Preliminaries

We will start T03 by closing some loose ends from Lecture 4.

- As with the 2016 season, the last few slides of Lecture 4 can be confusing. So let’s redo: Prove that the Min-Weight-Perfect-Matching part involving even number of odd-degree vertices of Christofides’s algorithm will add at most $\frac{\text{OPT}}{2}$ cost, hence Christofides’s algorithm is an 1.5-Approximation algorithm.

- Run and compare the easier 2-Approximation and Christofides’s 1.5-Approximation algorithms on this small instance of M-NR-TSP variant in Figure 1 below (which will be valid for M-R-TSP and G-R-TSP too) (if we manage to fix the bug in 1.5-Approximation algorithm animation in https://visualgo.net/en/tsp, we will use VisuAlgo instead).

![Figure 1](image)

Figure 1: An M-NR-TSP instance, the distance function used is Euclidean distance (Metric), No Repeat.

Discussion Points

Q1: In Lecture 4, Steven did not show any approximation algorithm for the G-NR-TSP variant of TSP (that is, the general, non metric version and without repeated vertex). He says that ‘it is hard even to approximate’. Why?

Q2: In class, we formulated the TSP (4 variants) in terms of a set of points V and a distance function d that gives the distance between any two points in V (thus, a complete graph with V^2 edges that surely has $(V-1)!$ Hamiltonian Cycles). What if the input to the problem is a graph $G = (V, E)$ with E weighted edges and $0 \leq |E| \leq V \times (V-1)/2$?

Define a version of TSP for graphs, and explain whether or not it remains approximate-able using the techniques discussed in class. (Consider these: What if there is no Hamiltonian Cycle in the input to begin with? What if the input graph is actually disconnected?)

Q3: Think about the Euclidean TSP where each point has (x, y)-coordinates to identify it (for simplicity, let’s assume that all x-coordinates of the n points are different). Imagine that Steven only wants “cycles” that proceed in one direction, e.g., left-to-right. For example, a legal output is a cycle $(v_1, v_2, v_3, v_4, v_1)$ where for each $i < n$, we know that $v_i.x < v_{i+1}.x$. (Only in the last step of the cycle, going back from v_n
to \(v_1 \), we are allowed to go to the left.) Give an example where the cycle that is found in this case is very bad compared to the optimal TSP cycle. Is there an efficient algorithm to solve this non-standard version of TSP problem?

Q4: Steven needs to continually increase the number of (NP-)hard problems that has been exposed to CS4234 students so far (to have more interesting Midterm Test and Final Assessment). So let’s study this yet other problem MAX-INDEPENDENT-SET (MIS). It is very similar to MVC and defined as follows: Given a graph \(G = (V, E) \), pick the maximum-size set \(I \subseteq V \) so that no two vertices in \(I \) share an edge.

You are told that MIS is also an NP-hard optimization problem (proof omitted, but you can reduce NP-hard VC to IS easily), but here you are given a network that is arrange as a grid, as in Figure 2:

![Figure 2: A Grid Graph of size 5 \times 5.](image)

Part 1. The grid has \(n \) vertices, and each of the vertices (except for those on the edges) has four neighbors. The goal of this question is to develop an algorithm for finding a maximum-sized MAX-INDEPENDENT-SET (MIS) for this graph (or an approximation). What is the MIS (and its size) of Figure 2 above?

Part 2. Consider the following greedy algorithm for graph \(G = (V, E) \):

- Set \(I = \emptyset \);
- Repeat until \(V \) is empty:
 - Choose any arbitrary vertex \(u \in V \),
 - Add \(u \) to \(I \),
 - Delete all the neighbors of \(u \in V \).

Now argue that this algorithm is a 5-approximation of optimal on grid graph like in Figure 2 above. (First, show that it is correct!)

Part 3. Write down MIS as an ILP!