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Abstract

Mediator systems integrate distributed, heterogeneous and autonomous data sources, but
their effective use requires the solution of hard query optimization problems. This is usually
done in one of two ways: when the set of data sources is fixed, their ordering into a feasible and
efficient query is treated as a join order problem; when the set is not known, their selection
from a superset is treated as a set covering problem. This two-phase approach is unlikely
to find optimum queries, and we describe a generalised approach in which a feasible query is
constructed from a subset of the available data sources. Under simple cost assumptions this can
be encoded and solved as a SAT problem. Results on artificial benchmarks indicate that this is
an interesting problem, with a combination of features that make it hard for both complete and
incomplete search. We investigate both types of algorithm and a hybrid approach, with and
without symmetry breaking constraints. The best combination turns out to be hybrid search
without symmetry breaking.

1 Introduction

To effectively and efficiently leverage the growing amount of strategic information readily available
online, modern decision support systems require direct access to this wealth of facts and figures.
Yet the World Wide Web is merely a distributed collection of heterogeneous and autonomous data
sources. It does not have the explicit schema expressed in a structured data model that top-down
designed and centrally managed information would have.

In his seminal paper [3] Gio Wiederhold proposed the mediation architecture as a blueprint for the
design of systems aimed at the intelligent integration of distributed, heterogeneous and autonomous
sources. Most existing or proposed mediation systems (for example HERMES [14], TSIMMIS [2],
Information Manifold [7], DISCO [15] and Context Interchange [1]) comprise the three components
of the mediation architecture. Facilitators provide user and application programming interfaces that
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enable structured querying of the data on the Internet and the World Wide Web. FEach source
may be a Web page, a Web service, or the front-end to an online database or application. The
data provided by the sources may come in a variety of formats and may be accessible with various
modalities. Wrappers provide the physical connectivity to the source as well as the first level of
logical connectivity: they offer a view of the source in terms of the data model (in this paper we use
a simple relational model) and query language (we use a domain calculus based query language) of the
mediation system. Wrappers support the translation of queries written in the mediation system’s
structured language to the modes offered by the source, as well as the translation of information
extracted from the source into the data model of the mediation system. The central components of
this architecture are mediators that allow the optimization and processing of queries to the component
sources via their wrappers.

In addition to the traditional tasks that a database query optimizer performs, three further issues
must be handled by the optimizer of a mediator. Firstly, the sources may not be databases offering
an unconstrained set of query capabilities, because wrappers provide limited-capabilities interfaces.
For example a wrapper interfacing an online bookstore may only support queries that indicate the
name of the author or the title of the book searched, because this is the only interaction authorized
by the form-based Web interface. Therefore the optimizer must compose a plan under feasibility
constraints [5, 9, 12, 14, 16]. Secondly, the optimizer must perform its optimization under cost models
that estimate communication and source processing costs in a volatile environment, where none of
these figures are precisely known nor can be controlled. For example (as we have all experienced
as Web users) the response time of a query to various online bookstores may vary greatly from one
Web site to another. It depends on various parameters that are difficult to predict, such as network
traffic, the caching strategy of proxy servers, and the server-side’s computing power. Little work
has been done on developing effective cost models (see [16] for instance). Thirdly, the same piece of
information may be available from various sources. For instance the ISBN number of a book may
be obtained from several (but not all) online bookstores, or from the Web site agencies managing
the International Standard Book Number System data. Therefore the optimizer must decide which
combination of sources is most efficient.

The last issue is rarely addressed in conjunction with the cost-based optimization performed by
optimizers in existing or proposed mediation systems. Rather it is left to the user or programmer,
or treated separately in a pre-optimization phase based on simplistic heuristics, leaving the opti-
mizer with a simpler planning problem. Obviously these strategies are sub-optimal. The challenge
addressed in this paper is that of devising a model and techniques for the cost-based optimization of
queries to mediator systems under limiting capabilities and with redundant sources. Our approach
is to integrate the selection of data sources from a redundant set with their organisation into a fea-
sible plan. In principle this should give optimum solutions, but the complexity of the problem may
require modern modeling and search techniques. We present a formulation of the problem using a
SAT approach, and preliminary results on artificial benchmarks, under a simple model in which the
cost of a query plan is its length. An advantage of SAT modeling is that several highly optimized
algorithms are immediately available for application, based on backtracking, local search and other
approaches. This enables a rapid comparison between different types of algorithm. Another motive
for applying the SAT approach is that it is sometimes very effective; for example SAT algorithms
sometimes out-perform specialised planning algorithms [6].
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2 Combining set covering with feasibility

The databank problem or selection of a file in a data bank is defined in [4] as follows. When some
information has been requested, it is required to find which files in a data bank should be consulted
to obtain it as cheaply as possible. Let S be a set of units of information asked for (set of tasks). Let
E be the set of files which make up the data bank (set of means). A file E; € E is then characterized
by the set of units of information it contains, and by the cost ¢; of using it (the time taken to consult
it). The problem is then to find a minimum-cost cover of S. The set cover problem is NP-complete,
even when all costs are unity (the unicost set cover problem). Another optimization problem that
occurs in database and mediator applications is the join order problem. Given a fized set of data
sources, we must decide in which order they are to be consulted. The aim is to obtain a query
plan that is feasible (sources must be ordered so that each is provided with its required inputs) and
efficient (costs are to be minimised). This is NP-hard in general but can be solved in linear time
when costs are ignored [16].

If neither the set of sources nor their best order is known, a two-phase approach may be used:
solve the databank problem to obtain a set of sources, then solve a join order problem to assemble
them into a feasible and efficient plan. Our approach subsumes unicost set covering (as shown in
Section 4) but it does not subsume join order problems because its cost model is currently too simple.
However, it does combine set covering with the notion of a feasible query plan. A data source is
modeled by a subgoal H with attributes divided into inputs iy, is,... and outputs oy, 0, ..., written
H(iy,i2,...;01,09,...). The inputs of a subgoal correspond to the data that must be provided to
the source in order to obtain the data represented by the output. Note that a single source may
correspond to several subgoals, for instance an online bookstore may correspond to both

e Bookstore(isbn; author, title) if a request can be posted through a form to find the title and
authors of books given an ISBN number; and

e Bookstore(title; author, isbn) if a request can be posted through a form to list the authors and
isbn numbers of books with a given title.

An ordered list of subgoals is referred to as a plan. A plan that satisfies [fails to satisfy] a condition F
is feasible [infeasible]. The condition F is that for any input ¢; in any subgoal H (i1, s,...;01,09,...)
in the plan there exists at least one subgoal earlier in the plan with output ¢;. The problem is to
generate a feasible plan of minimum cost that provides one or more specified attributes as output.
In this paper the cost of a query plan is its length. Besides being convenient for SAT encoding,
this simple cost model can be applied to applications in which no cost information is available, for
example in an internet application where the data sources are cookies.

To take a concrete example, suppose we have attributes V' = {a,b,c,d, e, f,g,h} and available
subgoals

E={W(a,bc), X(bd), T(b;g), Ulg;h), V(h;d), Y(cie), Z(d,e; f) }

Note that subgoal W has no inputs: the plan always starts with at least one such subgoal. Note
also that W’s output «a is not an input for any subgoal: such attributes may occur but are irrelevant.
The problem is to find a plan that provides attribute f as output, that is with its only provider Z
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occurring somewhere in the plan (typically in the final position). Two feasible plans for this example
are:

Pl :[W(;aabac)a T(bag)a U(ga h’)v V(h’ad)a Y(C;e)a Z(dae; f)]
P, =[W(;a,b,c), X(b;d), Y(c;e), Z(d,e; f)]

It can be verified by inspection that condition F is satisfied: for example the input ¢ in subgoal Y
occurs earlier in the plan as an output of subgoal W. Both plans are minimal in the sense that
deleting any subgoal from either gives an infeasible plan. For example deleting X (b; d) from P, gives

[W(a,b,¢), Y(cie), Z(d,e; f) ]

which is infeasible because attribute d violates condition F. Plan P, is optimum because no shorter
plan exists.

3 Problem modeling

Given n available subgoals numbered 1...n (where n > k), the problem is to construct a feasible
plan from a minimum subset. This can be decomposed into a constraint satisfaction problem for
each plan length k. A major design decision is what to model as variables, values and constraints.
We could model the dependencies between subgoals, but to force the subgoals to form a partial order
we would require O(n?) transitivity clauses. Instead we model a plan as an ordered list of k subgoals.

Define k£ x n Boolean variables v; ; where 1 <7 < k and 1 < j < n. The meaning of v, ; = T is
that the i subgoal of the plan is subgoal j. The constraints are as follows. No plan position can
take more than one subgoal:

_'Ui,jv_'vi,j’ (]_Slgk', 1§]<]I§TL)
Repeated subgoals are not allowed:
_l’UZ',j\/_l’UZ'IJ' (1§Z<Z,§k, 1§]§n)

Assuming the existence of one or more subgoals ¢, ¢ . .. that each provide all the required attributes
as outputs, we place one of these subgoals in the last position & of the plan:

Vg ,k \% Vs, k VoL

If no such subgoals exist then we can define one before SAT-encoding: X (z1,xs,...;d) where
T1,T9,... are the required attributes and the dummy attribute d is the only attribute required
from the plan. For the feasibility condition F':

WipV Uig, V oooo VU4 V

1<p<n,1<i<k
Ul,ﬂzv \/"Ui_l,az\/”‘} ( SP> ST S )

where {ay, as, ...} is the set of subgoals with output a, and a ranges over the inputs of subgoal p.
The model contains the following symmetry: for two adjacent subgoals in the plan, if the first
one provides no input to the second one then their positions can be interchanged. We call these
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independent subgoals. In the example X (b;d) and Y (¢; e) are interchangeable in Py, which therefore
has two equivalent representations. Similarly there are four representations of P;:

[W(a,b,0), T(byg), Ulg; h), V(h;d), Y(c;e), Z(d,e; f)]
[W(a,bc), T(big), Ugsh), Y(ce), V(hd), Z(d,e; f) ]
[W(Qaa b, 0)7 T(b; 9)7 Y(C; 6)7 U(ga ) (ha d)7 Z(d7 )]
[W(a,b,c), Y(ce), T(b;g), Ulg;h), V(h;d), Z(d,e; f) ]

One way to remove this symmetry is to add constraints forcing adjacent independent subgoals to
take a lexicographical ordering, so that only the first version is allowed. (Note that this does not
remove all ordering symmetries: for example two subgoals may not be independent under the above
definition because one provides an input to the other, but they can still be exchanged because this
input is also provided by an even earlier subgoal.) The symmetry breaking constraints are as follows:

W5V T
&J i+1,j

where 1 <i < k—1 and j,j" are independent subgoals (the inputs of j and outputs of j" are disjoint,
and vice-versa).

Symmetry breaking is a way of avoiding the generation of many representations of each solution,
and can greatly reduce the size of a search space. It often greatly speeds up backtrack search, but
in a recent paper [11] it was shown to have a contrary effect on local search. To further explore
this result, in Section 4 we evaluate three search algorithms on our model both with and without
symmetry breaking.

4 Experimental results

We shall evaluate three types of SAT solver. As a representative of complete (backtrack) search
we use Chaff [8] (Z-Chaff version 7Z2001.2.17), possibly the fastest current SAT backtracker. As a
representative of incomplete (local) search we use Walksat with the default (SKC) heuristic [13],
which performs very well on many SAT benchmarks (and better than the Rnovelty heuristic on our
problems). We also use an incomplete algorithm called Saturn, which is a recent implementation for
0-1 integer programs (including SAT) of the CLS algorithm [10]. CLS is a hybrid of local search and
constraint propagation designed for large, highly structured problems.

We compare the three algorithms on artificial benchmarks. These combine the features of set
covering and feasibility, and are specified by four integer parameters (A, S, C, L) where L is the plan
length. For set covering we model S subsets of 3 distinct randomly chosen elements from the base
set of A elements. There is a single subgoal:

{ Goysyilactr, - acya;) }

which occupies the last plan position and creates a demand for prior subgoals in the plan to supply
its inputs. The set of S available subgoals corresponding to the S subsets is:

{Gi(z;a,b,c) |C+1<i<C+S}
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A=C S L ‘ vars clauses ‘ Chaff ‘ Walksat ‘ Saturn
with symmetry breaking

5 10 3 33 294 18 (0.0) 18 (0.0) 3 (0.0
10 20 11| 341 9726 202 (0.25) 12404  (0.5) 15899  (3.6)
15 30 17| 782 34024 3278 (11) 3694947 (302) | 371893 (19.4)
20 40 19 | 1159 67485 10059 (111) 20118045 (2579) | 175504 (14)
25 50 30 | 2280 167642 | aborted (>1625) — —

without symmetry breaking

5 10 3 33 184 16 (0.0) 14 (0.0) 1 (0.0)
10 20 11| 341 5556 388 (0.25) 3148 (0.1) 142 (0.06)
15 30 17| 782 18616 45761  (718) 192646 (10) 324 (0.21)
20 40 19 | 1159 36291 | aborted (>1462) 323840 (25) 381 (0.34)
25 50 30| 2280 88501 | aborted (>655) — 95189 (78)

Figure 1: Results

where C'+1 < a,b,c < C+ A and 1 <z < (, all distinct and chosen randomly. There are also C
subgoals:

{ Gi(Ga1), Galar;aq2), Gs(ag;as), ..., Gelac—1;ac) }

which supply the inputs = for the set covering-based subgoals, and also create a chain of feasibility
requirements. Here is an example with S =3, A =3 and C' = 4:

{ Gl(;al), Gz(al;@); Ga(CLQ;a?,), G4(a3;a4),
G5(a2;a13,a10,a14), Gﬁ(a4;a11;a14;a13); G7(a1;a12,a11,a10),
Gs(alo,a11,a12,a13,a14§) }

The shortest feasible plan is |Gy, Gs, G5, G7, Gs]: G takes its inputs from G5 and G7, which in turn
need inputs a; and as. as is provided by G,, which requires ay, which is provided by G;. G7 also
needs a; which is already provided.

For these experiments we set S = 2A = 2C' and the plan length L to the smallest value for which
a solution was found, in order to obtain hard instances. On all problems Saturn’s noise parameter
was set to 1 and Walksat’s to 50%: results are not greatly improved by parameter tuning. All figures
are means over 10 runs, except those for Chaff which is deterministic and can only be executed once
per problem. Results are shown in Figure 1, where “—” denotes failure to find a solution after several
hours, and “aborted” denotes that Chaff aborted the run, with the time after which it aborted given
in brackets. The figures shown are decisions for Chaff, backtracks for Saturn, and flips for Walksat,
with mean execution times in seconds (on a 300 MHz DEC Alphaserver 1000A 5/300 under Unix)
shown in brackets.

On the problems with symmetry breaking Saturn scales best to large instances. Perhaps sur-
prisingly, Walksat does not scale as well as Chaff. However, on pure set covering problems Walksat
scales similarly to Saturn [results omitted for space reasons|: it appears to have difficulty with the
feasibility condition. On the problems without symmetry breaking Saturn again scales best, but this
time Walksat is second and Chaff scales very poorly. This shows the (unsurprising) benefits of sym-
metry breaking for backtrack search, but it also confirms a surprising result in [11]: that symmetry
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breaking can be very counter-productive for incomplete search. The results also show that on this
class of problem hybrid search pays off. In summary, the best algorithm/model combination is the
hybrid without symmetry breaking.

5 Conclusion

This paper described a new formulation of mediator system query optimisation, which is usually
solved in two phases. By combining two hard problems into a single problem, the task of finding
optimal or near-optimal queries should be greatly facilitated. The new problem was SAT-encoded
and artificial benchmarks were designed. A simple cost function was used to enable SAT encoding,
but we believe that the results will be useful as a guide to modeling and solving problems with more
complex cost functions. Moreover, the cost function is not too trivial to have practical applications.
In experiments:

e Backtrack search worked well only up to a point (a plan length of about 20 data sources on
our instances), after which scalability became a problem.

e Local search had difficulty in solving instances in which feasibility plays a significant role.

e Symmetry breaking helped a complete algorithm but was very counter-productive in combina-
tion with two incomplete algorithms.

e Best results were obtained using an incomplete hybrid algorithm with a highly symmetric
model.

A side benefit of this work is that it generated interesting new SAT benchmarks that appear to be
intrinsically quite easy, yet are hard for both backtrack and pure local search. In future work we
intend to obtain benchmarks from real applications.
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