
A Fresh Graduate’s Guide to Software Development Tools and Technologies

Chapter

 Scalability

CHAPTER AUTHORS

Amulya Khare

Yipeng Huang

Hung Doan

Mohit Singh Kanwal

PAST CONTRIBUTORS: Hoang Duc, Juliana Ung Bee Chin, Nguyen Van

Quang Huy

6

Software Development Tools and Technologies

 2

1 TABLE OF CONTENTS

1 Table of Contents .. 2

1 Introduction ... 3
1.1 Scalability .. 3
1.2 Vertical Scaling .. 4
1.3 Horizontal Scaling ... 5

2 Load Balancing .. 5
2.1 DNS Load Balancing ... 6
2.2 Hardware Load Balancing ... 6
2.3 Software Load Balancing .. 7

3 Scaling Databases ... 7
3.1 Need For Parallelism ... 8
3.2 Key Metrics of measuring parallelism: Scaleup and Speedup 8
3.3 Shared Nothing Architecture .. 8
3.4 Replication .. 9

3.4.1 Database replication using the master-slave model ... 9
3.4.2 Multi-master Replication Model ... 10
3.4.3 Replication Delay and Consistency ... 11

3.5 Partitioning ...11
3.5.1 Partitioning Strategies .. 11
3.5.2 Vertical Partitioning .. 12
3.5.3 Horizontal Partitioning .. 13

4 Cache as a Scalability Solution .. 14
4.1 Object caches ..15
4.2 Memcached ...16
4.3 Reverse Proxy Cache ..17
4.4 Content Delivery Network (CDN) ..18

5 Performance and Scalability ... 19
5.1 The macro perspective: Performance monitoring ...19
5.2 The micro perspective: Performance measurement23

6 Conclusion .. 24

Ch6. Scalability

 3

1 INTRODUCTION

Within ten years of its introduction, the Internet has transformed from plain hypertext
medium into a platform supporting interactive information systems and used by a
growing world population. Today, a vast array of platforms, languages and tools are
available for building high-end web applications that support large-scale business needs
and appeal to a large number of people. While building a web application is a relatively
straightforward task for an application developer, building web applications that can
scale and scale well is often quite difficult.

As a web application grows and gains popularity, it is used by more and more users.
Often the application cannot scale at the same speed that the users pour into the
application. The problem is not only a problem because of the increased number of
users, but having users that interact more heavily with the site. For example you might
have 100,000 active users but never experience any problems. Then you release a
feature that allows your users to share pictures easily and suddenly you have an
application that is responding very slowly or even crashing. Why did this happen? The
feature that handles picture sharing was designed and tested with only a few users and
it fell apart under heavy load. So the techniques and technologies that work at the small
scale can fail as the application starts to grow in terms of traffic and data volumes.

Once you have such problems, the next step is to find where the bottleneck is and why is
it happening. This might appear to be easy but it’s comparable to looking for a needle in
a haystack. Sizable web applications are quite complex. Parts coded in different
programming languages and by different people. Not only that, but sometimes problems
arise in different parts of the application such as the database or the server. Even if the
bottleneck is found, the solution might range from adding a code patch to re-developing
a particular section of the application to fix the issue. To avoid wasting a lot of time and
effort in the future, thinking about scale up-front can help one build applications that
work well on a small scale and can be extended easily to handle increasing load without
requiring major architectural redesigns.

In this book chapter we will look at making scalable web applications by employing
tried and tested practices at the various layers and also gain insights into how the
various parameters of performance stack up with and against each other.

1.1 Scalability

Scalability is sometimes defined as "the ease with which a system or component can be
modified to fit the problem area." A scalable system has three simple characteristics:

¶ The system can accommodate increased usage,

¶ The system can accommodate an increased data set.

¶ The system is maintainable and works with reasonable performance.

Scalability is not just about speed. Performance and scalability for a system differ from
and correlate to each other. Performance measures how fast and efficiently a system can
complete certain computing tasks, while scalability measures the trend of performance

Software Development Tools and Technologies

 4

with increasing load. If the performance of a software system deteriorates rapidly with
increasing load (number of users or volume of transactions) prior to reaching the
intended load level, then it is not scalable and will eventually under perform. In other
words, we hope that the performance of a software system would sustain as a flat curve
with increasing load prior to reaching the intended load level, which is the ideal
scalability one can expect.

In other words, scalability refers to the ability of a system to give reasonable
performance under growing demands (rising traffic or increased data volume). Not only
is a scalable system assured to perform well under increasing load, it would also reduce
the need of having to redesign the system under such challenges, and this translates to
business gains such as the mitigation of possible financial loss or decreased customer
confidence. Scalability is one of the most valuable quality attributes of a system.

The next question that arises now is “How do we scale?” In its simplest form, adding
more resources in order to handle the increased load can scale an application. In the
next section, we discuss two broad methods: vertical scaling and horizontal scaling, of
adding more resources for a particular application. The understanding of these two
methods is essential before we delve deep into the various technical aspects of scaling
specific components.

1.2 Vertical Scaling

Scaling up or vertical scaling refers to resource maximization of a single unit to expand
its ability to handle increasing load. In hardware terms, this includes adding processing
power and memory to the physical machine running the server. In software terms,
scaling up may include optimizing algorithms and application code. Optimization of
hardware resources, such as parallelizing or having optimized number of running
processes is also considered techniques of scaling up.

Figure 1 Example of vertical scaling by upgrading the physical machine.

Although scaling up may be relatively straightforward, this method suffers from several
disadvantages. Firstly the addition of hardware resources results in diminishing returns
instead of super-linear scale. The cost for expansion also increases exponentially. The
curve of cost to computational processing is a power law in which the cost begins to
increase disproportionally to the increase in processing power provided by larger
servers.

In addition, there is the inevitable downtime requirement for scaling up. If all of the web
application services and data reside on a single unit, vertical scale on this unit does not
guarantee the application’s availability.

Ch6. Scalability

 5

1.3 Horizontal Scaling

Scaling out or horizontal scaling refers to resource increment by the addition of units to
the system. This means adding more units of smaller capacity instead of adding a single
unit of larger capacity. The requests for resources are then spread across multiple units
thus reducing the excess load on a single machine.

Figure 2 Example of horizontal scaling by adding more machines.

Having multiple units allows us the possibility of keeping the system up even if some
units go down, thus, avoiding the “single point of failure” problem and increasing the
availability of the system. Also generally, the total cost incurred by multiple smaller
machines is less than the cost of a single larger unit. Thus horizontal scaling can be more
cost effective compared to vertical scaling.

However, there are disadvantages advantages of horizontal scaling as well. Increasing
the number of units means that more resources need to be invested in their
maintenance. Also the code of the application itself needs to be modified to allow
parallelism and distribution of work among various units. In some cases this task is not
trivial and scaling horizontally may be a tough task.

In the next section, we look at the technique of load balancing that is often used to
support horizontally scaled web application architecture.

2 LOAD BALANCING

When we start to scale horizontally, a new problem appears. We have multiple
processors residing on different physical machines, but we have no management system
to spread requests among them. We have multiple requests coming in to the same IP,
which we want to service with multiple machines. The problem is to decide which
application machine or processing unit would respond to which request. The solution
can come from a number of methods, which could be grouped under the technique of
load balancing.

There is a limit to what vertical scale can achieve for a particular application. This limit
can be determined by the company’s budget to buy upgraded hardware or the technical
limitation when the company is already using the best server available in the market.
These systems need to scale out and be load balanced. Thus, load balancing has now
become a must in almost any web service architecture, playing an important part in
ensuring availability and scalability of a system.

Software Development Tools and Technologies

 6

A load balancer accepts requests from users and then directs them to the right web
server. The “right” server here is decided by certain criteria, mainly regarded as the load
balancing strategy. There are many strategies, common ones are:

¶ Round Robin: each server takes turn to receive requests. This is the simplest
strategy, similar in spirit to First In First Out applied in caching.

¶ Least number of connections: the server with the lowest number of connections
will be directed the request. This is an attempt to prevent high load.

¶ Fastest response time: the server that has the fastest response time (either
recently or frequently) will be directed the request. This is an attempt to handle
requests as fast as possible.

¶ Weighted: this strategy can be highly customized since the weightage can be
configured. This strategy takes into account the scenario where servers in the
cluster may not have the same capacity (processing power, storage, etc.). Thus,
the more powerful servers will receive more requests than the weaker ones
under weighted strategy.

Load balancing can be done in many ways. A simple load balancing can be done at the
Domain Name System (DNS) level by managing the DNS responses to address requests
from client. Other ways may include installing some hardware or software tools at the
application’s backend. In the next section, we look at the different ways in which we can
achieve load balancing.

2.1 DNS Load Balancing

The easiest way to load balance between web servers is to create more than one record
in the DNS zone for your application's domain. When a user then enters your address
into their browser, your browser asks the DNS server to return a list of records for that
domain. DNS servers shuffle these records and send them back in a random order to
each requesting host. The client, on the other hand, always starts by trying the first in
the list thus getting directed to a web server on a random basis. DNS-based load
balancing is by far the easiest way to balance requests between multiple geographical
locations, as no additional configuration is required at the application’s end.

This approach has certain disadvantages. Adding or removing any machines from the
pool is a slow process. Depending on the cache time of DNS servers, it could take up to a
couple of days to make a change to the DNS zone that appears for all users. During that
time, some users will see the old zone while some will see the new one. Also because of
DNS caching, a user will get stuck on a single machine for an hour or more. If many users
share a DNS cache, as in the case with large ISPs, a large portion of your users will get
stuck to a single server thus; DNS load balancing is not a very practical solution.

2.2 Hardware Load Balancing

The most straightforward way to balance requests between multiple machines in a pool
is to use a hardware appliance. You plug it in, turn it on, set some settings, and start
serving traffic. The basic principle is that network traffic is sent to a shared IP in many
cases called a virtual IP (VIP), or listening IP. This VIP is an address that it attached to
the load balancer. Once the load balancer receives a request on this VIP it will need to
make a decision on where to send it, based on its load balancing strategy.

Ch6. Scalability

 7

There are several core advantages we gain by using a hardware appliance. Adding and
removing real servers from the VIP happens instantly. As soon as we add a new server,
traffic starts flowing to it and, when we remove it, traffic immediately stops. Also, we
can balance load however we see fit. If we have one web server that has extra capacity
for some reason (maybe more RAM or a bigger processor), then we can give it an unfair
share of the traffic; making use of all the resources we have instead of allowing extra
capacity to go unused.

However, there are a couple of downsides to using a hardware appliance. First time
configuration of the load-balancing device may not be an easy job. However, depending
on your scale, this might be not be much of an issue, especially if the device is to be set
up once and be left there for use for a long time. The main disadvantage with hardware
load balancers is that hardware load-balancing devices tend to be very expensive,
starting in the tens of thousands of dollars up to the hundreds of thousands.
Remembering that we need at least two for disaster tolerance, this can get pretty
expensive.

2.3 Software Load Balancing

Software load balancing provides a cheap alternative to hardware load balancers. A
number of load balancing software are available in the market, such as Perlbal
(http://www.danga.com/perlbal/), Pound (http://www.apsis.ch/pound/) which are
free and open-source. They run simple to super-complex software operating systems, on
much cheaper hardware (sometimes even ordinary server machines) and provide a
much more convenient way of balancing load.

Software load balancers are generally classified into two categories: layer 4 and layer 7,
based on the network layer information they use for load balancing. Layer 4 load
balancers make use of the information provided by TCP (transmission control protocol)
at the network layer. The load balancer captures the request at this layer and utilizes the
information contained in the TCP stream: the source and destination IP address and
port, which is sufficient to route the request. Given this information, we can direct the
connection to the correct port at the backend. Since connection must be established
between client and server in connection-oriented transport before sending the request
content, the load balancer usually selects a server without looking at the content of the
request.

Layer 7 load balancers, on the other hand, inspect the message right up to the
application layer, examining the HTTP request itself. They are able to look at the request
and its headers and use those as part of the balancing strategy. The requests thus can be
balanced based on information in the query string, in cookies or any header we choose,
as well as the regular layer 4 information, including source and destination addresses.
For example, an often used element for layer 7 balancing is the HTTP request URL itself.
By balancing based on the URL, one can ensure that all requests for a specific resource
go to a specific server. Layer 7 load-balancers, can provide quality of service
requirements for different types of contents and improve overall cluster performance.

3 SCALING DATABASES

A database is the organization of collection of data entities and their relationships. For
example, a university database might contain entities such as students, faculty, courses,
and classrooms, and relationships such as students' enrollment in courses, Οfaculty

http://www.danga.com/perlbal/),
http://www.apsis.ch/pound/).

Software Development Tools and Technologies

 8

teaching courses, etc. Formally, software designed to store data are called database
management systems (DBMS) but in this section DBMS and database will be used
interchangeably.

The database is the most common bottleneck in web applications, since a lot of reads
and writes occur at the database level, and hence the primary focus in this book section
is on scaling them. A scalable database is one that performs well under increasing traffic
and dataset (Henderson, 2006).

In this book section we will attempt to provide a useful understanding of horizontal
scaling methods with respect to the database layer.

3.1 Need For Parallelism

Historically, Database Systems were centralized sequential systems where data was
located in a single site. However, many data operations can work in parallel. For
example, reads can be parallelized easily because no changes are made to the database.
Parallelism is the primary method of achieving scalability.

3.2 Key Metrics of measuring parallelism: Scaleup and Speedup

The ideal parallel system demonstrates two key properties: (1) linear speedup: Twice as
much hardware performing the task in half the elapsed time, and (2) linear scaleup:
Twice as much hardware performing twice as large a task in the same elapsed time.

Speed-up and scale-up are illustrated in the Figure below. The speed-up curves show
how, for a fixed database size, more transactions can be executed per second by adding
CPUs. The scale-up curves show how adding more resources (in the form of CPUs)
enables us to process larger problems. The first scale-up graph measures the number of
transactions executed per second as the database size is increased and the number of
CPUs is correspondingly increased. An alternative way to measure scale-up is to
consider the time taken per transaction as more CPUs are added to process an
increasing number of transactions per second; the goal here is to sustain the response
time per transaction.

Figure 3 Speedup and Scaleup Curves

3.3 Shared Nothing Architecture

Core to the horizontal scaling of the database is the architecture principle employed
called the “Shared-Nothing Architecture”. This is done in order to take advantage of
the parallelism in the database operations.

Using shared nothing architecture for the database layer is the primary method
exploited to provide horizontal scaling.

It’s becoming increasing popular to use a distributed architecture for web applications
in recent times. This architecture is based on a shared-nothing hardware design in

Ch6. Scalability

 9

which processors communicate with one another only by sending messages via an
interconnection network. In such systems, tuples of each relation in the database are
separately stored across disk storage units attached directly to each processor.
Partitioning allows multiple processors to scan large relations in parallel without
needing any exotic I/O devices (J. & Jim, 1992). Figure above displays the shared nothing
architecture, alongside shared-disk and shared-memory architectures.

The shared-nothing facilitates scalability by providing linear speed-up and linear-
scaleup. Consequently, ever-more-powerful parallel database systems can be built by
taking advantage of rapidly improving performance for single-CPU systems and
connecting as many CPUs as desired. (Ramakrishnan & Gehrke, 2003)

Shared-nothing architectures minimize interference by minimizing resource sharing. As
such horizontal scaling of the database via replication or partitioning schemes becomes
very easy, as we shall see in the subsequent sections.

3.4 Replication

In database replication, copies (replicas) of data are stored on multiple machines.
Clients may read from any of these replicas. Whenever a write occurs, the updated data
is replicated to all machines to ensure consistency. The database server that does this
replication is called the master, while those at the receiving end of the replication are
called slaves.

3.4.1 Database replication using the master-slave model

From a single server, the simplest replication model to scale out to is the dedicate
master and single slave servers (Figure 2). Client web server(s) may now read from any
of these two machines. However, all writes must only be directed to the master, who will
subsequently replicate data updates to the slave.

Figure 4 A shared nothing architecture diagram, note how the individual processor and
memories do not share resources

Software Development Tools and Technologies

 10

This simple two-machine configuration may be extended to more slaves.

M S

Master does

reads and writes

Slave only

does reads

replicate

read/write read

App server

Figure 5 Master Slave Replication Model

Database replication enables read demands to be distributed among multiple machines.
However, having one master introduces a single-point-of-failure in the setup. If the
master is unavailable, the application will lose the ability to update the data.

3.4.2 Multi -master Replication Model

Instead of having a one-way replication between a master and slave, the multi-master
model enables each master to replicate data to the other.

Since there is now more than one machine responsible for updates, the multi-master
model eliminates the single-point-of-failure that the master-slave model has. However,
this model introduces the danger of data collision. This may happen if we use the
primary ID auto-incrementing feature, and were to insert two different records into
each of the masters simultaneously.

There are several ways to handle data collision. We may author the application code
such that writes to certain tables are only issued to one master and writes to other
tables are issued to the other master. We may also avoid the auto-incrementing feature
and use alternatives such as other unique keys or other services to generate unique IDs.
These are not necessarily convenient workarounds, depending on our needs.

MM

MM

MM

Ch6. Scalability

 11

3.4.3 Replication Delay and Consistency

Replication delay is the time it takes for data to be replicated to a machine. Replication
delays across all machines will vary. A faster slave machine, or one serving fewer
threads for example, would be able to update its data faster than a slower machine.
Hence, there will be a time during replication when data is not the same (in other words,
not consistent) across all the database replicas. Data inconsistency may also be
attributed to a replication model: in the master-slave model, the master machine always
has the most updated copy of the data at any time. This is however untrue for any
machine in the multi-master model (assuming there is traffic), since different writes
would happen at the same time to multiple masters. If we need consistent reading, then
we could enforce a synchronous replication (where writes are replicated to all
machines) before performing a read.

3.5 Partitioning

Partitioning a relation involves distributing its tuples over several disks. Data
partitioning has its origins in centralized systems that had to partition files, either
because the file was too big for one disk, or because the file access rate could not be
supported by a single disk.

Distributed databases use data partitioning when they place relation fragments at
different network sites. Data partitioning allows parallel database systems to exploit the
I/O bandwidth of multiple disks by reading and writing them in parallel. This approach
allows enabling distributed access to the database thereby aiding in scaling out the
database.

3.5.1 Partitioning Strategies

The simplest partitioning strategy distributes tuples among the fragments in a round -
robin fashion. This is the partitioned version of the classic entry-sequence file. Round
robin partitioning is excellent if all applications want to access the relation by
sequentially scanning all of it on each query. The problem with round robin partitioning
is that applications frequently want to associatively access tuples, meaning that the
application wants to find all the tuples having a particular attribute value. For example,
the SQL query looking for the Smith’s in the phone book is an example of an associative
search.

Hash partitioning is ideally suited for applications that want only sequential and
associative access to the data. Tuples are placed by applying a hashing algorithm to an
attribute of each tuple. The function specifies the placement of the tuple on a particular
disk. Associative access to the tuples with a specific attribute value can be directed to a
single disk, avoiding the overhead of starting queries on multiple disks.

Range partitioning maps contiguous attribute ranges of a relation to various disks.
Round-robin partitioning maps the i’th tuple to disk i mod n. Hashed partitioning, maps
each tuple to a disk location based on a hash function. Each of these schemes spreads
data among a collection of disks, allowing parallel disk access and parallel processing.

Database systems pay considerable attention to clustering related data together in
physical storage. If a set of tuples is routinely accessed together, the database system
attempts to store them on the same physical page.

Software Development Tools and Technologies

 12

Hashing tends to randomize data rather than cluster it. Range partitioning clusters
tuples with similar attributes together in the same partition. It is good for sequential and
associative access, and is also good for clustering data.

The problem with range partitioning is that it risks data skew, where all the data is place
in one partition, and execution skew in which all the execution occurs in one partition.
Hashing and round-robin are less susceptible to these skew problems. Range
partitioning can minimize skew by picking non-uniformly-distributed partitioning
criteria.

While partitioning is a simple concept that is easy to implement, it raises several new
physical database design issues. Each relation must now have a partitioning strategy
and a set of disk fragments. Increasing the degree of partitioning usually reduces the
response time for an individual query and increases the overall throughput of the
system. For sequential scans, the response time decreases because more processors and
disks are used to execute the query. For associative scans, the response time improves
because fewer tuples are stored at each node and hence the size of the index that must
be searched decreases.

There is a point beyond which further partitioning actually increases the response time
of a query.

3.5.2 Vertical Partitioning

Vertical partitioning, also known as clustering, is called so because of its limited scope
for growth. As with horizontal scaling, clustering involves splitting your database into
multiple chunks or clusters, each of which contains a subset of all your tables.

By identifying which queries operate on which tables, we can modify our database
dispatching layer to pick the right cluster of machines depending on the tables being
queried. Each cluster can then be structured as per your wish: single machine, a master
with slaves, or a master-master pair. Different clusters can use different models to suit
the needs of the various tables they support.

However, there is a limit to vertical partitioning. This limitation means that if we have a
single table or set of joined tables with many writes, we're always bound by the power
of a single server, in other words, partitioning will have no effect.

Ch6. Scalability

 13

There are other downsides to this approach. Management of the clusters is more
difficult than a single database, as different machines now carry different datasets and
have different requirements. As we add any components that are not identical, the
management costs increases.

3.5.3 Horizontal Partitioning

Horizontal partitioning, also known as sharding is a well-known method for horizontal
scaling. At its heart is the concept of splitting data between multiple servers so that each
server manages only a portion of the overall data. The individual self-contained data
partitions are called shards.

The benefit of using horizontal partitioning is that the database servers enforce “share
nothing” architecture and hence bring with it the capacity to scale without any limits.

MySQL 5's NDB storage engine tries to do something like this internally without you
having to change any of your application logic.

Performing horizontal partitioning manually is difficult. Selecting a range of data from a
table that has been split across multiple servers becomes multiple fetches with a merge
and sort operation. Joins between horizontally partitioned tables become impossibly
complicated. This is certainly true for the general case, but if we design our application
carefully and avoid the need for cross-shard selects and joins, we can avoid these
pitfalls.

The key to avoiding cross-shard queries is to partition your data in such as way that all
the records you need to fetch together reside on the same shard. For example, data may
be sharded according to customer locations; the resulting shards may now be physically
placed to decrease network delays.

When a request reaches the application, a form of look up mechanism is needed to
determine the shard from which data should be retrieved.

Figure 6 Splitting the records horizontally into the three different blocks, which can be placed on
different locations depending on the faculty.

As seen from the sections above both partitioning and replication provide schemes via
which we can horizontally scale our application without having the need to install high
performance and expensive hardware. However, with the addition of partitioning logic

ID FirstName LastName Faculty

1 John Carter FASS

2 Allen Tan SoC

3 Bob Markzinski SoC

4 Susan Roberts Biz

5 Julia Lyline FASS

6 Mark Yankze SoC

7 Twain Shernie Biz

8 Shania Klow Biz

9 Susan Boyle SoC

10 Bob Goranski FASS

ID FirstName LastName Faculty

1 John Carter FASS

5 Julia Lyline FASS

10 Bob Goranski FASS

ID FirstName LastName Faculty

2 Allen Tan SoC

3 Bob Markzinski SoC

6 Mark Yankze SoC

9 Susan Boyle SoC

ID FirstName LastName Faculty

4 Susan Roberts Biz

7 Twain Shernie Biz

8 Shania Klow Biz

Software Development Tools and Technologies

 14

and replication software, data sometimes can become inconsistent and as such requires
additional logic to handle it. For a detailed treatment of the methods and problems
associated with replication and partitioning refer to Building Scalable Websites by
Henderson.

4 CACHE AS A SCALABILITY SOLUTION

In previous sections, we have discussed techniques to improve the scalability and
performance of web applications by adding more servers to our web servers. There is
one shared theme in these techniques, that is, increasing the capacity of our servers so
that they can handle more operations. However, there is another way to increase the
performance of our server: store the result of common operations temporarily to handle
these operations faster. In this chapter we will look into a technique that will help us
achieve that mean: Caching.

Caching is a technique that enables applications or devices store data that is likely to be
reused in memory, so that the data may be served faster in subsequent requests. The
data can be data read from database, web pages, etc. By adding caches to your servers,
you can avoid reading or creating the same data record or web pages, thus reduce both
the response time and the load on your server. Consequently, your application becomes
more scalable.

Caching can be applied at many layers of a server, such as the database layer, web server
layer, and network layer. In this chapter we will discuss three types of caches that are
regularly applied to scaling web servers, namely object caches, reverse proxy caches
and content delivery networks (CDNs).

Figure 7: The different layers of web structure at which caching can be applied

Ch6. Scalability

 15

(credit: The Art of Scalability, Martin L. Abbot & Michael Fisher 2009)

4.1 Object caches

Object caches are used to store objects for the application to reuse. These objects are
either come from a database directly or are generated through data computation.

Object caches are typically placed in front of the database tier because it involves the
most heavy computation (Fig 7). Consequently, it is almost always the slowest
performing tier and also the most expensive tier to scale when because data has to be
written and read from disk. This is especially costly when it is necessary to maintain
consistency.

Figure 8: Object cache may handle most of your requests.

(credit: http://2bits.com/)

You may put another layer of object cache “between” the web servers and application
servers. This makes sense if the application server is performing a great deal of
calculations or manipulations that are cacheable. Just like the database cache, the
application server cache saves the server from having to recalculate the same data again
and again.

However, objects should not be cached indiscriminately. E.g. it make sense to cache user
permission objects but not for transaction objects, because user permissions are rarely
changed and are accessed frequently; whereas a transaction object is likely to be
different since they are seldom accessed after the transaction is completed.

http://2bits.com/drupal-performance/drupal-on-a-dedicated-servers-vs-amazon-aws-ec2.html)

Software Development Tools and Technologies

 16

There are a number of different software solutions to implement object caching,
including Memcached, Redis, and Membase. We will look deeper into Memcached, which
is currently the most popular choice in industry.

INFO Memcached is widely adopted on popular websites, such as Facebook,

Twitter, Wikipedia, Flickr and so on. Facebook has 800 servers to run

Memcached.

4.2 Memcached

Memcached is a “high-performance, distributed memory object caching system, generic
in nature, but intended for use in speeding up dynamic web applications by alleviating
database load.” (From http://memcached.org) Memcached caches data, objects and
database query results in RAM (hence the name “memory caching”) for fast retrieval of
data by utilizing key value stores. It is a distributed memory cache solution and can
leverages memory of multiple servers by virtualizing them together. Each individual
server node is responsible for its own memory allocated for caching and does not need
to be aware of memory allocations on other servers. The servers’ memory spaces form a
single logical memory, accessible by application servers. Using this attribute,
memcached can easily be scaled horizontally by adding more servers to the server pool.

Figure 9: Memcached works by virtualizing the memory of different servers

into one big logical memory space. (Credit: http://memcached.org/)

This distributed solution counteracts problems such as memory space constraints.
Without distributed caching, each server will operate separate cache spaces which may
result in redundancy if they cache the same data. A typical size for the memory is 4GB
for 32-bit systems. However, by combining memory space of multiple servers,
Memcached can create a memory cache space of the 100GB or more.

http://memcached.org/
http://memcached.org/

Ch6. Scalability

 17

Figure 10: Using Object Caches (Memcached) to significantly reduce database load.

(Credit: http://2bits.com/)

4.3 Reverse Proxy Cache

Reverse proxy caches is a strategy for web application caching. While object cache are
usually used to cache database objects, reverse proxy cache are used to cache the result
of web server e.g. web, DNS and other network lookups. Reverse proxy caches reduce
loads on web servers and improve response time to user requests, facilitating
scalability.

In implementation, reverse proxy servers are put in front of web servers to redirect
cached requests (Fig 5). Requests that are cached are immediately returned to users
without processing on the web server. The cached item can be static content such as
images but also dynamic pages. The configuration of the specific application will
determine what can be cached. Just because your service or application is dynamic does
not mean that you cannot take advantage of reverse proxy caching.

The reverse proxy server handles all the requests of a cached page until the pages or
data on them is out of date. Additionally when the server receives a request for a page
which it does not have, the request is passed to the web server which fulfils the request
and refreshes the cache.

There are many different servers that can be used to implement a reverse proxy server,
such as Apache HTTP Server with mod_proxy and mod_cache, Lighttpd, and Nginx.
Squid and Varnish are open source reverse proxy softwares. Each web server
implementation has its own advantages, e.g. Apache is commonly used and easy to
setup, but Varnish is explicitly designed for this purpose and will probably perform
better than Apache as a proxy server. You should first study your system and
requirements to choose software that is suitable for your needs.

http://2bits.com/drupal-performance/drupal-on-a-dedicated-servers-vs-amazon-aws-ec2.html)

Software Development Tools and Technologies

 18

4.4 Content Delivery Network (CDN)

A Content Delivery Network is a collection of (third party e.g. Akamai, Cloudfare)
servers deployed in different geographical locations containing cached copies of your
data or content (such as images, web pages and so on). Using CDN you can improve page
load time for user, since the data is retrieved at a location closest to it’s users. As an
aside, you may also be able to increase the availability of content, since it is stored in
multiple locations. You will be able to reduce bandwidth, since the data is served by the
CDN provider. Consequently, you can reduce server setup, maintainance costs and
manpower.

Periodically the CDN gateway servers makes requests to your application server to
validate the content being cached, and update them if necessary. Content being cached is
usually static content such as images, Javascript files, css files and so on.

CDN sounds great and simple! However, it usually comes at a premium price. But the
decision of whether or not to use CDN should take into account the benefits that CDN
provides, especially the reduction in response time is significant for end users, which
could lead to increased in user activity (faster response time often elicits more paid
transactions). According to the book “Scalability Rules,” many websites with greater
than 10M of annual revenues are better off using CDNs than serving the traffic
themselves.

INFO

CLOUDFLARE (www.cloudflare.com)

CDN services like Amazon S3 or Akamai may require changes in the application code

e.g. changing the URL of the image in responding HTML, or writing code to transfer

uploaded file to Akamai services. Cloudflare offers an alternative CDN service that is

suitable for small-scale web applications. To use it, the user only needs to point his

domain to Cloudflare’s nameserver.

HOW CLOUDFLARE WORKS

Suppose our web site, mysite.com, is hosted on a webserver at the IP address 1.1.1.1.

Originally, when someone types in “mysite.com” in the web browser, it will make a

DNS lookup (to our ISP provider) to discover the IP address of “mysite.com”. It then

directs subsequent requests to that IP address (in this case, 1.1.1.1).

When we point our domain to Cloudflare’s nameserver, Cloudflare’s DNS server will

handles DNS lookup on behave of our server. Cloudflare returns the IP address of a

data center that is geographically nearest to the visitor (say 9.9.9.9). From now on,

subsequent requests from visitors will go to 9.9.9.9.

When a request arrives at 9.9.9.9, the Cloudflare's frontline servers check if the

resource is in the local cache. Cloudflare caches parts of websites that are static e.g.

images, CSS, and Javascript. Utilizing CDN technology, these static resources are

delivered from the data center nearer to the visitor.

If the request is for a type of resource that Cloudflare does not cache, or if a current

copy is not available, a request is made from the data center (9.9.9.9) back to the

original server (1.1.1.1). Because it uses dedicated lines, data passage via Cloudflare is

expectantly quicker.

Ch6. Scalability

 19

In this section, we discuss how to handle large amounts of traffic by avoid handling them
by utilizing caching. In this manner, caching can be one of the best tools that you should
leverage to scale your web application. We have also discussed three levels of caching
that are most under your control, which are caching at the object, application, and
content delivery network levels.

A word of caution, though, is that although Caches may improve the performance and
scalability of your system, they will also increase complexity of your system. Multiple
levels of caching can make it more difficult to troubleshoot problems in your product. As
such, you should monitor and measure your cache system closely (please refer to our
part of measuring web application). Besides, while caching is a mechanism that often
increases the scalability of your web application, it also needs to be engineered to scale
well. Developing a caching solution that doesn’t scale well will create a scalability
chokepoint within your system and lead to lower availability down the road. You should
ensure that you’ve designed the caches to be highly available and easily maintained.

5 PERFORMANCE AND SCALABILITY

If your scaled up or scaled out solution is performing well, performance evaluation is
unnecessary. However when scalability performance grows intolerable or the cost of
upgrading becomes exorbitant, performance evaluation becomes increasingly important
to squeeze out every ounce of possible performance from your computer systems.

Performance evaluation enables you to identify and deal with bottlenecks as they
arise, quantify the impact of a design change or optimization and “capacity plan” for
expected levels of workload traffic. In the following section, we will use identifying
bottlenecks as a running example.

How do bottlenecks affect scalability? Firstly, bottlenecks often result in a delay or
denial of service to users of the system. Secondly, bottlenecks often affect how you
should scale. For example if programs on your computer system are inherently I/O
intensive, it makes good sense to upgrade the swap out a hard-disk to one with a higher
RPM or a SSD which is significantly more efficient at handling I/O. Hence even if your
computer systems are scaling well without evaluation, evaluation is important concern
for future scalability in light of growing resource consumption.

Our goal is to identify possible bottlenecks in computer systems. But how this be done
systematically? A seasoned practitioner understands that he or she must tackle the
problem with one eye on the macro and the other on the micro perspective.

5.1 The macro perspective: Performance monitoring

Part of the solution is to observe the system in its “natural” or day-to-day state. This is
called performance monitoring. Although it may be counter intuitive to rely on
monitoring generics (such as CPU utilization, I/O activity, etc) instead of drilling right
down to the performance problem, monitoring is often an important part of observing
the problem. For example, if you were monitoring a system and observed a slowdown in
system response time, you could check if there had been a sudden increase in resource
consumption. However if you were not already monitoring your system, you would not
be able to tell whether resource consumption was abnormal.

Software Development Tools and Technologies

 20

Performance monitoring also has other benefits that help us to take on performance
bottlenecks that cannot be achieved through performance measurement or other
techniques.

1. Performance monitoring allows us to preempt bottlenecks before they occur. This
is possible because systems often have characterizable workloads (e.g. CPU
intensive, I/O intensive) when work is repeated (e.g. each customer signing up for
a user account, requires a similar SQL INSERT statement). By observing workloads,
trends, and resources, it is possible to forecast when a bottleneck could occur.

2. Performance monitoring helps us to respond quickly to bottlenecks after they
occur. For example, in the Nagios monitoring system, a bottleneck created by a
failed hardware generates an SMS alert so that administrators can tend to the
crisis quickly. This could be important to maintain a service level agreement e.g.
99.9% uptime.

3. Performance monitoring provides high level of accountability. The monitoring
software stores records of performance-monitored logs which can be used as
evidence of the system performance, so that every incident is reviewed and dealt
with.

Here are a couple of tools to get you started:

Nmon, short for Nigel's Monitor after its author, is a useful systems administrator,
tuner, and benchmark for UNIX-like systems (If you are on Windows, try perfmon) It
should really be described as “the 1 tool to rule them all” because it monitors CPU,
memory, network, and disk utilization, as well as filesystem and NFS statistics, process
and kernel activity. These are the main components that characterize a computer
system's workload. Nmon provides an interactive “live” monitoring mode as well as a
logging facilitate for longer term data capture and post event analysis.

Ch6. Scalability

 21

Nmon is more relevant for resource monitoring on a single machine. It is possible to run
nmon on every machine in your network, captured data would be piecemeal at best. A

network monitoring tool is more appropriate to monitor a cluster of computers.

A list of free network monitoring tools can be found on at
http://en.wikipedia.org/wiki/Comparison_of_network_monitoring_systems. A quick
search on the web suggests that popular choices include Nagios, Cacti, Ganglia, Munin.
Nagios is by far the most popular choice. But Windows users should experiment with
Cacti or Ganglia. Nagios can monitor Windows machines but requires a Linux
monitoring server. It has a large list of plugins that enables it to perform different
functions. For example, the Nagios Remote Plugin Executor (NRPE) allows a monitoring
server to retrieve resource statistics of remote machines at minimal overhead.

In addition to resource monitoring on each machine, Nagios can monitors network
resources (e.g. routers and switches), network services (e.g. HTTP, FTP, SSH, POP3), and
remote events (e.g. exceeding temperature thresholds). The strength and weakness of

https://sites.google.com/site/yipeng/free-network-monitoring
https://sites.google.com/site/yipeng/free-network-monitoring
http://en.wikipedia.org/wiki/Comparison_of_network_monitoring_systems

Software Development Tools and Technologies

 22

Nagios is that it doesn't monitor anything unless you tell it to. This makes it more
difficult to pick up but thankfully, many problems are fairly obvious e.g. the
unavailability of (no response from) HTTP, FTP, SSH, POP3.

Monitoring network resources is particularly interesting in our context because it is a
potential bottleneck that we want to preempt.

Picture credit: http://web.cs.wpi.edu/~claypool/courses/533-S04/slides/

With reference to the above graph, the nominal capacity is the theoretical maximum or
bandwidth of the network. The usable capacity is the maximum achievable throughput
within some prespecified response time, whist the knee capacity is sweet spot of
operations beyond which things “go bad”. Increasing the load further results in
significant increase in response time. Hence both the usable and knee capacities can be
considered bottlenecks.

With a Nagios and a load test, you can establish the knee and usable thresholds for your
computer system and assign Nagios to alert you if it exceeds those thresholds. Nagios
can monitor the traffic rate as well as packet loss and round time average using SNMP
(Simple Network Management Protocol), enabling you to quantify the system
performance for your users. See http://nagios.sourceforge.net/docs/3_0/monitoring-
routers.html for more details.

(Picture credit: http://www.drachen-server.de/archives/25-IO-tuning-for-Nagios.html)

http://web.cs.wpi.edu/~claypool/courses/533-S04/slides/
http://nagios.sourceforge.net/docs/3_0/monitoring-routers.html
http://nagios.sourceforge.net/docs/3_0/monitoring-routers.html
http://www.drachen-server.de/archives/25-IO-tuning-for-Nagios.html

Ch6. Scalability

 23

5.2 The micro perspective: Performance measurement

Now let's consider the micro perspective where we focus on the program in question
directly. By profiling a program, we can assess whether and why it is performing poorly
and make changes to improve it. This is called performance measurement and
optimization. Although it may be the most direct way of drilling right down to the
performance problem, it may not always reveal a representative picture if the problem
is tightly coupled with the environment (e.g. memory contention between programs) or
if a representative environment cannot be simulated.

The tools used in performance measurement are aptly called profilers because they
produce a profile of the program. Like the profiles produced by a police sketch
artist, they describe key features but may not be entirely accurate especially since there
is overhead from executing the profiling itself. There are two types of methods of
profiling by statistical sampling and code instrumentation. From the user perspective,
the difference is that statistical sampling provides less specificity but at lower overhead
and vice versa.

The output of the profiler can be just flat (as shown below), depicting the approximate
call time of each function or represented in a call-graph form (where chained calls are
depicted).

Flat profile example from gprof#:

% time cumulative seconds self seconds calls self
ms/call

total
ms/call

name

33.34 0.02 0.02 7208 0.00 0.00 open

16.67 0.03 0.01 244 0.04 0.12 offtime

16.67 0.04 0.01 8 1.25 1.25 memccpy

16.67 0.05 0.01 7 1.43 1.43 write

16.67 0.06 0.01 236 0.00 0.00 mcount

0.00 0.06 0.00 192 0.00 0.00 tzset

0.00 0.06 0.00 47 0.00 0.00 tolower

0.00 0.06 0.00 45 0.00 0.00 strlen

Profilers vary in the level of detail that they provide. Here's an example of a line by line
annotation. Ir, Dr, Dw refer to instruction cache reads, data cache reads and data cache
writes respectively.

Software Development Tools and Technologies

 24

(Photo credit: http://valgrind.org/docs/manual/cg-manual.html)

With a line by line profiling we can find costly segments of our code and focus our
efforts on tuning those partitions, rather than working blind on optimizations that may
not make a significant difference. In the above example, we may expect the majority of
the cost to come from the insertion statement. Interestingly the while loop is just as
expensive as the insertion. This may lead us to try some form of loop unrolling or
blocked data strategy (retrieving more data with each iteration).

Some profilers recommendations include: Valgrind, VTune, CodeAnalyst, AQtime, and
SAP Memory Analyzer. Hopefully from this short introduction, you will have understood
and been inspired by the power of performance measurement to achieve scalability.

6 CONCLUSION

In this book chapter, we’ve taken you on a tour of scalability from theory to practice.
We’ve explored what scalability is, how it is implemented, and looked at parallel
databases, caching, load balancing, and performance optimization - key techniques that
are used to scale web applications. We’ve also showcased software tools to bring these
techniques to life, MySQL Cluster, Memcached, Nagios, Valgrind, and Cloudfare.
Scalability isn’t easy, but you have learnt enough to get started. So start implementing
some of these techniques, keep iterating and learning, and watch your scaling headaches
disappear!

http://valgrind.org/docs/manual/cg-manual.html

