CS1020E: DATA STRUCTURES AND ALGORITHMS |

Tutorial 1 — Basic C++, OOP Problem Solving
(Week 3, starting 22 August 2016)

1. Evaluation Order (Note: You can use any other C++ code editor/compiler).
Examine the code snippet. What is the output, and why?
Tip: Check your answer! Create a program in vim, paste main method within. Compile and run in sunfire.

int main() {

inta:—,b:,cz,d:,ez,f:,gz;
int h = f-- && e++ && d++ && c-- || b++ || a++;
it (9=9{
cout << a << b<<c<<d=<<ec<< T <<<g<<h<<endl;
} else {
cout << h << g<< f<<e<<d=<<c<<b<<acx<endl;
+
return .
} 4 — —
a b c d e f g h
Related Concepts
e Operator precedence vs evaluation order
Answer e Conditions, logical operator short-circuiting
-12113191 e Assignment vs equality

The most important lesson here is to write readable code! Write code first for humans to read, then for
the computer to understand. Complex conditions and poor variable names make life difficult for humans.
Separate complex conditions into simpler statements, using descriptive variable names.

C++'s operator precedence can be found at

http://en.cppreference.com/w/cpp/language/operator _precedence
++ and —-- here have highest precedence, followed by &&, then | |, and finally the assignment operator =.
However, this does NOT mean that ALL ++ and —- in a statement are executed first. Rather, the
expression is evaluated left to right in general, taking into account operator precedence.

Because of logical operators && and | |, short-circuiting may take place, i.e. part of a statement may be
skipped because the preceding part of the statement already determines the result. If no short-circuiting

takes place, the expression (before assignment to h) is evaluated as:
(((F-- && et++) && d++) && c--) || b++ || at+

A condition is logically true if an expression evaluates to true (bool) or a non-zero value, false otherwise.
T-- (post-decrement) is not to be confused with ——F (pre-decrement). ¥-— means: use the current value
of f in evaluating the expression, then decrease the value of fin memory by 1. Pre-decrement works the
other way round.

Page 10f8

a b c d e f g expr

(((F-—- && e++) && d++) && c--) || b++ || a++
T, holding the value of 2, evaluates to true. It is then decremented. No short-circuiting occurs because
the result of the expression within the innermost brackets is not known yet.

L1 [1 [1 o 2 1 o B

a b c d e f g expr

(((true && e++) && d++) && c--) || b++ || at++
e, holding the value of 2, evaluates to true. It is then incremented.

| -1 |1 |1 0 3 |1 0 ?

a b c d e f g expr

((true && d++) && c--) || b++ || at++
d, holding the value of 0, evaluates to False. It is then incremented.

[-1 |1 |1 |1 3 |1 0 ?

a b c d e f g expr

(false && c--) || b++ || at+

It is certain that the brackets now evaluate to Talse, so c—- is NOT executed (short-circuiting).
false || b++ || at+

b, holding the value of 1, evaluates to true. It is then incremented.

[1 2 [1 [1 3 E K E

a b C d e f g expr

true || at+
It is certain that the expression now evaluate to true, so a++ is NOT executed (short-circuiting).

|1 | 2 1 |1 E [1 o | true

a b c d e f g expr
true is converted to an Int value of 1 and assigned to h.

Next, if the condition were (g == 9), the el'se block would be executed. However, (g = 9) assigns
the value of 9 to g, and uses the new value of g as the result of the expression. As g is now non-zero, the
i T block is executed.

Lesson: Avoid using the wrong operator in your code! Differentiate between = and ==.

In subsequent tutorials, you are expected to trace through code by yourself, as in Q1.

Draw diagrams to help you understand what happens in memory, as in Q2.

Page 2 of 8

2. Understanding Pointers
In OOP languages, pointers (so named in C++; may be called “references” in other languages) are widely
used to locate one object from another. It is necessary to have a firm understanding of them.

For each of these cases, independent of one another, draw how the variables may appear in memory, and
what output you would expect. You do not need to worry about the exact memory addresses, but you

should find out how different expressions are related to each other. ©), ®,0,and ¢ represent memory

addresses.

(a) has been done for you. (d) to (g) may be more difficult. Remember to check your answer.

(@) (b) (c)
int 1 = 3; int* p = new Iint(3); int* ap = new Int[3];
cout << &i; cout << &p << p << *p;
for (int 1 = 0; 1 < 3; i++)
ap[i] =i - 1;
cout << &ap << ap << *ap << ap[O0]:
(d) (e) (f)
int i = 3; int* p = new Int(3); int™ dp = new int* [3];
cout << *&i; cout << *&p << &*p <<
**&p; for (int 1 = 0; i < 3; i++)
(8) dp[i] = new int(i-1);
int* p = new int(3);
int** dp = &p; cout << &dp << dp << *dp <<
int*** tp = &dp; dp[0] << **dp << *dp[0];
cout << *tp << &**tp <<
©
(a) = \
Address I ©
‘ Contents ‘ ‘ ‘ ‘ 3 ‘
The output &1 is ©. & stack i
(b)
Address ©
Contents Q
The output is heap =2 <stack p
(c)
Address () ©
Contents 0
The output is heap 2> & stack ap

Page 3 of 8

(d)

Address ©
| Contents | | 3 |
The output is & stack i
(e)
Address () ©
Contents Q
The output is heap 2> < stack p
(f)
Address ® ¢ ©
Contents ¢ ()
The output is heap > < stack dp
(g)
Address o) ¢ ©
Contents Q
The output is heap > <& stack tp dp p

Also, when the new keyword is used, the system dynamically allocates memory for the newly created
object. Therefore, the object ends up in a portion of memory called the heap. Otherwise, when new is not
used, objects assigned to variables declared within functions reside on the stack.

Why do we need to bother about heap vs stack memory? What other keyword and syntax is/are involved?

Answer

(a)
The ampersand & in the second line is the address-of operator. It is used to read the memory address the

variable is located in. Therefore, the result of &1 is ©.

(b)

Address

Contents

The output is © @ 3. *p heap > &stack p

The asterisk * in the first line is part of the datatype, i.e. p is an “integer pointer” variable.
The asterisk in the second line is the indirection (dereferencing) operator. It is used to read the contents
of the memory address pointed to by p, which has the value of 3.

Page 4 of 8

(c)

©
Address Q a

Contents -1 1 < Q
The output is © @-1-1. *ap heap 2> & stack ap
ap[0] ap[1] ...

The first line creates an integer array of 3 elements on the heap, and assigns the address to an “integer
pointer” variable. *ap (indirection) and ap[0] (array subscript) are equivalent, both dereferencing
operators. They are both equivalent to *(ap + 0).

(d) ©
Address &i @7

’ Contents ‘ ‘ ‘ ‘ ‘ ‘ 3v ‘
The output is 3. & stack i *&i

The * and & (indirection and address-of) operators have right-to-left associativity. This means that in *&i,
the address of 1 is first taken (&1), following which, the contents of the memory address pointed to by &1

are read.
© ©
(e) &*p &p
Address
Contents 3 ' @
The output is @ @3, ig& heap > & stack p*&p
p

Remember, what is printed out is always the contents of some memory location. The contents may be a
value (as when printing **&p), or another memory location (as when printing *&p).

©

(f) &dp
Address () ¢ ¢ ©
Contents 'S -1 0 1 T —] ®
*dp **dp heap > < stack dp

dpl[0] dp[1] ... *dp[0]
The output is © @ ##-1-1.

new int* [3] creates an array of 3 elements. Each element is an “integer pointer”, i.e. each element
contains the memory address of a location that stores an int. [] has a higher precedence than *, so
*dp[0] moves to the 0" element of the array, and then to the location of the integer containing -1.

Page 5 of 8

Just a note: dp[0] to dp[2] are in a contiguous block of memory because they are the elements of an
array. However, *dp[0], *dp[1] and *dp[2] are not guaranteed to be adjacent to each other.

If any of (b) - (g) is part of your program, after you are done with the integers and the array, do not forget
to release them, as they were created on the heap using the new keyword.

Objects on the heap need to be released, as the system does not take back the memory they are

located at, even when the function exits.

For example, in this part:

First, use a for loop to “delete” each pointer for (int 1 = 0; 1 < 3; i++) delete dp[i];
Remember, the memory at dp[1] does not get freed, but what is pointed to does, i.e. *dp[i].
Thendelete [] dp to delete the array that dp points to.

(@ °
8 &tp
Address Q o) ¢ /@
Contents 3 ¢ é @? 0
heap > < stack tp dp *tp p *dp
&dp &p **tp
By now, you may have observed that & and * are somewhat the opposite of each other.
o
&tp
Address ® o ¢ ©
Contents 3 ./ © ®
The output is COLE. heap > <& stack tp *&tp dp *tp p **tp

Related Concepts (Q2)
e & resultsin a pointer

3. Object-Oriented Programming * Tand[] dereferences

. . . e Array pointers, double pointers
You want to print out the lyrics of this song, to yp P

i ; Heap v k
teach (or confuse) kids about the sounds animals * Heapvsstac

e Freeing resources — “delete pointer”

make:

Dog goes woof

Cat goes meow
Bird goes tweet
Mouse goes squeak
Cow goes moo

The lyrics can be generalized for different animals, each having a different name and sound. With
knowledge of object-oriented programming, you want to demonstrate that it is possible to write a program
that displays the song. To show that your program works, add the 5 animals above and test your program.

! Adapted from “The Fox” by Ylvis, 2013
Page 6 of 8

Don’t forget to include the necessary system header, and use the appropriate namespace. Use the skeleton
on the next page to solve the problem.

class Animal {
/* TODO: Implement data and functionality of an Animal here */
};

class Song {

private:
Animal** _animals;
const int _size;

public:
Song() { /* TODO: Create your zoo, an Animal* array */ }
~Song() { /* TODO: Cleanup the 5 animals and the array... */ }
void display(Q) {

for (int 1 = 0; 1 < _size; i++)
cout << endl; /* TODO: Add the lyrics here... */

}

}; Related Concepts
int mainQ { e Class vs object
Song song;
song.display(Q);
return O- e Member variables & encapsulation

e Access modifiers

} e Constructor & destructor

e Member functions, accessors, mutators

¢ Invoking member
Answer

Animal has 2 attributes: name and sound. These are modelled as string member variables — each Animal
object has a name and sound. The data (member variables) is encapsulated by declaring them with the
private access modifier. This means, outside the animal class, we cannot directly access or modify any
Animal object’s data.

getName() and getSound() are member functions serving as accessors. getName () returns the
value of the _name member variable belonging to the Animal object pointed to by this. As we do not
need to modify an animal’s attributes, there are no mutators here.

#include <iostream>
#include <string>
using namespace std;

class Animal {
private:
string _name; // e.g. Cow
string _sound; // e.g. moo
public:
Animal(string name, string sound) {
_name = name;
_sound = sound;
e
string getName() { return _name; }
string getSound() { return _sound; }

Page 7 of 8

A constant const must be initialized, and it cannot be subsequently assigned a value. Therefore, we use
the initializer list to provide a value to the constant _size.

class Animal {
/* TODO: Implement data and functionality of an Animal here */
};

class Song {
private:
Animal** _animals;
const int _size;
public:
Song() : _size(5) {
_animals = new Animal* [_size];

_animals[0] = new Animal("'Dog", "woof™);
_animals[1] = new Animal('Cat’, "meow');
_animals[2] = new Animal("'Bird"”, "tweet);
_animals[3] = new Animal(*’'Mouse™, 'squeak™™);
_animals[4] = new Animal('Cow"™, "moo™);

}

~Song() {
for (int 1 = 0; 1 < _size; i++)

delete _animals[i];
delete [] _animals;

+
void display() {
for (int 1 = 0; 1 < _size; 1++)
cout << _animals[i]->getName() << " goes "
<< _animals[i]->getSound() << endl;

};

Remember to return memory allocated on the heap, and only memory allocated on the heap! Use the
delete keyword on the pointers to those objects, and NOT on the objects themselves.

_animals[1]->getName() is equivalent to (*_animals[i]) -getName(). First, _animals[i]
moves from the (Animal pointer) array pointer to the (Animal pointer) array, i spaces from element 0. The
result is an animal pointer. *_animals[1] moves from the Animal pointer to an Animal object. We then

read the name of the Animal object using the getName () accessor member.

As we have mentioned in Q1 and Q2, the first 100 times you encounter some OOP code,
draw out what the code does in memory...! Don’t view code as mere text.

- Hope you had fun, prepare well for tutorial 2 @ -

Draw diagrams
Attempt tutorials
Test your solution

Page 8 of 8

