable, i. e., there
exist algorithms deciding the membership problem uniformly for all possible
target languages. This restriction is motivated by the fact that many classes
of target concepts relevant for typical learning tasks are indexable.

The paper is structured as follows. In Section 2, we provide the definitions
and notations necessary for our formal analysis. Then Section 3 is concerned
with a case study of iterative learning of regular erasing pattern languages –
a quite natural and simple to define indexable class which has shown to be
suitable for representing target concepts in many application scenarios. This
case study shows how consistency and conservativeness may affect the learn-
ability of such pattern languages in case quite natural hypothesis spaces are
chosen for learning. Section 4 focuses on consistency in iterative learning. It

3 See Angluin [1] and Zeugmann and Lange [13] for an overview on early results.

3

has turned out, that iterative learners can be normalised to work in a locally
consistent way, whereas global consistency is a constraint reducing the capabil-
ities of iterative learners. Both results hold for learning from positive examples
as well as for learning from both positive and negative examples. Section 5
then is concerned with conservativeness. Here we show that, in the scenario of
learning from only positive examples, the effects of global conservativeness de-
mands and local conservativeness demands are equal, as far as the capabilities
of iterative learners are concerned. In contrast to that there are classes which
can be learned iteratively from positive and negative examples by a globally
conservative learner, but not in a locally conservative manner. Concerning the
effect of weak conservativeness demands (i. e., of global conservativeness), we
can show that they strictly reduce the capabilities of iterative learners which
are given both positive and negative examples as information. However, the
corresponding comparison in the case of learning from only positive exam-
ples is still open. In our point of view, not only the mere results presented
here, but in particular the proof constructions and separating classes give an
impression of characteristic methods of iterative learning and characteristic
properties of iteratively learnable classes, even though we cannot provide a
formal characterisation yet. Section 6 contains a concluding discussion.

2 Preliminaries

Let Σ be a fixed finite alphabet, Σ∗ the set of all finite strings over Σ, and
Σ+ its subset excluding the empty string. |w| denotes the length of a string
w. Any subset of Σ∗ is called a language. For any language L, co(L) = Σ∗ \L.
N is the set of all natural numbers. If L is a non-empty language, then any
infinite sequence t = (wj)j∈N with {wj | j ∈ N} = L is called a text for L.
Moreover, any infinite sequence i = ((wj, bj))j∈N over Σ∗ × {+,−} such that
{wj | j ∈ N} = Σ∗, {wj | j ∈ N, bj = +} = L, and {wj | j ∈ N, bj = −} =
co(L) is referred to as an informant for L. Now assume some fixed t = (wj)j∈N
and i = ((wj, bj))j∈N, where wj ∈ Σ∗ and bj ∈ {+,−} for all j ∈ N. Then,
for any n ∈ N, t[n] and i[n] denote the initial segment of t and i of length
n+1, while t(n) = wn and i(n) = (wn, bn). Furthermore, content(t[n]) = {wj |
j ≤ n}. Finally, content(i[n]), content+(i[n]), and content−(i[n]) denote the
sets {(wj, bj) | j ≤ n}, {wj | j ≤ n, bj = +}, and {wj | j ≤ n, bj = −},
respectively.

A family (Lj)j∈N of languages is called an indexing for a class C of recursive
languages, if C = {Lj | j ∈ N} and there is a recursive function f such that
Lj = {w ∈ Σ∗ | f(j, w) = 1} for all j ∈ N. C is called an indexable class (of
recursive languages), if C possesses an indexing.

In our proofs, we will use a fixed Gödel numbering (ϕj)j∈N of all partial recur-

4

sive functions over N as well as an associated complexity measure (Φj)j∈N, see
Blum [3]. Then, for k, x ∈ N, ϕk is the partial recursive function computed by
program k and we write ϕk(x)↓ (ϕk(x)↑), if ϕk(x) is defined (undefined).

Note that the models of learning from text considered below are concerned
with learning a target language L from positive examples presented in the
form of a text for L. For this reason we assume from now on that all languages
considered as target objects for learning are non-empty.

2.1 Learning from text

Let C be an indexable class, H = (Lj)j∈N any indexing of some C ′ ⊇ C (called
hypothesis space), and L ∈ C. An inductive inference machine (IIM for short)
M is an algorithmic device that reads longer and longer initial segments σ
of a text and outputs numbers M(σ) as its hypotheses. An IIM M returning
some j is construed to hypothesize the language Lj. The following definition
of learning from positive data is based on Gold [6].

Definition 1 (Gold [6]) Let C be an indexable class of languages, H = (Lj)j∈N
an indexing of some C ′ ⊇ C, and L ∈ C. Let t be a text for L, M an inductive
inference machine.

(1) M learns L from t with respect to H, if
(a) the sequence (M(t[n]))n∈N stabilises on a number j (* i. e., past some

point M always outputs the hypothesis j *) and
(b) this number j fulfils Lj = L.

(2) M learns L in the limit from text with respect to H, if M learns L from
every text for L with respect to H.

(3) M learns C in the limit from text with respect to H, if M learns every
language in C from text with respect to H.

Correspondingly, a class C is said to be learnable in the limit from text, if there
is some hypothesis space H, i. e., an indexing, and some inductive inference
machine M , such that M learns C in the limit from text with respect to H.
LimTxt denotes the collection of all classes learnable in the limit from text.

Having a closer look at learning algorithms from an application-oriented point
of view, it is rather unlikely that the general case of inductive inference
machines—as specified in Gold’s model—will turn out satisfactory. This might
have several reasons, because the model does not include any constraints con-
cerning

• consistency,
• conservativeness,

5

• memory bounds.

Consistency is the quite natural property that a learner only generates hy-
potheses which are consistent with the data seen so far, i. e., in the case of
learning in the limit from text, which represent languages containing all the
examples provided as input.

Definition 2 (Gold [6]) Let C be an indexable class, H = (Lj)j∈N a hypoth-
esis space, and M an IIM. M is consistent for C iff content(t[n]) ⊆ LM(t[n])

for every text segment t[n] for some L ∈ C.

ConsTxt denotes the collection of all indexable classes C ′ for which there is a
hypothesis space H′ and an IIM which is consistent for C ′ and learns C ′ in the
limit from text with respect to H′.

As it turns out, this demand does not really restrict the capabilities of IIMs,
i. e., IIMs can be normalised to work in a consistent manner.

Proposition 3 (Angluin [1]) ConsTxt = LimTxt.

With conservativeness, it is a little different. Conservative IIMs do not change
their hypotheses, if they are consistent with all data provided so far. This
demand is very important when analysing the possible reasons for learners to
change their hypotheses during the learning process.

Definition 4 (Angluin [1], Zeugmann and Lange [13]) Let C be an in-
dexable class, H = (Lj)j∈N be a hypothesis space, and M an IIM. M is conser-
vative for C iff, for every text segment t[n + 1] for some L ∈ C, M(t[n + 1]) 6=
M(t[n]) implies content(t[n + 1]) 6⊆ LM(t[n]).

Correspondingly, ConvTxt denotes the collection of all indexable classes C ′ for
which there is a hypothesis space H′ and an IIM which is conservative for C ′
and learns C ′ from text with respect to H′.

A phenomenon which might seem astonishing at first glance is that conser-
vativeness really restricts the capabilities of Gold-style inductive inference
machines. The reason is that there are classes in LimTxt , for which a success-
ful IIM sometimes has to return hypotheses which overgeneralise the target
language.

Proposition 5 (Zeugmann and Lange [13]) ConvTxt ⊂ LimTxt.

Note that originally Angluin [1] has proven a weaker result, showing that
LimTxt-learners for an indexable class C can in general not be made conser-
vative, if it is required that all the intermediate hypotheses they return repre-
sent languages in C—that is to say if they work in a so-called class-preserving

6

manner.

Finally, let us consider a third important aspect not addressed in Definition 1,
namely bounds on the example memory. Note that an IIM, when learning in
the limit, processes gradually growing finite sequences of examples, where it
is assumed that the amount of data the IIM can store and process in each
step is not bounded a priori. This rather unrealistic assumption is suspended
in the approach of incremental learning, particularly in iterative learning.

An iterative inductive inference machines is only allowed to use its previous hy-
pothesis and the current string in a text for computing its current hypothesis.
More formally, an iterative IIM M is an algorithmic device that maps elements
from N ∪ {init} × Σ∗ into N, where init denotes a fixed initial ‘hypothesis’
(not a natural number) which the IIM may never output. Let t = (wn)n∈N be
any text for some language L ⊆ Σ∗. Then we denote by (M [init , t[n]])n∈N the
sequence of hypotheses generated by M when processing t, i. e., M [init , w0] =
M(init , w0) and, for all n ∈ N, M [init , t[n + 1]] = M(M [init , t[n]], wn+1).

Definition 6 (Wiehagen [12]) Let C be an indexable class, H = (Lj)j∈N a
hypothesis space, and L ∈ C. Let M be an iterative IIM.

(1) M learns L from text with respect to H iff, for any text t = (wn)n∈N for
L, the sequence (M [init , t[n]])n∈N stabilises on a number j with Lj = L.

(2) M learns C from text with respect to H, if it learns every L′ ∈ C from
text with respect to H.

Finally, ItTxt denotes the collection of all indexable classes C ′ for which there
is a hypothesis space H′ and an iterative IIM learning C ′ from text with respect
to H′.

Obviously, each class learnable iteratively from text is learnable in the limit
from text—having a closer look: even conservatively. However, there are classes
in ConvTxt , which cannot be identified iteratively from text.

Proposition 7 (Lange and Zeugmann [9]) ItTxt ⊂ ConvTxt.

The model of iterative learning is one instantiation of the idea of incremental
learning and is the main focus of the formal study below, in particular in
combination with consistency and conservativeness demands.

In the definition of consistent learning above, a hypothesis of a learner is
said to be consistent, if it reflects the data it was built upon correctly. Since
an iterative IIM M , when processing some text t, is only allowed to use its
previous hypothesis, say Lj′ , and the current string v in t for computing its
current hypothesis Lj, it is quite natural to distinguish two variants of consis-
tent learning. In the first case, it is demanded that Lj contains all elements

7

of t seen so far, while, in the second case, it is only required that Lj contains
the string v.

Definition 8 Let C be an indexable class, H = (Lj)j∈N a hypothesis space, and
M an iterative IIM. M is globally (locally) consistent for C iff content(t[n]) ⊆
LM [init ,t[n]] (t(n) ∈ LM [init ,t[n]]) for every text segment t[n] for some L ∈ C.

Moreover, ItGConsTxt (ItLConsTxt) denotes the collection of all indexable
classes C ′ for which there is a hypothesis space H′ and an iterative IIM which
is globally (locally) consistent for C ′ and learns C ′ from text with respect to H′.

Finally we consider conservative iterative IIMs. Informally speaking, a conser-
vative learner maintains its current hypothesis as long as the latter does not
contradict any data seen. Hence, whenever a conservative IIM changes its re-
cent hypothesis, this must be justified by data having occurred which prove an
inconsistency of its recent hypothesis. Similarly to the case of consistent itera-
tive learning, it is quite natural to distinguish two variants of conservativeness
in the context of iterative learning.

Definition 9 Let C be an indexable class, H = (Lj)j∈N be a hypothesis space,
and M be an iterative IIM. M is globally (locally) conservative for C iff, for
every text segment t[n + 1] for some L ∈ C, M [init , t[n + 1]] 6= M [init , t[n]]
implies content(t[n + 1]) 6⊆ LM [init ,t[n]] (implies t(n + 1) /∈ LM [init ,t[n]]).

In parallel to the notions defined above, ItGConvTxt (ItLConvTxt) denotes
the collection of all indexable classes C ′ for which there is a hypothesis space
H′ and an iterative IIM which is globally (locally) conservative for C ′ and
learns C ′ from text with respect to H′.

Note that we allow a mind change from init after the first input data is
received.

2.2 Learning from informant

For all variants of ItTxt considered so far we define corresponding models
capturing the case of learning from informant. Now an iterative IIM M maps
N× (Σ∗×{+,−}) into N. Let i = (wn, bn)n∈N be any informant for some lan-
guage L, and let init be a fixed initial hypothesis. Then (M [init , i[n]])n∈N
is the sequence of hypotheses by M processing i, i. e., M [init , (w0, b0)] =
M(init , (w0, b0)) and, for all n ∈ N, M [init , i[n+1]] = M(M [init , i[n]], (wn+1, bn+1)).

Definition 10 (Wiehagen [12]) Let C be an indexable class, H = (Lj)j∈N a
hypothesis space, and L ∈ C. An iterative IIM M learns L from informant with
respect to H, iff for every informant i for L, the sequence (M [init , i[n]])n∈N

8

stabilises on a number j with Lj = L. Moreover, M learns C from informant
with respect to H, if M learns every L′ ∈ C from informant with respect to H.

The notion ItInf is defined similarly to the text case. Now also the consis-
tency and conservativeness demands can be formalised. For instance, for con-
sistency, let C be an indexable class, H = (Lj)j∈N a hypothesis space, and M
an iterative IIM. M is globally (locally) consistent for C iff content+(i[n]) ⊆
LM [init ,i[n]] and content−(i[n]) ⊆ co(LM [init ,i[n]]) (b = + for w ∈ LM [init ,i[n]] and
b = − for w /∈ LM [init ,i[n]]) for every informant segment i[n] for some L ∈
C, where i(n) = (w, b). Finally, the definitions of ItGConsInf , ItLConsInf ,
ItGConvInf , ItLConvInf can be adapted from the text case to the informant
case.

3 A case study: The regular erasing pattern languages

Let Σ be any fixed finite alphabet. Let X = {x1, x2, . . . } be an infinite set of
variables, disjoint with Σ. A regular pattern α is a string from (Σ∪X)+ which
contains every variable at most once. Let α be a regular pattern. Then Lε(α),
the regular erasing pattern language generated by α, contains all strings in Σ∗

that can be obtained by replacing the variables in α by strings from Σ∗, see,
e. g., Shinohara [10]. Note that Lε(α) constitutes a regular language. Subse-
quently, let Crp denote the collection of all regular erasing pattern languages.

Our first result, stating that the regular erasing pattern languages can be
be learned by an iterative IIM which is both globally consistent and locally
conservative, can be achieved by adapting a standard idea, see, e. g., Case et
al. [4]. For its proof the following folklore lemma is required.

Lemma 11 Let (Dj)j∈N be the canonical enumeration of all finite subsets
of N and (αj)j∈N a recursively enumerable family of regular patterns such
that (Lε(αj))j∈N is an effective, repetition-free indexing of Crp. There is an
algorithm A which, given any string w ∈ Σ+ as input, outputs an index j such
that Dj = {z ∈ N | w ∈ Lε(αz)}.

Theorem 12 There is a learner witnessing both Crp ∈ ItGConsTxt and Crp ∈
ItLConvTxt.

Sketch of the proof. Let (Dj)j∈N and (αj)j∈N be chosen as in Lemma 11. More-
over let L′

j =
⋂

z∈Dj
Lε(αz). Hence (L′

j)j∈N is an indexing comprising the class
Crp. The proof is essentially based on Lemma 11, using the algorithm A claimed
there.

A learner M witnessing Crp ∈ ItGConsTxt and Crp ∈ ItLConvTxt with respect

9

to (L′)j∈N may simply work as follows:

Initially, if the first string w appears, M starts its subroutine A accord-
ing to Lemma 11, determines j = A(w), and guesses the language L′

j, i. e.,
M(init , w) = j. Next M , when receiving a new string v, refines its recent
hypothesis, say j′, as follows. M determines the canonical index j of the
set {z | z ∈ Dj′ , v ∈ Lε(αz)} ⊆ Dj′ and guesses the language L′

j, i. e.,
M(j′, v) = j.

It is not hard to see that M learns as required. 2

Although the iterative learner M used in this proof is locally conservative and
globally consistent, M has the disadvantage of guessing languages not con-
tained in the class of all regular erasing pattern languages. At first glance, it
might seem that this weakness can easily be compensated, since the final guess
returned by M is always a regular erasing pattern language and, moreover,
one can effectively determine whether or not the recent guess of M equals a
regular erasing pattern language. Surprisingly, even under this quite ‘perfect’
circumstances, it is impossible to replace M by an iterative, locally conserva-
tive, and globally consistent learner for Crp that hypothesizes languages in Crp,
exclusively.

Theorem 13 Let card(Σ) ≥ 2. Let (Lj)j∈N be any indexing of Crp. Then there
is no learner M witnessing both Crp ∈ ItGConsTxt and Crp ∈ ItLConvTxt with
respect to (Lj)j∈N.

Proof. Let {a, b} ⊆ Σ. Assume to the contrary that there is an iterative learner
M which learns Crp locally conservatively and globally consistently, hypothe-
sising only regular erasing pattern languages. Consider M for any text of some
L ∈ Crp with the initial segment σ = (aba, aab). Since M must avoid overgen-
eralisations, only minimally general hypotheses are returned. There are only
two possible semantically different hypotheses which are globally consistent
with σ and minimally general with that property, namely x1abx2 and ax1ax2.
Distinguish two cases:

Case (a). LM [init ,σ] = Lε(x1abx2).

Consider M processing σ1 = (aba, aab, ab, aa) and σ2 = (aba, aab, aa). Since
ab ∈ Lε(x1abx2) and M is locally conservative for Crp, we obtain M [init , (aba, aab, ab)] =
M [init , (aba, aab)] = M [init , σ]. For reasons of global consistency, LM [init ,σ1] =
Lε(ax1). Now, since M [init , (aba, aab, ab)] = M [init , σ], this yields LM [init ,σ2] =
Lε(ax1). However, σ2 can be extended to a text for Lε(ax1ax2), on which M
will fail to learn locally conservatively, since M [init , σ2] overgeneralises the
target. This contradicts the assumptions on M .

10

Case (b). LM [init ,σ] = Lε(ax1ax2).

Here a similar contradiction can be obtained for M processing σ1 = (aba, aab, aa, ab)
and σ2 = (aba, aab, ab).

Both cases yield a contradiction and thus the theorem is verified. 2

However, as Theorems 15 and 16 show, each of our natural requirements, in its
stronger formulation, can be achieved separately, if an appropriate indexing
of the regular erasing pattern languages is used as a hypothesis space. To
prove this the following folklore lemma, which can be verified with standard
methods, is needed.

Lemma 14 Let (Dj)j∈N be the canonical enumeration of all finite subsets
of N and (αj)j∈N a recursively enumerable family of regular patterns such
that (Lε(αj))j∈N is an effective, repetition-free indexing of Crp. There is an
algorithm A′ which, given any index j as input, outputs an index k with
Lε(αk) =

⋂
z∈Dj

Lε(αz), if such an index exists, and ‘no’, otherwise.

Proof idea. Since every regular erasing pattern language is a regular language
and both the inclusion problem as well as the equivalence problem for regular
languages are decidable, such an algorithm A′ exists. 2

Theorem 15 There is an indexing (L∗
j)j∈N of Crp and a learner M witnessing

Crp ∈ ItLConvTxt with respect to (L∗
j)j∈N.

Proof. Let (Dj)j∈N and (αj)j∈N be chosen as in Lemma 14. Moreover let L′
j =⋂

z∈Dj
Lε(αz) for all j ∈ N. Hence (L′

j)j∈N is an indexing comprising the class
Crp.

The required iterative learner uses the algorithm A′ claimed in Lemma 14
and the iterative learner M from the demonstration of Theorem 12 as its
subroutines. Let (L∗

〈k,j〉)k,j∈N be an indexing of Crp with L∗
〈k,j〉 = Lε(αk) for all

k, j ∈ N. We define an iterative learner M ′ for Crp that uses the hypothesis
space (L∗

〈k,j〉)k,j∈N.

Initially, if the first string w appears, M ′ determines the canonical index k
of the regular erasing pattern language Lε(w) as well as j = M(init , w),
and outputs the hypothesis 〈k, j〉, i. e., M ′(init , w) = 〈k, j〉. Next M ′, when
receiving a string v, refines its recent hypothesis, say 〈k′, j′〉, as follows. First,
if v ∈ L∗

〈k′,j′〉, M ′ repeats its recent hypothesis, i. e., M ′(〈k′, j′〉, v) = 〈k′, j′〉.
(* Note that j′ = M(j′, v), too. *) Second, if v /∈ L∗

〈k′,j′〉, M ′ determines j =
M(j′, v) and runs A′ on input j. If A′ returns some k ∈ N, M ′ returns 〈k, j〉,
i. e., M ′(〈k′, j′〉, v) = 〈k, j〉. If A′ returns ’no’, M ′ determines the canonical
index k of the regular erasing pattern language Lε(v) and returns 〈k, j〉, i. e.,

11

M ′(〈k′, j′〉, v) = 〈k, j〉.

By definition, M ′ is an iterative and locally conservative learner. Let t be any
text for any L ∈ Crp. Since M learns L, there is some n such that M [init , t[n]] =
j with L′

j = L. By definition, for 〈k, j〉 = M ′[init , t[n]], we have Lε(αk) = L′
j.

Thus L∗
〈k,j〉 = Lε(αk). Since M ′ is a locally conservative learner, M ′ learns L,

too. 2

Theorem 16 There is an indexing (Lj)j∈N of Crp and a learner M witnessing
Crp ∈ ItGConsTxt with respect to (Lj)j∈N.

Proof. The proof proceeds similarly to that of Theorem 15. Hence, define
(Dj)j∈N, (αj)j∈N, (L′

j)j∈N analogously. Note that (L′
j)j∈N is an indexing com-

prising the class Crp.

The proof is again based on Lemma 14, which says that there is an algorithm
A′ which, given any index j as input, outputs an index k with Lε(αk) = L′

j, if
such an index exists, and ‘no’, otherwise.

The required iterative learner uses the algorithm A′ and the iterative learner
M from the demonstration of Theorem 12 as its subroutines. Let (L∗

〈k,j〉)k,j∈N
be an indexing of Crp with L∗

〈k,j〉 = Lε(αk) for all k, j ∈ N. We define an
iterative learner M ′′ for Crp that uses the hypothesis space (L∗

〈k,j〉)k,j∈N.

Initially, if the first string w appears, M ′′ determines the canonical index k
of the regular erasing pattern language Lε(w) as well as j = M(init , w), and
outputs the hypothesis 〈k, j〉. Next M ′′, when receiving a string v, refines its
recent hypothesis, say 〈k′, j′〉, as follows.

• Let c be the canonical index of the regular erasing pattern language Lε(x1)
• First, if Lε(αk′) = {v}, M ′′ repeats its recent hypothesis, i. e., M ′′(〈k′, j′〉, v) =
〈k′, j′〉. (* Note that j′ = M(j′, v), too. *)

• Second, if Lε(αk′) 6= {v}, M ′′ determines j = M(j′, v) and runs A′ on input
j. If A′ returns some k ∈ N, M ′′ returns 〈k, j〉, i. e., M ′′(〈k′, j′〉, v) = 〈k, j〉.
If A′ returns ‘no’, M ′′ returns 〈c, j〉, i. e., M ′′(〈k′, j′〉, v) = 〈c, j〉.

Since Lε(x1) = Σ∗, M ′′ is an iterative and globally consistent learner. More-
over, the same arguments as in the proof of Theorem 15 can be used to verify
that M ′′ learns every L ∈ Crp. 2

This case study shows that the necessity of auxiliary hypotheses representing
languages outside the target class may depend on whether both global con-
sistency and local conservativeness or only one of these properties is required.
In what follows, we analyse the impact of consistency and conservativeness
separately in a more general context, assuming that auxiliary hypotheses are

12

allowed.

4 Incremental learning and consistency

This section is concerned with the impact of consistency demands in iterative
learning. In the case of learning from text, the weaker consistency demand,
namely local consistency, does not restrict the capabilities of iterative learners.

Theorem 17 ItLConsTxt = ItTxt.

Proof. By definition, ItLConsTxt ⊆ ItTxt . To prove ItTxt ⊆ ItLConsTxt , fix
an indexable class C ∈ ItTxt . Let (Lj)j∈N be an indexing comprising C and M
an iterative learner for C with respect to (Lj)j∈N.

The required learner M ′ uses the indexing (L′
〈j,w〉)j∈N,w∈Σ∗ , where L′

〈j,w〉 = Lj∪
{w} for all j ∈ N, w ∈ Σ∗. Initially, M ′(init , w) = 〈j, w〉 for j = M(init , w).
Next M ′, upon a string v, refines its recent hypothesis, say 〈j′, w′〉, as follows.
First, M ′ determines j = M(j′, v). Second, if v ∈ Lj, M returns 〈j, w′〉;
otherwise, it returns 〈j, v〉. Obviously, M ′ witnesses C ∈ ItLConsTxt . 2

In contrast to that, requiring global consistency results in a loss of learning
potential, as the following theorem shows.

Theorem 18 ItGConsTxt ⊂ ItTxt.

Proof. By definition, ItGConsTxt ⊆ ItTxt . It remains to provide a separating
class C that witnesses ItTxt \ ItGConsTxt 6= ∅.

Let Σ = {a, b} and let (Aj)j∈N be the canonical enumeration of all finite
subsets of {a}+. Now C contains the language L = {a}+ and, for all j ∈ N,
the finite language Lj = Aj ∪ {bz | z ≤ j}.

Claim 19 C ∈ ItTxt.

The required iterative learner M may work as follows. As long as exclusively
strings from {a}+ appear, M just guesses L. If a string of form bj appears for
the first time, M guesses Lj. Past that point, M , when receiving a string v,
refines its recent guess, say Lk, as follows. If v ∈ L or v = bz for some z ≤ k,
M repeats its guess Lk. If v = bz for some z > k, M guesses Lz.

It is not hard to verify that M is an iterative learner that learns C as required.

Claim 20 C /∈ ItGConsTxt.

13

Suppose to the contrary that there is an indexing (L′
j)j∈N comprising C and a

learner M witnessing C ∈ ItGConsTxt with respect to (L′
j)j∈N.

Consider M when processing the text t = a1, a2, . . . for L. Since M is a learner
for C, there has to be some n such that M [init , t[n]] = M [init , t[n+m]] for all
m ≥ 1. (* Note that M [init , t[n]] = M [init , t[n]az] for all z > n + 1. *)

Now let j be fixed such that Aj = content(t[n]) = {a1, . . . , an+1}. Consider
M when processing any text t̂ for Lj with t̂[n] = t[n]. Since M is a learner for
C, there is some n′ > n such that content(t̂[n′]) = Lj as well as L′

k = Lj for
k = M [init , t̂[n′]]. Fix a finite sequence σ with t̂[n′] = t[n]σ. (* Note that such
a sequence σ exists. *)

Next let j′ > j be fixed such that Aj ⊂ Aj′ . Moreover fix any string az in Aj′ \
Aj. (* Note that z > n + 1 and az /∈ Lj. *) Consider M when processing any
text t̃ for the language Lj′ having the initial segment t̃[n′ +1] = t[n]azσ. Since
M [init , t[n]] = M [init , t[n]az], one obtains M [init , t̃[n + 1]] = M [init , t̂[n]].
Finally since M is an iterative learner, t̂[n′] = t̂[n]σ, and t̃[n′ + 1] = t̃[n + 1]σ,
one can conclude that M [init , t̃[n′ +1]] = M [init , t̂[n′]] = k. But L′

k = Lj, and
therefore az /∈ L′

k. The latter implies content(t̃[n′ + 1]) 6⊆ L′
k, contradicting

the assumption that M is an iterative and globally consistent learner for C. 2

In the case of learning from informant, the results obtained are parallel to
those in the text case. Theorem 21 can be verified similarly to Theorem 17.

Theorem 21 ItLConsInf = ItConsInf .

Considering the stronger consistency requirement, there are even classes learn-
able iteratively from text, but not globally consistently from informant.

Theorem 22 ItTxt \ ItGConsInf 6= ∅.

Proof. A class C ∈ ItTxt \ ItGConsInf can be defined as follows:

Let Σ = {a, b} and let (Aj)j∈N be the canonical enumeration of all finite
subsets of {a}+. Now C contains the language L = {a}+ and, for all j, k ∈ N,
the finite language L〈j,k〉 = Aj ∪ Ak ∪ {bj, bk}.

Claim 23 C ∈ ItTxt.

The required iterative learner M may work as follows. As long as only strings
from {a}+ appear, M guesses L. If a string of form bz appears for the first
time, M guesses L〈z,z〉. Past that point, M refines its recent guess, say L〈j′,k′〉,
when receiving a string v as follows. If j′ = k′ and v = bz with z 6= j′, M
guesses L〈j′,z〉. In all other cases, M repeats its guess L〈j′,k′〉.

14

It is not hard to verify that M is an iterative learner that learns C as required.

Claim 24 C /∈ ItGConsInf .

Suppose to the contrary that there is an indexing (L′
j)j∈N comprising C and a

learner M witnessing C ∈ ItGConsInf with respect to (L′
j)j∈N.

Consider a fixed informant i = ((wn, bn)n∈N) for L. Since M is a learner for
C, there has to be some n such that M [init , i[n]] = M [init , i[n + m]] for all
m ≥ 1.

Let j be fixed such that content+(i[n]) ⊆ Aj and bj /∈ content−(i[n]). Now
consider M when processing an informant ı̂ for L〈j,j〉 with ı̂[n] = i[n]. Since
M is a learner for C, there has to be some n′ > n such that content+(̂ı[n′]) =
L〈j,j〉 and L′

k = L〈j,j〉 for k = M [init , ı̂[n′]]. Fix a finite sequence σ such that
ı̂[n′] = i[n]σ. (* Note that such a sequence σ exists. *)

Now let k′ > j be fixed such that Aj ⊂ Ak′ , content−(̂ı[n]) ∩ Ak′ = ∅, and
bk′

/∈ content−(̂ı[n]). Let az be any string in Ak′ \ Aj. (* Note that az /∈
L〈j,j〉. *) Consider M when processing any informant ı̃ for the language L〈j,k′〉
with ı̃[n′ + 1] = i[n](az, +)σ. Since M [init , i[n]] = M [init , i[n](az, +)], one
obtains M [init , ı̃[n+1]] = M [init , ı̂[n]]. Finally since M is an iterative learner,
ı̂[n′] = ı̂[n]σ, and ı̃[n′+1] = ı̃[n+1]σ, one may conclude that M [init , ı̃[n′+1]] =
M [init , ı̂[n′]] = k. But L′

k = L〈j,j〉, and therefore az /∈ L′
k. The latter implies

content+(̃ı[n′ + 1]) 6⊆ L′
k, contradicting the assumption that M is an iterative

and globally consistent learner for C. 2

Obviously ItTxt ⊆ ItInf , and thus we obtain the following corollary.

Corollary 25 ItGConsInf ⊂ ItInf .

5 Incremental learning and conservativeness

This section deals with conservativeness in the context of iterative learning.
Here the results for learning from text differ from those for the informant case.

5.1 The case of learning from text

Let us first discuss the different conservativeness definitions in the context of
learning from positive examples only. By definition, local conservativeness is
a stronger demand, since the learner is required to maintain a hypothesis if it
is consistent with the most recent piece of information, even if it contradicts

15

some previously processed examples. However, it turns out that this demand
does not have any negative effect on the capabilities of iterative learners.
Intuitively, a globally conservative learner may change its mind depending on
inconsistency with only a limited set of examples, which can be coded within
the hypothesis.

Theorem 26 ItGConvTxt = ItLConvTxt.

Proof. By definition, ItLConvTxt ⊆ ItGConvTxt . Fix an indexable class C ∈
ItGConvTxt ; let (Lj)j∈N be an indexing and M an iterative IIM identifying
C globally conservatively with respect to (Lj)j∈N. It remains to prove C ∈
ItLConvTxt . For that purpose, we need the following notion and technical
claim.

Notion. For any text t and any n ∈ N, let mc(t[n], M) denote the set {t(0)}∪
{t(m) | 1 ≤ m ≤ n and M [init , t[m − 1]] 6= M [init , t[m]]} of all strings in
content(t[n]), which force M to change its mind when processing t[n].

Claim 27 Let L ∈ C, t a text for L, and n ∈ N. Let j = M [init , t[n]]. If
t(n + 1) ∪mc(t[n], M) ⊆ Lj, then M [init , t[n + 1]] = M [init , t[n]].

Proof. Let W = content(t[n + 1]) \ Lj. As t(n + 1) ∪mc(t[n], M) ⊆ Lj, then
M [init , t[m+1]] = M [init , t[m]] for all m < n with t(m+1) ∈ W . Now let τ be
the subsequence of t[n] obtained by deleting all w ∈ W from t[n]. Obviously,
M [init , τ] = M [init , t[n]] and mc(t[n], M) ⊆ content(τ) ⊆ Lj. This implies

M [init , t[n + 1]] = M [init , τ t(n + 1)] = M [init , τ] = M [init , t[n]] ,

because M is globally conservative for L. (QED, Claim 27).

Define an indexing (L′
j)j∈N by L′

2〈j,k〉 = Lj and L′
2〈j,k〉+1 = ∅ for all j, k ∈

N. (* Note that all languages in the target class are required to be non-
empty. However, since the hypothesis space in the model considered may in
general strictly comprise the target class, here the use of the empty language
as represented by an intermediate hypothesis is allowed. *)

We now define an IIM M ′ (witnessing C ∈ ItLConvTxt using (L′
j)j∈N), such

that, on any finite text segment σ for some L ∈ C, the following invariant
holds:

M ′[init , σ] = 2〈M [init , σ], k〉+ y for some k ∈ N, y ∈ {0, 1}, such that
• Dk = mc(σ, M) (* and thus Dk ⊆ content(σ) *).
• If y = 0, then Dk ⊆ LM [init ,σ].

The reader may check that this invariant holds, if M ′ is defined as follows:

Definition of M ′(init , w), for w ∈ Σ∗: Let j = M(init , w).

16

• If w ∈ Lj, let M ′(init , w) = 2〈j, k〉, where Dk = {w}.
• If w /∈ Lj, let M ′(init , w) = 2〈j, k〉+ 1, where Dk = {w}.

Definition of M ′(2〈j, k〉+ 1, w), for w ∈ Σ∗, j, k ∈ N: Let j′ = M(j, w).

• If j = j′ and Dk ⊆ Lj, let M ′(2〈j, k〉+ 1, w) = 2〈j, k〉.
• If j = j′ and Dk 6⊆ Lj, let M ′(2〈j, k〉+ 1, w) = 2〈j, k〉+ 1.
• If j 6= j′, let M ′(2〈j, k〉+ 1, w) = 2〈j′, k′〉+ 1, where Dk′ = Dk ∪ {w}.

Definition of M ′(2〈j, k〉, w), for w ∈ Σ∗, j, k ∈ N: Let j′ = M(j, w).

• If w /∈ Lj and j = j′, let M ′(2〈j, k〉, w) = 2〈j, k〉+ 1.
• If w /∈ Lj and j 6= j′, let M ′(2〈j, k〉, w) = 2〈j′, k′〉+1, where Dk′ = Dk∪{w}.
• If w ∈ Lj (* by the invariant, there is some text segment σ with M [init , σ] =

j and Dk = mc(σ, M) ⊆ Lj; hence Dk∪{w} ⊆ Lj and j = j′ by claim 27 *),
let M ′(2〈j, k〉, w) = 2〈j, k〉.

By definition, M ′ is locally conservative with respect to (L′
j)j∈N. Since M is

globally conservative for C with respect to (Lj)j∈N and because of the invariant,
it is not hard to verify that M ′ learns C iteratively. Thus C ∈ ItLConvTxt . 2

So local and global conservativeness are equal constraints for iterative text
learners. Whether they reduce the capabilities of iterative text learners in
general, i. e., whether ItGConvTxt and ItTxt coincide, remains an open ques-
tion.

5.2 The case of learning from informant

First, comparing the two versions of conservativeness, the informant case yields
results different from those in the text case, namely that globally conserva-
tive iterative learners cannot be normalised to being locally conservative. In
particular, the property that globally conservative learners can code all pre-
viously seen examples, for which their current hypothesis is inconsistent, no
longer holds in the informant case.

Theorem 28 ItLConvInf ⊂ ItGConvInf .

Proof. By definition, ItLConvInf ⊆ ItGConvInf . Thus it remains to provide
a separating class C that witnesses ItGConvInf \ ItLConvInf 6= ∅.

Let Σ = {a} and (Dj)j∈N the canonical enumeration of all finite subsets of
{a}+. Assume D0 = ∅. For all j ∈ N, set Lj = {a0} ∪Dj and L′

j = {a}+ \Dj.
Let C be the collection of all finite languages Lj and all co-finite languages L′

j.

17

Claim 29 C ∈ ItGConvInf .

For all j, k, z ∈ N, let H2〈j,k,z〉 = {a}+ \ {az} and H2〈j,k,z〉+1 = {az}. Now the
required iterative learner M , processing an informant i = ((wn, bn))n∈N for
some L ∈ C may work as follows.

(i) As long as neither (a0, +) nor (a0,−) appear, M guesses — depending
on whether or not (wn, bn) = (az, +) or (wn, bn) = (az,−) for the current
example (wn, bn) — in the first case H2〈j,k,z〉, in the second case H2〈j,k,z〉+1,
where Dj = content+(i[n]) and Dk = content−(i[n]) (* The input (wn, bn)
may be consistent with the recent guess of M , however the recent guess is
globally inconsistent, so M can change its mind without violating the global
conservativeness demand. *)

(ii) If (a0, +) or (a0,−) appears for the first time, the following cases will be
distinguished. If w0 = a0 and b0 = +, M guesses L0. If w0 = a0 and b0 = −,
M guesses L′

0. Otherwise, let j′ = 2〈j, k, z〉+y, y ∈ {0, 1}, denote the recent
guess of M . If (a0, +) appears, M ′ guesses the finite language Lj. If (a0,−)
appears, M ′ guesses the co-finite language L′

k.
(iii) Then M refines its recent guess as follows. If a positive example (az, +)

appears, the recent guess of M is Lj′ , and az /∈ Lj′ , M guesses Lj = Lj′ ∪
{az}. If a negative example (az,−) appears, the recent guess of M is L′

k′ ,
and az ∈ L′

k′ , M guesses L′
k = L′

k′ \ {az}. Else M repeats its recent guess.

It is not hard to verify that M is an iterative learner that learns C as required.

Claim 30 C /∈ ItLConvInf .

Suppose to the contrary that there is an indexing (L∗
j)j∈N comprising C and a

learner M which locally conservatively identifies C with respect to (L∗
j)j∈N.

Let j = M(init , (a, +)). We distinguish the following cases:

Case 1. L∗
j ∩ {a}+ is infinite.

Choose ar ∈ L∗
j with r > 1 and L = {a0, a1, ar}. Consider M on the infor-

mant i = (a, +), (ar, +), (a0, +), (a2,−), . . . , (ar−1,−), (ar+1,−), (ar+2,−), . . .
for L. As M learns C, there is an n ≥ 2 with M [init , i[n]] = M [init , i[n + m]]
for all m ≥ 1. (* M [init , i[n](as,−)] = M [init , i[n]] for all as with as /∈
(content+(i[n])∪ content−(i[n])). *) Let as be any string in L∗

j with s > r +1,
as /∈ (content+(i[n])∪ content−(i[n])). As Lj ∩ {a}+ is infinite, such as exists.
Fix some σ with i = (a, +), (ar, +)σ(as−1,−), (as,−), (as+1,−), . . .

Next let ı̂ = (a1, +), (ar, +), (as, +)σ(as−1,−), (as+1,−), (as+2,−), . . . Con-
sider M when processing the informant ı̂ for L′ = {a0, a1, ar, as}. Since M
is locally conservative and as ∈ L∗

j , M [init , ı̂[2]] = M [init , i[1]]. As M is an it-
erative learner, M [init , ı̂[n+1]] = M [init , i[n]]. Past step n+1, M receives only

18

negative examples (az,−) with az /∈ (content+(i[n]) ∪ content−(i[n])). Hence
M converges on ı̂ to the same hypothesis j as on i, namely to j = M [init , i[n]].
Finally because L 6= L′, M cannot learn both finite languages L and L′.

Case 2. L∗
j ∩ {a}+ is finite.

An argumentation similar to that used in Case 1 shows that M must fail to
learn some co-finite language in C. We omit the relevant details. 2

The observed difference in the above theorem can now even be extended to
a proper hierarchy of iterative learning from informant; globally conservative
learners in general outperform locally conservative ones, but are not capable
of solving all the learning tasks a general iterative learner can cope with. So
there are classes in ItInf which cannot be learned by any iterative, globally
conservative learner.

Theorem 31 ItGConvInf ⊂ ItInf .

Proof. By definition, ItGConvInf ⊆ ItInf . Thus it remains to provide a sep-
arating class C that witnesses ItInf \ ItGConvInf 6= ∅.

Let (Dj)j∈N be the canonical enumeration of all finite subsets of N.

Let C =
⋃

k∈N Ck, where Ck is defined below based on the following cases.

Case (a). If ϕk(k)↑, then Ck contains just one language, namely Lk = {ak}.

Case (b). If ϕk(k)↓, then Ck contains infinitely many languages. Let s = Φk(k).
For all j ∈ N, Ck contains the language L〈k,j〉 = {ak} ∪ {cs} ∪ {ds+z | z ∈ Dj}
as well as the language L′

〈k,j〉 = {ak} ∪ {ds+z | z 6∈ Dj}. (* Note that L〈k,j〉
contains a finite subset of {d}∗, whereas L′

〈k,j〉 contains a co-finite subset of
{d}∗. *)

It is not hard to verify that C constitutes an indexable class.

Claim 32 C ∈ ItInf .

Let i = ((wn, bn))n∈N be an informant for some L ∈ C. A corresponding
iterative learner M ′ may be informally defined as follows:

(i) As long as no positive example (ak, +) appears, M ′ encodes in its guess
all examples seen so far.

(ii) If some positive example (ak, +) appears, M ′ tests whether or not Φk(k) ≤
|w|, where w is the longest string seen so far. In case that ϕk(k) ↓ has
been verified, M ′ guesses Lk, where in its hypothesis all examples seen so
far are encoded. Subsequently, M ′ behaves according to (iv). In case that

19

Φk(k) > |w|, M ′ guesses Lk, where the encoded examples can be simply
ignored. Afterwards, M ′ behaves according to (iii).

(iii) As long as M ′ guesses Lk, M ′ uses the recent example (wn, bn) to check
whether or not Φk(k) ≤ |wn|. In the positive case, M ′ behaves as in (iv).
Else M ′ repeats its recent guess, without encoding the example just seen.

(iv) Let s = Φk(k). As long as (cs, +) and (cs,−) neither appear nor belong
to the examples encoded in the recent guess, M ′ adds the new example into
the encoding of examples in the recent guess. If (cs, +) (or (cs,−)) appears
or is encoded, M ′ guesses a language L〈k,j〉 (or L′

〈k,j〉, respectively), where j
is chosen such that Dj is the set of all z for which (ds+z, +) (or (ds+z,−), re-
spectively) is encoded in the previous hypothesis or as the current example.
M ′ can then identify the target language by explicitly coding any further
positive/negative examples of {d}∗ occurring—this is done in a way similar
to the proof of Claim 29.

It is not hard to see that M ′ is an iterative learner for C.

Claim 33 C 6∈ ItGConvInf .

Suppose the converse. That is, there is an indexing (L∗
j)j∈N comprising C and

an iterative learner M which globally conservatively identifies C with respect
to (L∗

j)j∈N. We shall show that M can be utilised to solve the halting problem.

Algorithm A: Let k be given. Let i = (wn, bn)n∈N be a repetition-free infor-
mant for Lk with w0 = ak and b0 = + such that, for all n ∈ N, wm = cn

implies m > n. For m = 0, 1, 2, . . . test in parallel whether (α1) or (α2)
happens.
(α1) Φk(k) ≤ m.
(α2) An index jm = M(init , i[m]) is output such that content+(i[m]) ⊆ L∗

jm

and content−(i[m]) ∩ L∗
jm

= ∅.
If (α1) happens first, output ‘ϕk(k) ↓.’ Otherwise, i.e., (α2) happens first,
output ‘ϕk(k)↑.’

We next show:

(1) On every input k, algorithm A terminates.
(2) Algorithm A decides the halting problem.

ad (1). It suffices to show that either (α1) or (α2) happens. Suppose, (α1)
does not happen, and thus ϕk(k) ↑. Hence, Lk ∈ Ck ⊆ C. Consequently, M ,
when processing the informant i for Lk, eventually returns a hypothesis jm =
M(init , i[m]) such that L∗

jm
= Lk. Thus, (α2) must happen.

ad (2). Obviously, if (α1) happens then ϕk(k) is indeed defined. Suppose (α2)
happens. We have to show that ϕk(k) ↑. Assume ϕk(k) ↓. Then, Φk(k) = s
for some s ∈ N. Since (α2) happens, there is an m < s such that jm =

20

M(init , i[m]) as well as content+(i[m]) ⊆ L∗
jm

and content−(i[m]) ∩ L∗
jm

= ∅.
(* Note that neither (cs, +) nor (cs,−) appears in the initial segment i[m]. *)

Now, similarly to the proof of Claim 30 one has to distinguish two cases:
(i) L∗

jm
contains infinitely many strings from {d}∗ and (ii) L∗

jm
contains only

finitely many strings of from {d}∗. In both cases, an argumentation similar
to that used in the proof of Claim 30 can be utilised to show that M fails
to learn globally conservatively for at least one language in Ck which contains
a finite (co-finite) subset of {d}∗. We omit the relevant details. Since M is
supposed to learn C, the latter contradicts our assumption that ϕk(k) ↓, and
thus Assertion (2) follows.

Since the halting problem is undecidable, C 6∈ ItGConvInf . 2

6 Discussion

We have studied iterative learning with two versions of consistency and conser-
vativeness. In fact, a third sensible version is conceivable. Note that an iterative
learner M may use a redundant hypothesis space for coding in its current hy-
pothesis all examples, upon which M has previously changed its guess. So one
may think of mind changes as ‘memorising examples’ and repeating hypothe-
ses as ‘forgetting examples’. One might call a hypothesis consistent with the
examples seen, if it does not contradict the ‘memorised’ examples, i. e., those
upon which M has changed its hypothesis. Similarly, M may be considered
conservative, if M sticks to its recent hypothesis, as long as it agrees with the
‘memorised’ examples.

Obviously, this version of consistency is equivalent to local consistency – the
proof is essentially the same as for Theorem 17 and the fact is not surprising.

However, the third version of conservativeness is worth considering a little
closer. For iterative learning from text Theorem 26 immediately implies that
this notion is equivalent to both global and local conservativeness. The idea
is quite simple: a conservative learner really has to ‘know’ that it is allowed
to change its hypothesis! Thus being inconsistent with forgotten positive ex-
amples doesn’t help at all, because the learner cannot memorise the forgotten
examples and thus not justify its mind change. In this sense, ‘forgotten’ ex-
amples are really examples without any relevance for the learner on the given
text. This intuition is already reflected in Claim 27 used in the proof of The-
orem 26.

Many similar insights may be taken from the proofs above to obtain further
results. For instance, the separating classes provided in the proofs of Theo-

21

rems 18 and 22, additionally lift our results to a more general case of incre-
mental learning, where the learner has a k-bounded memory, i. e., the capacity
for memorising up to k examples during the learning process, cf. Lange and
Zeugmann [9].

References

[1] Angluin, D., Inductive inference of formal languages from positive data,
Information and Control 45, 117–135, 1980.

[2] Angluin, D., Queries and concept learning, Machine Learning 2, 319–342, 1988.

[3] Blum, M., A machine independent theory of the complexity of recursive
functions, Journal of the ACM 14, 322–336, 1967.

[4] Case, J., Jain, S., Lange, S., and Zeugmann, T., Incremental concept learning
for bounded data mining, Information and Computation 152, 74–110, 1999.

[5] Gennari, J.H., Langley, P., and Fisher, D., Models of incremental concept
formation, Artificial Intelligence 40, 11–61, 1989.

[6] Gold, E.M., Language identification in the limit, Information and Control 10,
447–474, 1967.

[7] Kinber, E. and Stephan, F., Language learning from texts: Mind changes,
limited memory and monotonicity, Information and Computation 123, 224–
241, 1995.

[8] Lange, S. and Grieser, G., On the power of incremental learning, Theoretical
Computer Science 288, 277-307, 2002.

[9] Lange, S. and Zeugmann, T., Incremental learning from positive data, Journal
of Computer and System Sciences 53, 88–103, 1996.

[10] Shinohara, T., Polynomial time inference of extended regular pattern languages,
in: Proc. RIMS Symposium on Software Science and Engineering, Lecture Notes
in Computer Science, Vol. 147, pp. 115–127, Springer-Verlag, 1983.

[11] Valiant, L.G., A theory of the learnable, Communications of the ACM 27,
1134–1142, 1984.

[12] Wiehagen, R., Limes-Erkennung rekursiver Funktionen durch spezielle
Strategien, Journal of Information Processing and Cybernetics (EIK) 12 , 93–
99, 1976.

[13] Zeugmann, T. and Lange, S., A guided tour across the boundaries of learning
recursive languages, in: Algorithmic Learning for Knowledge-Based Systems,
Lecture Notes in Artificial Intelligence, Vol. 961, pp. 190–258, Springer-Verlag,
1995.

22

