Derivatives of $R F$

1 BM25F

$B M 25 F$ is defined by (1),(2) and (3):

$$
\begin{align*}
& \operatorname{BM25F}(d, q)=\sum_{t \in d \cap q} I D F(t) \times \frac{T F_{D}(d, t)}{k_{1}+T F_{D}(d, t)} \tag{1}\\
& \operatorname{IDF}(t)=\log \frac{N}{N_{d}} \tag{2}
\end{align*}
$$

Derivative of BM25F with respect to k_{1} :

$$
\begin{equation*}
\frac{\partial B M 25 F}{\partial k_{1}}=-\sum_{t \in d \cap q} I D F(t) \times \frac{T F_{D}(d, t)}{\left(k_{1}+T F_{D}(d, t)\right)^{2}} \tag{4}
\end{equation*}
$$

Derivative of BM25F with respect to $w_{\text {summ }}$:

$$
\begin{equation*}
\frac{\partial B M 25 F}{\partial w_{\text {summ }}}=\sum_{t \in d \cap q} I D F(t) \times \frac{k_{1}}{\left(k_{1}+T F_{D}(d, t)\right)^{2}} \times \frac{\operatorname{occurrences}(d[\text { summ }], t)}{1-b_{\text {summ }}+\frac{b_{\text {summ }} \times \text { length } h_{\text {umm }}}{\text { average }_{-} \text {length } h_{\text {sum }}}} \tag{5}
\end{equation*}
$$

Derivative of BM25F with respect to $w_{\text {desc }}$:

$$
\begin{equation*}
\frac{\partial B M 25 F}{\partial w_{\text {desc }}}=\sum_{t \in d_{q}} I D F(t) \times \frac{k_{1}}{\left(k_{1}+T F_{D}(d, t)\right)^{2}} \times \frac{\text { occurrences }(d[\text { desc }], t)}{1-b_{\text {desc }}+\frac{b_{\text {desc }} \text { leength } h_{\text {desc }}}{\text { average }_{-} \text {length }_{\text {desc }}}} \tag{6}
\end{equation*}
$$

Derivative of BM25F with respect to $b_{\text {summ }}$:

Derivative of BM25F with respect to $b_{\text {desc }}$:

$$
\begin{equation*}
\frac{\partial B M 25 F}{\partial b_{\text {desc }}}=\sum_{t \in d \cap q} I D F(t) \times \frac{k_{1}}{\left(k_{1}+T F_{D}(d, t)\right)^{2}} \times \frac{w_{\text {desc }} \times \text { occurrences }(d[\text { desc }], t)}{\left(1-b_{\text {desc }}+\frac{b_{\text {desc }} \times \text { length } h_{\text {desc }}}{\text { average__l }^{\text {length }}{ }_{d e s c}}\right)^{2}} \times\left(1-\frac{\text { length }_{\text {desc }}}{\text { average }_{-} \text {length }_{\text {desc }}}\right) \tag{8}
\end{equation*}
$$

2 BM25F ext

$B M 25 F_{\text {ext }}$ is defined by (9) and (10):

$$
\begin{gather*}
B M 25 F(d, q)=\sum_{t \in d \cap q} I D F(t) \times \frac{T F_{D}(d, t)}{k_{1}+T F_{D}(d, t)} \times \frac{\left(k_{3}+1\right) \times T F_{Q}(q, t)}{k_{3}+T F_{Q}(q, t)} \tag{9}\\
T F_{Q}(q, t)=w_{\text {summ }} \times \text { occurrences }(d[\text { summ }], t)+w_{\text {desc }} \times \text { occurrences }(d[\text { desc }], t) \tag{10}
\end{gather*}
$$

2.1 First Round

In the first tuning round, k_{3} is fixed to 0 , and $B M 25 F_{\text {ext }}$ is reduced to $B M 25 F$, thus
Derivative of $B M 25 F_{\text {ext }}$ with respect to k_{1} :

$$
\begin{equation*}
\frac{\partial B M 25 F_{\text {ext }}}{\partial k_{1}}=\frac{\partial B M 25 F}{\partial k_{1}} \tag{11}
\end{equation*}
$$

Derivative of $B M 25 F_{\text {ext }}$ with respect to $w_{\text {summ }}$:

$$
\begin{equation*}
\frac{\partial B M 25 F_{\text {ext }}}{\partial w_{\text {summ }}}=\frac{\partial B M 25 F}{\partial w_{\text {summ }}} \tag{12}
\end{equation*}
$$

Derivative of $B M 25 F_{\text {ext }}$ with respect to $w_{\text {desc }}$:

$$
\begin{equation*}
\frac{\partial B M 25 F_{\text {ext }}}{\partial w_{\text {desc }}}=\frac{\partial B M 25 F}{\partial w_{\text {desc }}} \tag{13}
\end{equation*}
$$

Derivative of $B M 25 F_{\text {ext }}$ with respect to $b_{\text {summ }}$:

$$
\begin{equation*}
\frac{\partial B M 25 F_{\text {ext }}}{\partial b_{\text {sum }}}=\frac{\partial B M 25 F}{\partial b_{\text {summ }}} \tag{14}
\end{equation*}
$$

Derivative of $B M 25 F_{\text {ext }}$ with respect to $b_{\text {dess }}$:

$$
\begin{equation*}
\frac{\partial B M 25 F_{\text {ext }}}{\partial b_{\text {desc }}}=\frac{\partial B M 25 F}{\partial b_{\text {desc }}} \tag{15}
\end{equation*}
$$

2.2 Second Round

In the second round, all $k_{1}, w_{s u m m}, w_{d e s c}, b_{s u m m}$ and $b_{d e s c}$ are fixed except k_{3}, thus
Derivative of $B M 25 F_{\text {ext }}$ with respect to k_{3} :

$$
\begin{equation*}
\frac{\partial B M 25 F_{\text {ext }}}{\partial k_{3}}=\sum_{t \in d \cap q} I D F(t) \times \frac{T F_{D}(d, t)}{k_{1}+T F_{D}(d, t)} \times \frac{T F_{Q}^{2}-T F_{Q}}{\left(k_{3}+T F_{Q}\right)^{2}} \tag{16}
\end{equation*}
$$

$3 \quad R F$

The retrieval function $R F$ is defined in (17):

$$
\begin{equation*}
R F(d, q)=\sum_{i=1}^{7} w_{i} \times \text { feature }_{i} \tag{17}
\end{equation*}
$$

Derivative of $R F$ with respect to w_{i} :

$$
\begin{equation*}
\frac{\partial R F}{\partial w_{i}}=\text { feature }_{i} \tag{18}
\end{equation*}
$$

Derivative of $R F$ with respect to a parameter p in feature $_{i}(i \in\{1,2\})$ - the textual similarities computed by $B M 25 F_{\text {ext }}$:

$$
\begin{equation*}
\frac{\partial R F}{\partial p}=w_{i} \times \frac{\partial B M 25 F_{e x t}}{\partial p} \tag{19}
\end{equation*}
$$

4 RNC

Given the retrieval function $R F$ and a training instance $I=(q, r e l, i r r)$, the cost function $R N C$ is defined in (20):

$$
\begin{equation*}
R N C(I)=\log \left(1+e^{Y}\right) \text { where } Y=R F(i r r, q)-R F(r e l, q) \tag{20}
\end{equation*}
$$

Derivative of $R N C$ with respect to Y :

$$
\begin{equation*}
\frac{\partial R N C}{\partial Y}=\frac{e^{Y}}{1+e^{Y}} \tag{21}
\end{equation*}
$$

Derivative of Y with respect to a parameter x in $R F$:

$$
\begin{equation*}
\frac{\partial Y}{\partial x}=\frac{\partial R F}{\partial x}(i r r, q)-\frac{\partial R F}{\partial x}(r e l, q) \tag{22}
\end{equation*}
$$

Therefore, the derivative of $R N C$ with respect to a parameter x in $R F$ is defined as follows:

$$
\begin{equation*}
\frac{\partial R N C}{\partial x}=\frac{\partial R N C}{\partial Y} \times \frac{\partial Y}{\partial x}=\frac{\partial R N C}{\partial Y} \times\left(\frac{\partial R F}{\partial x}(i r r, q)-\frac{\partial R F}{\partial x}(r e l, q)\right) \tag{23}
\end{equation*}
$$

