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ABSTRACT
Summaries of meetings are very important as they convey the es-
sential content of discussions in a concise form. Both participants
and non-participants are interested in the summaries of meetings to
plan for their future work. Generally, it is time consuming to read
and understand the whole documents. Therefore, summaries play
an important role as the readers are interested in only the important
context of discussions. In this work, we address the task of meet-
ing document summarization. Automatic summarization systems
on meeting conversations developed so far have been primarily ex-
tractive, resulting in unacceptable summaries that are hard to read.
The extracted utterances contain disfluencies that affect the quality
of the extractive summaries. To make summaries much more read-
able, we propose an approach to generating abstractive summaries
by fusing important content from several utterances. We first sepa-
rate meeting transcripts into various topic segments, and then iden-
tify the important utterances in each segment using a supervised
learning approach. The important utterances are then combined
together to generate a one-sentence summary. In the text genera-
tion step, the dependency parses of the utterances in each segment
are combined together to create a directed graph. The most infor-
mative and well-formed sub-graph obtained by integer linear pro-
gramming (ILP) is selected to generate a one-sentence summary for
each topic segment. The ILP formulation reduces disfluencies by
leveraging grammatical relations that are more prominent in non-
conversational style of text, and therefore generates summaries that
is comparable to human-written abstractive summaries. Experi-
mental results show that our method can generate more informative
summaries than the baselines. In addition, readability assessments
by human judges as well as log-likelihood estimates obtained from
the dependency parser show that our generated summaries are sig-
nificantly readable and well-formed.
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Table 1: Two sets of extractive summaries along with the cor-
responding gold standard human generated abstractive sum-
maries from a meeting in the AMI corpus [5]. Set 2 follows
Set 1 in the actual meeting transcript. “A,” “B” and “D” refer
to three distinct speakers in the meeting.

Set 1: Human-generated extractive summary
D: um as well as uh characters.
D: um different uh keypad styles and s symbols.
D: Well right away I’m wondering if there’s um th th uh, like

with DVD players, if there are zones.
A: Cause you have more complicated characters like European

languages, then you need more buttons.
D: I’m thinking the price might might appeal to a certain market

in one region, whereas in another it’ll be different, so
D: kay trendy probably means something other than just basic
Abstractive summary: The team then discussed various fea-
tures to consider in making the remote.
Set 2: Human-generated extractive summary
B: Like how much does, you know, a remote control cost.
B: Well twenty five Euro, I mean that’s um that’s about like

eighteen pounds or something.
D: This is this gonna to be like the premium product kinda thing

or
B: So I don’t know how how good a remote control that would

get you. Um.
Abstractive summary: The project manager talked about the
project finances and selling prices.

Categories and Subject Descriptors
I.2 [ARTIFICIAL INTELLIGENCE]: Natural Language Process-
ing—Language generation

Keywords
Abstractive meeting summarization; Integer linear programming;
Topic segmentation

1. INTRODUCTION
Meeting summarization helps both participants and non-participants

by providing a short and concise snapshot of the most important
content discussed in the meetings. While previous work on meet-
ing summarization was primarily extractive [14, 15], a recent study
showed that people generally prefer abstractive summaries [29].

Table 1 shows the human-written abstractive summaries along
with the human-generated extractive summaries from the AMI cor-
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Figure 1: Our meeting summarization system overview.

pus [5]. Set 1 and Set 2 show two different topics discussed in
the meeting – design features and finances. We have skipped other
intervening utterances not included in the extractive summary. As
shown in Table 1, the utterances are highly noisy and contain un-
necessary information. Even if an extractive summarizer can accu-
rately classify these utterances as “important” and generate a sum-
mary, it is usually hard to read and synthesize information from
such summaries. In contrast, the human written summaries are
compact and written in non-conversational style. They are more
readable than the extractive summaries and preserve the most im-
portant information.

Previous approaches to abstractive meeting summarization have
relied on template-based [36] or word-graph fusion-based [26] meth-
ods. The template-based method was applied to the generation of
focused summaries.1 Template-based generation is feasible in the
case where the type of the summary is known apriori; however, our
work does not make any assumptions on the type of the summary
to be generated. The word-graph fusion-based technique, on the
contrary, used an unsupervised approach to fuse a cluster of utter-
ances generated using an entailment graph-based approach. How-
ever, this method did not take into consideration any grammatical
dependencies between the words, resulting in ungrammatical out-
put in several cases.

In this work, we propose an automatic way of generating short
and concise abstractive summaries of meetings. Every meeting is
usually comprised of several sub-topics [19]. As shown in Table 1,
the participants discuss different aspects in Set 1 and Set 2. A well-
formed abstractive summary should identify the most important as-
pects discussed in the meeting. In other words, if we can summa-
rize the important information from every aspect, we can generate
an informative summary that highlights the salient elements of the
meeting. Therefore, we need to determine the boundaries where
significant topic changes happen to isolate different aspects. Fur-

1Focused summary refers to summaries on specific aspects of the
meeting such as actions, decisions, etc.

ther, to generate a summary for each segment (topic), we should
be able to fuse information from multiple utterances on that topic
and retain the most informative constituents. Simultaneously, we
should also generate grammatical output to ensure that the final
summaries are well-formed and readable.

Figure 1 shows the overview of our proposed meeting summa-
rization system. As shown in Figure 1, initially, a meeting tran-
script is divided into several topic segments Si (i = 1, 2, . . . ,m),
where each segment contains Ni utterances (UtN1 , . . . , UtNi ) on
a specific topic. Previous work on meeting summarization [28] has
shown that lexical cohesion is an important indicator in topic iden-
tification in meetings. We experiment with two different lexical-
cohesion based text segmentation algorithms: LCSeg [13] and un-
supervised Bayesian topic segmentation [8]. Only a few utterances
contain information that is worthy of being included in the sum-
mary. Therefore, we introduce an extractive summarization compo-
nent. To identify the most important (summary-worthy) utterances,
we employ a supervised learning approach to construct a classi-
fier by using content and discourse-level features. We parse the
important utterances in each segment using a dependency parser,
and then fuse the corresponding dependency graphs together to
form a directed graph (merged dependency graph). The directed
graph consists of the words in the utterances as the nodes, while
the edges represent the grammatical relations between the words.
Such a graph construction method ensures fusion of common in-
formation elements from utterances within the same topic segment.
We introduce an anaphora resolution step when merging depen-
dency graphs. We also introduce an ambiguity resolver that takes
into consideration the context of words when fusing several utter-
ances. Consider the following two utterances:

“um there’s a sample sensor and there’s a sample speaker unit”,

“I’m not sure how the sample unit gonna work.”

Once the first utterance is added into the graph, two nodes con-
taining the word “sample” are created. The ambiguity resolver
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maps the word “sample” from the second utterance to the second
node (“sample” node adjacent to “unit”) to account for the cor-
rect context of the words. Our goal is to retain the most infor-
mative nodes (words) in the graph. Further, linguistically well-
formed grammatical relations should be retained. We formulate
the sub-graph generation problem as an Integer Linear Program-
ming (ILP) problem by adapting an existing sentence fusion tech-
nique [10]. The solution to the ILP problem generates a sub-graph
that satisfies several constraints to maximize information content
and linguistic quality. Information content is measured using Hori
and Furui’s word informativeness formula [18] while the linguis-
tic quality is estimated using probabilities of grammatical relations
from the Reuter’s corpus [1]. Grammatical relations extracted from
the Reuter’s corpus assign higher preferences to non-conversational
style of text, thereby resulting in summaries that mirror the flair of
human-written abstracts. In the ILP problem, we introduce con-
straints to limit the length of the sentences. Further, we ensure con-
nectivity in the graph. We introduce several linguistic constraints to
generate grammatical output. The sub-graph generated from each
segment is linearized [11] using a bottom-up approach to gener-
ate a one-sentence summary. The one-sentence summaries from
all the segments are combined in the final summary. Note that
we do not introduce any new phrases or words in the process of
combining information from multiple utterances. Instead, we con-
sider utterances that are associated with the same topic and apply
the ILP-based fusion technique to identify grammatical relations
that contains more informative phrases, at the same time leading to
generation of summaries that are fairly readable.

To the best of our knowledge, this is the first work that ad-
dresses the problems of readability, grammaticality, and content se-
lection jointly for meeting summary generation without employing
a template-based approach. Experimental results on the aforemen-
tioned AMI corpus that consists of meeting recordings show that
our approach outperforms the comparable systems. ROUGE-2 and
ROUGE-SU4 [20] scores from our abstractive model (0.048 and
0.087) are significantly better than that of the extractive summaries
(0.026 and 0.044) as well as the word-graph based abstractive sum-
marization method [26] (0.041 and 0.079). We also assess read-
ability of the summaries using a human judge, demonstrating that
the summaries generated by our method are fairly well-formed.

2. RELATED WORK
In the field of meeting summarization, while extractive tech-

niques have been widely employed so far [22, 24], abstractive tech-
niques, including sentence compression, template and graph-based
approaches, have been focused on recently.

Liu and Liu [23] used sentence compression to generate sum-
maries of meetings. However, they reported that the quality of the
generated summaries are not so good and there is a potential limit to
apply such methods to summarization. Murray et al. [30] mapped
conversations to an ontology that was complemented with a Natural
language generation (NLG) component used for transforming utter-
ances to summaries. The corresponding full summarization system
was later presented in [29], where a user study was conducted on
the abstractive summaries that were generated. However, the full
summarization system involved extensive manual labor to set spe-
cific speakers, entities, etc. in a template before using an NLG
realizer to generate the summaries. Lu and Cardie [36] proposed
a method that learns templates from the human written summaries
and generates the summaries of decisions and actions of meetings
by using the best set of templates for a particular summary ranked
using a greedy approach. In contrast, we cannot use templates be-

cause we assume that the type of a conversation (action, decision,
etc) is not known apriori.

Mehdad et al. [26] developed a method that first over-generates
multiple fused utterances in an entailment graph, and then chooses
one based on the final path ranking. The fusing of the utterances
only considers words, and ignores the grammatical relations be-
tween them. This results in generation of summaries with poor
linguistic quality. More recently, Oya et al. [32] used the same
fusion technique to generate summaries of meetings. Both of the
methods developed by Mehdad et al. and Oya et al. mentioned
above relied on using multi-sentence compression (MSC) [9] that
combines information from sentences that are similar or connected
using some common entity. The MSC technique is a word-graph
based method where multiple sentences or utterances can be repre-
sented as a network of words. A directed graph is generated where
the nodes represent the words while edges exist if two words are
adjacent in the utterances. From the graph, several paths between
the start and end points can be generated. The new paths can rep-
resent content that can be different from the original utterances.
Oya et al.’s proposed approach requires significant effort to gener-
ate the templates using hypernym information for creating slots in
the templates. Our framework also consists of a similar segmenta-
tion module as employed in Oya et al.’s work, which ensures that
we divide the meeting transcript into several topics. Our proposed
method is fundamentally different from most of the aforementioned
techniques (except Oya et al.’s work) in that it considers individual
segments to generate a summary sentence.

Our previous work [2] has briefly described the effectiveness of
the fusion-based technique, which is also employed in this work.
Our preliminary results demonstrated that the fusion based model
can combine and convey useful information, generating reasonable
abstractive meeting summaries. Hence, we extend this work using
topic segments to build an end-to-end framework. We address the
issue of readability of the generated summaries by modeling the
strength of grammatical relations in the optimization problem. Our
approach does not require creation of templates. Instead, our model
aims to generate a sentence on each topic by identifying relevant
grammatical relations and informative words from a collection of
important utterances in a meeting.

3. PROPOSED APPROACH
As explained in Section 1, our proposed approach consists of

three steps: First, we segment an entire conversation between par-
ticipants into multiple text segments. Second, we apply an extrac-
tive summarizer that extracts important utterances from each seg-
ment. Finally, we fuse all the utterances in a segment using an ILP
based approach to generate a summary sentence. All the generated
sentences are appended to create the final summary. In the follow-
ing, we detail each step.

3.1 Text Segmentation
Topic segmentation has been used in summarization of news arti-

cles [21, 4]. Generally, lexical cohesion-based measures work well
for topic segmentation [27]. As the primary focus of our work is
to generate summaries, we experiment with two different text seg-
mentation algorithms: LCSeg and Bayesian unsupervised topic
segmentation.

LCSeg: Galley et al. [13] developed a topic segmentor, LCSeg,
based on lexical cohesion, which is considered to be a good indica-
tor of the discourse structure of the text. The intuition behind this
algorithm is that major term repetitions occur when the underlying
topics in the text start or end. It takes into consideration multiple
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Table 2: Features to select important utterances. Most of them
are adopted from previous works [12, 37]. The most impor-
tant speaker refers to the one that utters maximum number of
words. Our work introduces the segment-based features. The
content words include nouns, adjectives, verbs and adverbs.

(1) Basic features
– Length of a dialogue
– Number of content words
– Portion of content words
– Number of new nouns introduced

(2) Content features
– Cosine similarity with entire meeting transcript
– Presence of proper nouns
– Most important speaker in meeting
– Content words in previous dialogue act

(3) Segment based features
– Most important speaker in segment
– Cosine similarity of dialogue with entire segment

features such as discourse cues and overlaps. LCSeg is applied to
meeting corpora and achieved promising results. Hence, this ap-
proach is suitable for our segmentation step.

Bayesian unsupervised topic segmentation: This is also promis-
ing approach to topic segmentation. Eisenstein and Barzilay [8]
proposed an unsupervised approach to topic segmentation based
on lexical cohesion modeled by a Bayesian framework. The cohe-
sion arises through a generative process. The words are modeled
from a multinomial language model and the observed likelihood is
maximized to generate a lexically-cohesive segmentation. This al-
gorithm requires a user to specify the desired number of segments.

3.2 Selection of Important Utterances
Our second step is to identify the set of important utterances in

each topic segment. As shown in Table 2, we use multiple features
to identify the important set of utterances in a meeting. We adopt
basic and content features from previous works [12, 37]. In addi-
tion to the above mentioned features, we introduce two segment-
based features:

(i) The most important speaker in a segment.

(ii) Cosine similarity between the utterance and all of the other
utterances in a segment.

We construct classifiers using all the features on the training set.
We conduct experiments to evaluate the impact of our introduced
segment-based features in addition to the basic and content fea-
tures. Moreover, constructing a model using the meeting summa-
rization data also suffers from the unbalanced data problem as only
few utterances are considered to be important to generate the final
summary. In order to address this problem, we apply the following
techniques to oversample the minority data:

Weight: Let npRatio be #negative
#positive

. For the training instances,
we assign weights of one and npRatio to the negative and positive
examples, respectively.

Resampling: We reproduce a random subsample of the training
data using sampling with replacement. In this case, the new train-
ing data has the same total number of samples as the old one. How-
ever, they contain equal populations in both of the classes.

SMOTE: In synthetic minority oversampling technique (SMOTE) [6],
the minority class is randomly oversampled. This algorithm forms
new examples of minority class by interpolating between several
minority class examples that lie together and thereby can avoid the
overfitting problem.

3.3 Fusion of Utterances for Summary
Generation

The final step in our approach is to combine information from
multiple extracted utterances in each segment that the classifier
identifies as summary-worthy. Several techniques have been pro-
posed for sentence fusion tasks [3]. However, fusion on meeting
utterances requires an algorithm that is robust for noisy data as ut-
terances often have disfluencies. We adapt a sentence fusion tech-
nique [10] to meeting utterances. The dependency parse trees of the
individual utterances within a topic segment are combined together.
The best sub-graph that satisfies several constraints and maximizes
the propagated information is selected using as an integer linear
programming (ILP) formulation. ILP has been applied successfully
to many natural language processing tasks [7, 34]. The formulation
of the objective function in the ILP function takes into considera-
tion the informativeness of the words, weights of the edges along
the dependency tree and a factor that assigns more weights to ut-
terances that are more closer to topic shifts, i.e., towards the end of
a segment. We also introduce an additional step of pronoun reso-
lution. We observe that a lot of pronominal references are used in
utterances and resolving such references would produce more rele-
vant fusion by merging dependency graphs. Finally, the solution of
the ILP problem is linearized to produce a sentence. In this section,
we explain all of the details using a simple example. Suppose that
the following three utterances within a topic segment are labeled as
important by the classifier:

(Ut1) “Um well this is the kick-off meeting for our project.”

(Ut2) “so we’re designing a new remote control and um.”

(Ut3) “Um, as you can see it’s supposed to be original, trendy and
user friendly.”

As can be seen, there are the introductory statements in a meeting
that discusses the purpose of the meeting. We apply pre-processing
to get rid of words such as “um,” “ah” that cause disfluencies and
do not contribute to any information content in the utterances.

Anaphora resolution. Our final goal is to generate a one-sentence
summary from these utterances. To obtain a summary for each seg-
ment, we fuse the dependency graphs of the utterances by merging
them on the common words that represent the nodes in the graph.
However, in the above example, there are no common words in the
three utterances. As can be seen from the utterances, the “it” in ut-
terance (Ut3) refers to “a new remote control” in (Ut2). To ensure
accurate dependency graph merging, where the graphs are merged
on the nodes (words in an utterance), it is important to resolve such
pronominal references. Without resolving such references, it would
be impossible to fuse the above utterances, even though they are re-
ferring to the same entity. We use the publicly available Stanford
CoreNLP package2 [25] that has a co-reference resolution module.
We resolve pronouns only if there is a pronominal reference to the
previous utterance.

Dependency graph merging. Once anaphora resolution has been
applied, the extracted utterances in each segment are parsed using
2http://nlp.stanford.edu/software/corenlp.shtml
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Figure 2: A merged dependency graph generated from several utterances. Note that only a section of the entire graph is shown. The
nodes are shown as “N_word” and the labels are placed on the edges.

the Stanford dependency parser that is also a part of the CoreNLP
package. Every individual utterance has an explicit ROOT vertex.
We add two dummy nodes in the graph: the start node and the end
node. The ROOT nodes from the utterances are all connected to
the start node and the last word of every utterance is connected to
the end node. The words from the utterances are iteratively added
onto the graph. The words that have the same word form and the
parts of speech (POS) tag are assigned to the same nodes. While
only content words are merged, stopwords are not merged. The use
of POS information prevents ungrammatical mappings. Hereafter,
we refer to a word as the tuple of “{word, POS}.” We also address
ambiguities in the word mappings. If a new word that needs to be
merged onto the graph has multiple mapping candidates, we intro-
duce an ambiguity resolver.

Ambiguity resolver. Suppose that a new word wi that has k am-
biguous nodes where it can be mapped to. The k ambiguous nodes
are referred to as mappable nodes. For every ambiguous mapping
candidate, we first find the words to the left and right of the map-
pable word of the sentences, and then compute the number of words
in both of the directions that are common to the words in either di-
rection of the word wi. We define the directed context as follows:

dirContext = #CommonWords(dir, window),

where dir and window denote the direction of context (left/right)
and the number of words to be considered in either direction, re-
spectively. We calculate the directed context in both of the direc-
tions upto a window size of two words. Finally,wi is mapped to the
node that has the highest directed context. If a tie cannot be bro-
ken or no common context can be found with any of the existing
nodes, a new node for wi is created. An example of the ambiguity
resolution has been provided in Section 1.

We use the JGrapht3 package for the generation of the graph
structure. Figure 2 shows a snapshot of the merged dependency
graph generated from the three utterances, Ut1, Ut2, and Ut3 in
Section 3.3. The three utterances have been combined together in
a common structure, with various possible paths between the start
and the end dummy nodes. To obtain the dependency relations,
we use the “collapsed dependency representation” from the Stan-
ford parser that collapses edges of conjunctions and prepositions
and places the corresponding information on the edge labels (e.g.,
conj_and, prep_at, etc).

ILP formulation. The next step is to solve and generate a sub-
graph from this structure that satisfies a number of syntactic con-
straints and maximizes the information content simultaneously.

Similar to the fusion technique by Fillipova and Strube [10], we
model the problem as an integer linear programming (ILP) formu-
lation. However, the formulation of our objective function and the
constraints are significantly different from their system. We add a
lexical cohesion component in the ILP formulation. Moreover, our
constraints leverage linguistic knowledge to generate grammatical
output. Furthermore, they applied it to German language only. The
directed edges in the graph are represented as xg,d,l in the ILP prob-
lem where g, d and l denote the governor node, dependent node and
the label of an edge, respectively. The edges represent the variables
in the objective function which can either take value of 1 or 0 de-
pending on whether the edge has to be preserved or deleted.

We maximize the following objective function:∑
x
xg,d,l · p(l | g) · I(d) ·

px
N
. (1)

As shown in Equation (1), we introduce three different terms:
p(l | g), I(d) and px

N
. The term p(l | g) denote the probabilities of

the labels given a governor node, g. We can calculate these prob-
abilities from any given corpora. For every node (word and POS)
3http://jgrapht.org/
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Table 3: Probabilities of outgoing edges from a node for “pro-
duced/VBN.”

aux-
pass

nsubj-
pass

aux prep_with agent prep_in adv-
mod

0.286 0.214 0.214 0.071 0.071 0.071 0.071

in the entire corpus, the probabilities are represented as the ratio of
the sum of the frequency of a particular label and the sum of the
frequencies of all the labels emerging from a node. In this work,
we calculate these values using Reuters corpora [33] in order to ob-
tain dominant relations from non-conversational style of text. For
example, Table 3 shows the probabilities of outgoing edges from
a node (“produced/VBN”). The term I(d) denotes the informative-
ness of a node. In order to compute I(d), we improve the word
significance score [18] as follows:

I(d) = fs · log
FA

Fd
, (2)

where fs, FA, and Fd denote the frequency of a word in a text seg-
ment, the sum of the frequencies of all the words in the corpus, and
the frequency of the dependent word d in the entire Reuters cor-
pus, respectively. The last term px

N
in Equation (1) is based on the

idea of lexical cohesion. Our intuition is that important decisions
in a meeting are taken just before a topic concludes. Therefore, to
model the relative importance of such utterances, we introduce the
term px

N
, where N and px denote the total number of extracted ut-

terances in a segment and the position of the utterance (the edge x
belongs to) in the set of N utterances, respectively. As a result of
this term, utterances more closer to topic boundaries are assigned
higher weights.

In order to solve the above ILP problem, we impose a number
of constraints. Some of the constraints have been directly adapted
from the original ILP formulation [10]. For example, we use the
same constraints for restricting one incoming edge per node, as
well as we impose the connectivity constraint to ensure a connected
graph structure. The other constraints we impose are defined as fol-
lows:

∀l ∈ startEdge,
∑

l
xg,d,l = 1,

∀l ∈ endEdge,
∑

l
xg,d,l = 1

(3)

∑
x
xg,d,l ≤ γ (4)

∑
g,d

(xg,d,l + xd,g,l) ≤ 1 (5)

∀lout ∈ {aux, cop, det},
∑

u,lin
xg,u,lin − xu,d,lout = 0 (6)

∀g, lout ∈ aux ∨ cop ∨ det,
∑

lout

xg,d,lout ≤ 1 (7)

Equation (3) limits the subtree to compulsorily have just one start
edge and one end edge. This helps in preserving one ROOT node,
as well as it limits to one end node for the generated subtree. Equa-
tion (4) limits the generated subtree to have a maximum of γ nodes.
The start nodes and end nodes are still a part of the subtree that is
generated by solving this optimization problem. Hence, the value
of γ needs to be set to 2, which is more than the desired number
of maximum words in the summary sentence. In order to prevent
bidirectional relations between two nodes, we impose Equation (5)
as a constraint. To maintain the linguistic quality of the gener-
ated sentence, by using Equations (6) and (7) as constraints, we
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Figure 3: Dependency graph linearization process.

always include a maximum of one auxiliary verb (aux), copular
verb (cop) and determinant (det) if they exist. We use the Gurobi
software4 [16] for the optimization tasks. Figure 3 shows the final
graph that is retained from the graph in Figure 2 after solving the
ILP problem.

Linearization: The purpose of linearization is to generate a sen-
tence from the final subtree generated by solving the ILP problem.
We take a relatively straightforward bottom-up approach to tackle
the problem. We keep adding the leaf nodes to their governing
nodes until it reaches the ROOT node. We maintain the same order
of the words as in the source sentences during the merging process.

As shown in Figure 3, the nodes to/TO (n2) and be/VB (n1) are
added to the node original/JJ (n3). After merging these words,
they are reordered so that the ordering resembles the one in the
source sentences. The sequence of the nodes is changed only dur-
ing the merge with the governing node: they are kept fixed for the
future operations. Hence, the nodes to/TO (n2) and be/VB (n1) are
memorized along with the node original/JJ (n3). In the next step,
the ordering of the node original/JJ (n3) matters with respect to
the other leaves the governing node (n6) has. However, this might
be a problem in the case where there are leaf nodes from a gov-
ernor node at some higher level. In this example, trendy/JJ (n4)
and friendly/JJ (n5) will get merged to supposed/VBN (n6) before
the node original/JJ (n3) as they are leaf nodes. To prevent such
merging, we only allow to merge the leaf nodes to the governing
node that is at the farthest distance from the ROOT vertex. We ap-
ply Dijkstra’s algorithm [35] to calculate the path length. Thus, in
Figure 3, the nodes trendy/JJ (n4) and friendly/JJ (n5) are added
only after to/TO (n2) and be/VB (n1) are merged to original/JJ.
The final sentence after linearization is as follows:

We are designing a new remote control supposed to be orig-
inal trendy and friendly.

4. EXPERIMENTAL RESULTS

4.1 Dataset and Evaluation Metrics
The AMI Meeting corpus [5] contains 139 meeting transcripts

along with their corresponding extractive and abstractive summaries.
The standard test set of this corpus includes 20 meetings. Our ex-
tractive summarization component is trained using the training set,

4http://www.gurobi.com/
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Figure 4: Average F-measures obtained by varying the number
of segments. Also shows the impact of addition of segment-
based features.

i.e., the remaining 119 meetings. We evaluate the accuracy of the
classifiers using standard metrics: Precision, Recall and F-measure.
We also evaluate the impact of introducing segment-based features.
To evaluate the quality of the summaries, we verify the effective-
ness of content selection using ROUGE, which has been widely
used as a standard technique to evaluate information content in doc-
ument summarization tasks by comparing system-generated sum-
maries to human-written abstractive summaries. Further, we also
evaluate the linguistic quality of the generated summaries using hu-
man judgments.
4.2 Classifier Evaluation

As described in Section 3.1, we used two different text segmenta-
tion algorithms: LCSeg and Bayesian unsupervised topic segmen-
tation. Furthermore, we employed three classifiers: Support Vec-
tor Machines (SVM), Random Forest (RF) and Naive Bayes (NB).
To overcome the problem of unbalanced data, we used three dif-
ferent sampling techniques (Weight, Resampling, and SMOTE) as
described in Section 3.2. We evaluated all the possible configu-
rations on the training dataset to determine the best configuration
suitable for our summary generation. We used Weka [17] for all the
classification tasks with the default set of parameters. We perform
10-fold cross validation on the training set. First, we try to find the
optimal number of segments that provides the best classification ac-
curacy. Simultaneously, we also evaluate the contribution of adding
segment-based features during training the classifiers. Second, we
also identify the text segmentation algorithm that works best on this
dataset. Finally, based on the above decisions, we compare the per-
formances of the classifiers to decide our extractive summarization
component (i.e., classifier that gives the the best) and the best sam-
pling strategy to avoid any bias due to the unbalanced dataset.

Number of segments: We optimize the number of segments for
each meeting by varying it from 8 to 15 on the training data. Fig-
ure 4 shows the average F-measure obtained by the classifiers con-
structed from the set of all features (“Segmentation”) and the fea-
tures excluding the segment-based features (“No segmentation”).
The graph shows the average F-measure obtained by all combi-
nations of the classifiers and the sampling strategies with respect
to the various number of segments. As expected, the average F-
measures do not show any change when we skip the segment-based
features. However, we observe slight differences when we intro-
duce the segment-based features. Generally, when the number of
segments is between 12 to 15, we observe about 1% improvement
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Figure 5: Comparison of performance obtained by text seg-
mentation algorithms: Bayesian segmentation (BayesSeg) and
LCSeg. “Default” setting does not require the number of seg-
ments to be explicitly stated when computing segment bound-
aries using LCSeg.

Table 4: Precision (Pre), Recall (Rec), and F-measure (F) ob-
tained by classifiers along with each of the three sampling
strategies. We set the number of segments to 14.

LCSeg BayesSeg
Classifier Sampling Pre Rec F Pre Rec F

Weight 0.792 0.787 0.786 0.788 0.784 0.783
NB Resampling 0.796 0.790 0.789 0.791 0.787 0.786

SMOTE 0.831 0.804 0.811 0.830 0.807 0.813
Weight 0.726 0.722 0.721 0.730 0.727 0.727

RF Resampling 0.892 0.889 0.888 0.880 0.877 0.877
SMOTE 0.817 0.821 0.819 0.817 0.820 0.818
Weight 0.623 0.591 0.563 0.601 0.584 0.566

SVM Resampling 0.752 0.741 0.739 0.690 0.689 0.689
SMOTE 0.660 0.694 0.667 0.691 0.711 0.697

in F-measure by adding the segment-based features over the basic
set of features. According to Figure 4, we observe the highest av-
erage F-measure of 0.752 when we segment the meeting transcript
into 14 topics. We set the number of segments to 14 for our follow-
ing experiments.

LCSeg vs Bayesian unsupervised topic segmentation: Figure 5
shows the comparison of average F-measures of the classification
models for each of the topic segmentation algorithms. As can be
seen, LCSeg generally outperforms Bayesian segmentation. The
default setting of the number of segments refers to the setting for
LCSeg, which does not require to specifying the number of text
segments. According to Figure 5, the default setting does not per-
form well. Both of the segmentation algorithms achieve similar
F-measure in classification accuracies when we set the number of
segments to 14. Note that the optimal number of segments were
obtained by applying 10-fold cross validation using both the seg-
mentation algorithms.

Evaluation of classifiers and sampling strategy: Table 4 shows
the results of classification evaluation. The scores in the table were
obtained by setting the number of segments to 14. As can be seen
from the table, the NB and RF classifiers significantly outperform
SVM. The best system is obtained by combining the RF classi-
fier with the Resampling strategy. In both of the segmentation al-
gorithms, the combination of RF and Resampling gives the best
F-measure (0.888 and 0.877). Resampling and SMOTE sampling
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Table 5: ROUGE scores obtained by several configurations in
content selection. We compute ROUGE-1 (R-1) and ROUGE-2
(R-2) without any limit on summary length for comparison.

LCSeg BayesSeg
Classifier Sampling R-1 R-2 R-1 R-2

Weight 0.660 0.141 0.663 0.142
NB Resampling 0.666 0.142 0.674 0.145

SMOTE 0.673 0.145 0.675 0.147
Weight 0.679 0.147 0.702 0.144

RF Resampling 0.705 0.158 0.703 0.157
SMOTE 0.694 0.152 0.695 0.153
Weight 0.490 0.114 0.473 0.112

SVM Resampling 0.563 0.143 0.556 0.139
SMOTE 0.525 0.123 0.567 0.141

Table 6: Content selection evaluation. We compute ROUGE-2
(R-2) and ROUGE-SU4 (R-SU4) scores by comparing the sys-
tem generated summaries and the human-written summaries
for all the meetings in the test set.

Method R-2 R-SU4
Our abstractive model 0.048 0.087
Our abstractive model (no anaphora resolution) 0.036 0.071
MSC model [9] 0.041 0.079
Extractive model (baseline) 0.026 0.044

strategies outperform the Weight strategy when using RF and SVM.
However, when using NB, the performance using Weight and Re-
sampling strategy is very similar.

4.3 Content Selection
In text summarization, it is also important to evaluate to what

extent a classifier retains valuable information that should exist in a
summary. Therefore, system generated summaries should be com-
pared to human-written summaries automatically. We evaluate con-
tent selection using ROUGE.

Training Set: Table 5 shows the experimental results of content
selection on the training set. We compare extractive summaries
with human-generated abstracts for all the meetings in the training
set and compute ROUGE-1 (R-1) and ROUGE-2 (R-2) scores. We
do not impose any length constraints during ROUGE evaluation on
the training data. Similar to Table 4, the combination of RF with
Resampling strategy outperforms other techniques in terms of R-1
and R-2 scores. We use the RF classifier trained using Resampling
strategy as our extractive component. This classifier is used on the
test set to identify important utterances in the meeting transcripts.
We segment each meeting transcript into 14 (optimal) segments us-
ing the LCSeg algorithm as it slightly outperform Bayesian unsu-
pervised topic segmentation.

Test-set evaluation: We generate abstractive summaries from the
meeting transcripts in the test set using our ILP-based approach.
To evaluate our abstractive summaries, we compare them to the
extractive summaries generated by the best performing classifier.
We also compare the summaries to the MSC method proposed by
Fillipova [9] that has been adapted for abstractive meeting summa-
rization [26] develped earlier. As an input to the MSC model, we
use the same set of utterances per segment that was extracted by
the classifier. The sentence in each segment that obtains the high-
est score using MSC is used in the final generated summary. The
human-written abstracts, on average, contain close to 300 words.
Therefore, we applied a length constraint while performing ROUGE
evaluation to limit summary comparison upto 300 words.

Table 7: Readability estimates of summaries.
Method Readability score Log likelihood
Our abstractive model 0.74 -125.73
MSC model [9] 0.62 -141.31
Extractive model 0.67 -136.22

We use ROUGE-2 (R-2) and ROUGE-SU4 (R-SU4) recall scores
to compare all approaches. Both the ROUGE scores have been
found to correlate well with human judgments [31]. Table 6 shows
that our abstractive model can effectively maximize information
content, resulting in better summaries compared with the other mod-
els. Furthermore, the ROUGE scores of the MSC model also sig-
nificantly outperforms the extractive model, indicating that MSC
results in more informative summaries. To evaluate the impact of
anaphora resolution, we run our abstractive summarization model
without performing the pre-processing step of pronoun resolution.
ROUGE-2 score obtained by the abstractive model with anaphora
resolution (0.048) is significantly better than the model without
anaphora resolution (0.036). This indicates that anaphora resolu-
tion significantly contributes to content selection. Due to pronoun
resolution, there are more chances of fusing information from var-
ious utterances within a topic segment. The extractive model ob-
tains the lowest ROUGE scores as we restrict comparison to the
first 300 words. In contrast, the abstractive methods (our methods
and MSC) can effectively integrate the information from multiple
utterances within the first 300 words.

ROUGE comparison: In general, shorter summaries are preferred
by human readers. Extractive meeting summaries tend to be very
long. In contrast, human-written summaries are very short and con-
tain 300 words on average. To take this preference of shorter sum-
maries into account, we evaluate summaries using only the first 300
words. The extractive summaries are fairly long and contain 2000-
5000 words. Including several utterances distracts a reader’s focus
on the salient aspects, resulting in low readability of the summaries.
Therefore, we set the length parameter in ROUGE (l) to 300 to limit
the comparison to only the first 300 words.

4.4 Readability Analysis
To evaluate the linguistic quality of the generated summaries, we

perform readability analysis. We asked one human judge to mark
sentences in the generated abstractive summaries as either read-
able or not readable. Readability indicates how well the idea in the
sentence is conveyed to the reader. Excessive presence of disflu-
encies or ill-formed utterances should be marked as not readable.
We provided these instructions to the human judge. Out of 261
summary sentences generated for the 20 abstractive summaries, 67
sentences were found to be not readable (∼26%). We also man-
ually evaluated the extracted utterances and found that 33% of the
utterances contained various disfluencies, making them difficult to
read. We also performed another readability analysis for the sum-
maries generated using MSC and found that only 62% of the gen-
erated sentences in the summaries are readable. The readability
of MSC summaries (0.62) is even worse than that of the extrac-
tive summaries (0.67), showing that, while the generated sentences
in MSC model are informative (high ROUGE scores), they suffer
from serious grammatical issues as no factor of linguistic quality
is considered in the model. Generally, several utterances in ex-
tractive summaries were marked as not readable due to excessive
use of disfluencies. Furthermore, there were incomplete utterances
that created confusion in the minds of the reader. For example, an
extracted utterances – “Ah eagle , right okay .” – although gram-

58



Table 8: Examples of summary sentences that our system gen-
erated (S) and corresponding human–written (H) summary
sentences. Note that they are only small portions of the sum-
maries and not the entire summaries.

S: Slightly curved around the sides like up to the main display
as well. It was voice activated .

H: The remote will be single-curved with a cherry design on
top. A sample sensor was included to add speech recogni-
tion.

S: The market trends and our traditional usual market research
study suggests the use of rechargeable batteries.

H: He suggested substituting a kinetic battery for the recharge-
able batteries and using a combination of rubber and plastic
for the materials.

S: And in this detailed design the usability interface meeting
we will discuss our final design the look-and-feel.

H: All these components were re-arranged in a revised proto-
type.

matical, does not tell us anything about what is being spoken about.
To obtain a coarse estimate of grammaticality, we also calculate the
average log-likelihood score provided by the Stanford Parser. We
compute the average log-likelihood scores of the confidence of the
dependency parses for each type of summaries. Table 7 shows the
average scores.5

Table 8 shows some examples of summaries generated by our
system. The table indicates that the summaries generated by our
system are relatively well-formed and they reflect the formal style
of non-conversational text. We aligned sentences from the human-
written abstracts and the corresponding sentences selected from
each segment that our algorithm generates.

Error Analysis: In some cases the linearization component does
not produce relevant ordering of words. For example, in the third
summary sentence in Table 8, the system-generated summary lacks
certain conjunctions and the ordering of words is inappropriate.
The phrase “detailed design the” can be removed to maintain clar-
ity. In addition, the entity – design has been repeated. To solve
these problems, we plan to introduce intra-sentence level constraints
to improve generated summaries.

Our algorithm is designed to retain informative words as well as
grammatical dependencies that are more probable in any given cor-
pus. However, the grammatical dependencies that we choose might
not necessarily lead to well-formed grammatical sentences. Fur-
thermore, our ILP-based model is unable to understand long-term
dependencies of entities within a generated sentence. For example,
consider the following output:

“Decided important reflect our budget our the product accessible
a wide range of consumers limiting anyone know that kind .”

As can be seen, it is really hard for a reader to identify what
the summary sentence is trying to convey although certain words
or phrases hint at the topic of deciding the budget based on the
range of consumers. Our model at present does not memorize pre-
vious choices of entities referred in the utterances. Furthermore,
our linearization component is based on the ordering of words in
the source utterances. However, using the same ordering as the
source sentences might not necessarily work well. In the context

5Lower the magnitude of the log-likelihood scores, the higher is
the confidence associated with the dependency parse.

of an entirely new generated summary sentence, lexical or phrasal
reordering and other transformations might be required. In such
cases, it might be more effective to use language model based con-
fidence scores to determine the best ordering of words. Improve-
ment in the ILP formulation is possible by including confidence of
the sequence of words in addition to the incorporation of knowl-
edge about the entities. Optimizing such a complete model can
help generate summaries that are much easier to read. Further, such
summaries would contain coherent elements on the same entities in
the summary sentences. We might also hope to optimize the model
by including the number of segments as a parameter in the model.
Currently, the maximum number of sentences in the summary is
dependent on the number of topic segments. We can improve the
formulation such that model itself decides the optimal length of the
summaries ensuring that all the informative points in the meeting
discussion are included in the system generated summary.

5. CONCLUSIONS AND FUTURE WORK
In this work, we have proposed an approach to generate ab-

stractive summaries from meeting conversations. We proposed a
method for dividing a conversation into multiple topic segments.
We used an extractive summarizer to identify the important set of
utterances, and then applied ILP-based utterance fusion to generate
one sentence summary from every topic segment. We leveraged the
grammatical relations in the fusion technique that are more domi-
nant in non-conversational style of text. The experiments on con-
tent selection and readability indicate that our method can gener-
ate relevant abstractive summaries from meeting transcripts with-
out any templates. However, as we have already pointed out, not all
generated summaries are usable due to the lack of coherence among
several entities discussed within the same summary sentence. We
plan to improve the generation using knowledge of entities and also
refine readability using a language model. In future work, we plan
to develop better linearization techniques. We also plan to improve
our algorithm by not limiting one sentence per segment but allow-
ing the ILP model to decide the optimal number of sentences for a
complete summary.

6. REFERENCES
[1] C. Apté, F. Damerau, and S. M. Weiss. Automated Learning

of Decision Rules for Text Categorization. ACM
Transactions on Information Systems (TOIS), 12(3):233–251,
1994.

[2] S. Banerjee, P. Mitra, and K. Sugiyama. Abstractive Meeting
Summarization Using Dependency Graph Fusion. In Proc. of
the 24th International Conference on World Wide Web
Companion (WWW ’15 Companion), pages 5–6, 2015.

[3] R. Barzilay and K. R. McKeown. Sentence Fusion for
Multidocument News Summarization. Computational
Linguistics, 31(3):297–328, 2005.

[4] B. K. Boguraev and M. S. Neff. Discourse Segmentation in
Aid of Document Summarization. In Proc. of the 33rd
Annual Hawaii International Conference on System Sciences
(HICSS-33), pages 1–10, 2000.

[5] J. Carletta, S. Ashby, S. Bourban, M. Flynn, M. Guillemot,
T. Hain, J. Kadlec, V. Karaiskos, W. Kraaij, M. Kronenthal,
et al. The AMI Meeting Corpus: A Pre-announcement. In
Proc. of the 2nd International Workshop on Machine
Learning for Multimodal Interaction (MLMI 2005), pages
28–39, 2006.

[6] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P.
Kegelmeyer. SMOTE: Synthetic Minority Over-sampling

59



Technique. Journal of Artificial Intelligence Research
(JAIR), 16(2002):321–357, 2002.

[7] J. Clarke and M. Lapata. Global Inference for Sentence
Compression: An Integer Linear Programming Approach.
Journal of Artificial Intelligence Research (JAIR),
31(2008):399–429, 2008.

[8] J. Eisenstein and R. Barzilay. Bayesian Unsupervised Topic
Segmentation. In Proc. of the Conference on Empirical
Methods in Natural Language Processing (EMNLP 2008),
pages 334–343, 2008.

[9] K. Filippova. Multi-sentence Compression: Finding Shortest
Paths in Word Graphs. In Proc. of the 23rd International
Conference on Computational Linguistics (Coling 2010),
pages 322–330, 2010.

[10] K. Filippova and M. Strube. Sentence Fusion via
Dependency Graph Compression. In Proc. of the Conference
on Empirical Methods in Natural Language Processing
(EMNLP 2008), pages 177–185, 2008.

[11] K. Filippova and M. Strube. Tree Linearization in English:
Improving Language Model Based Approaches. In Proc. of
the Human Language Technology Conference of the North
American Chapter of the Association for Computational
Linguistics (HLT-NAACL 2009), pages 225–228, 2009.

[12] M. Galley. A Skip-Chain Conditional Random Field for
Ranking Meeting Utterances by Importance. In Proc. of the
2006 Conference on Empirical Methods in Natural
Language Processing (EMNLP 2006), pages 364–372, 2006.

[13] M. Galley, K. McKeown, E. Fosler-Lussier, and H. Jing.
Discourse Segmentation of Multi-party Conversation. In
Proc. of the 41st Annual Meeting on Association for
Computational Linguistics (ACL ’03), pages 562–569, 2003.

[14] N. Garg, B. Favre, K. Riedhammer, and D. Hakkani-Tür.
ClusterRank: A Graph Based Method for Meeting
Summarization. In Proc. of the 10th Annual Conference of
the International Speech Communication (INTERSPEECH
2009), pages 1499–1502, 2009.

[15] D. Gillick, K. Riedhammer, B. Favre, and D. Hakkani-Tur. A
Global Optimization Framework for Meeting
Summarization. In Proc. of the IEEE International
Conference on Acoustics, Speech, and Signal Processing
(ICASSP 2009), pages 4769–4772, 2009.

[16] Gurobi Optimization, Inc. Gurobi Optimizer Reference
Manual, 2014.

[17] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,
and I. H. Witten. The WEKA data mining software: an
update. ACM SIGKDD Explorations Newsletter,
11(1):10–18, 2009.

[18] C. Hori and S. Furui. A New Approach to Automatic Speech
Summarization. IEEE Transactions on Multimedia,
5(3):368–378, 2003.

[19] P.-Y. Hsueh and J. D. Moore. Automatic Topic Segmentation
and Labeling in Multiparty Dialogue. In Spoken Language
Technology Workshop, pages 98–101, 2006.

[20] C.-Y. Lin. ROUGE: A Package for Automatic Evaluation of
Summaries. In Proc. of the ACL-04 Workshop on Text
Summarization Branches Out, pages 74–81, 2004.

[21] C.-Y. Lin and E. Hovy. The Automated Acquisition of Topic
Signatures for Text Summarization. In Proc. of the 18th
Conference on Computational Linguistics (COLING ’00),
pages 495–501, 2000.

[22] H. Lin, J. Bilmes, and S. Xie. Graph-based Submodular
Selection for Extractive Summarization. In Proc. of the IEEE
Workshop on Automatic Speech Recognition &
Understanding (ASRU 2009), pages 381–386, 2009.

[23] F. Liu and Y. Liu. From Extractive to Abstractive Meeting
Summaries: Can It Be Done by Sentence Compression? In
Proc. of the 47th Annual Meeting of the Association for
Computational Linguistics (ACL-IJCNLP 2009), pages
261–264, 2009.

[24] Y. Liu, S. Xie, and F. Liu. Using N-best Recognition Output
for Extractive Summarization and Keyword Extraction in
Meeting Speech. In Proc. of IEEE International Conference
on Acoustics Speech and Signal Processing (ICASSP 2010),
pages 5310–5313, 2010.

[25] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J.
Bethard, and D. McClosky. The Stanford CoreNLP Natural
Language Processing Toolkit. In Proc. of 52nd Annual
Meeting of the Association for Computational Linguistics
(ACL 2014): System Demonstrations, pages 55–60, 2014.

[26] Y. Mehdad, G. Carenini, F. W. Tompa, and R. T. NG.
Abstractive Meeting Summarization with Entailment and
Fusion. In Proc. of the 14th European Workshop on Natural
Language Generation, pages 136–146, 2013.

[27] J. Morris and G. Hirst. Lexical Cohesion Computed by
Thesaural Relations as an Indicator of the Structure of Text.
Computational Linguistics, 17(1):21–48, 1991.

[28] G. Murray and G. Carenini. Summarizing Spoken and
Written Conversations. In Proc. of the Conference on
Empirical Methods in Natural Language Processing
(EMNLP 2008), pages 773–782, 2008.

[29] G. Murray, G. Carenini, and R. Ng. Generating and
Validating Abstracts of Meeting Conversations: a User
Study. In Proc. of the 6th International Natural Language
Generation Conference (INLG 2010), pages 105–113, 2010.

[30] G. Murray, G. Carenini, and R. Ng. Interpretation and
Transformation for Abstracting Conversations. In Proc. of
the Human Language Technology Conference of the North
American Chapter of the Association for Computational
Linguistics (HLT-NAACL 2010), pages 894–902, 2010.

[31] A. Nenkova and K. McKeown. A Survey of Text
Summarization Techniques. Mining Text Data, pages 43–76,
2012.

[32] T. Oya, Y. Mehdad, G. Carenini, and R. Ng. A
Template-based Abstractive Meeting Summarization:
Leveraging Summary and Source Text Relationships. In
Proc. of the 8th International Natural Language Generation
Conference (INLG 2014), pages 45–53, 2014.

[33] T. Rose, M. Stevenson, and M. Whitehead. The Reuters
Corpus Volume 1-from Yesterday’s News to Tomorrow’s
Language Resources. In Proc. of the 3rd International
Conference on Language Resources and Evaluation
Conference (LREC’02), pages 827–832, 2002.

[34] D. Roth and W.-T. Yih. A Linear Programming Formulation
for Global Inference in Natural Language Tasks. In Proc. of
the 8th Conference on Natural Language Learning
(CoNLL-2004), pages 1–8, 2004.

[35] S. Skiena. Dijkstra’s algorithm. Implementing Discrete
Mathematics: Combinatorics and Graph Theory with
Mathematica, Reading, pages 225–227, 1990.

[36] L. Wang and C. Cardie. Domain-Independent Abstract
Generation for Focused Meeting Summarization. In Proc. of
the 51st Annual Meeting of the Association for
Computational Linguistics (ACL 2013), pages 1395–1405,
2013.

[37] S. Xie and Y. Liu. Using Corpus and Knowledge-based
Similarity Measure in Maximum Marginal Relevance for
Meeting Summarization. In Proc. of IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP 2008), pages 4985–4988, 2008.

60




