Orthogonal range searching

Input: \(n \) points in \(d \) dimensions
- e.g., representing a database of \(n \) records each with \(d \) numeric fields

Query: Axis-aligned box (in 2D, a rectangle)
- Report on the points inside the box:
 - Are there any points?
 - How many are there?
 - List the points.

Goal:
Preprocess points into a data structure to support fast queries
- Primary goal: Static data structure
- In 1D, we will also obtain a dynamic data structure supporting insert and delete

1D range searching

In 1D, the query is an interval:

First solution using ideas we know:
- Interval trees
- Represent each point \(x \) by the interval \([x, x]\).
- Obtain a dynamic structure that can list \(k \) answers in a query in \(O(k \lg n) \) time.

Goal:
Obtain a dynamic structure that can list \(k \) answers in a query in \(O(k + \lg n) \) time.

Second solution using ideas we know:
- Sort the points and store them in an array
- Solve query by binary search on endpoints.
- Obtain a static structure that can list \(k \) answers in a query in \(O(k + \lg n) \) time.

New solution that extends to higher dimensions:
- Balanced binary search tree
- New organization principle:
 Store points in the leaves of the tree.
- Internal nodes store copies of the leaves to satisfy binary search property:
 Node \(x \) stores in \(key[x] \) the maximum key of any leaf in the left subtree of \(x \).
Example of a 1D range tree

Example of a 1D range query

Pseudocode, part 1: Find the split node

Pseudocode, part 2: Traverse left and right from split node
Analysis of 1D-RANGE-QUERY

Query time: Answer to range query represented by $O(lg n)$ subtrees found in $O(lg n)$ time. Thus:
- Can test for points in interval in $O(lg n)$ time.
- Can count points in interval in $O(lg n)$ time if we augment the tree with subtree sizes.
- Can report the first k points in interval in $O(k + lg n)$ time.

Space: $O(n)$

Preprocessing time: $O(n lg n)$

2D range trees

Store a primary 1D range tree for all the points based on x-coordinate. Thus in $O(lg n)$ time we can find $O(lg n)$ subtrees representing the points with proper x-coordinate. How to restrict to points with proper y-coordinate?

2D range trees

Idea: In primary 1D range tree of x-coordinate, every node stores a secondary 1D range tree based on y-coordinate for all points in the subtree of the node. Recursively search within each.

Analysis of 2D range trees

Query time: In $O((lg n)^2)$ time, we can represent the answer to range query by $O((lg n)^2)$ subtrees. Total cost for reporting k points: $O(k + (lg n)^2)$.

Space: The secondary trees at each level of the primary tree together store a copy of the points. Also, each point is present in each secondary tree along the path from the leaf to the root. Either way, we obtain that the space is $O(n lg n)$.

Preprocessing time: $O(n lg n)$

d-dimensional range trees

Each node of the secondary y-structure stores a tertiary z-structure representing the points in the subtree rooted at the node, etc.

Query time: $O(k + (lg n)^2)$ to report k points.

Space: $O(n (lg n)^{d-1})$

Preprocessing time: $O(n (lg n)^{d-1})$

Best data structure to date:

Query time: $O(k + (lg n)^{d-1})$ to report k points.

Space: $O(n (lg n / lg lg n)^{d-1})$

Preprocessing time: $O(n (lg n)^{d-1})$