
1

Lecture 13
Advanced Query Processing

CS5208 Advanced QP 1

New Requirements

• Top-N/Bottom-N queries
• Interactive queries

• Decision making queries
• Tolerant of errors approximate answers acceptable

CS5208 Advanced QP 2

• Tolerant of errors – approximate answers acceptable

• Control over what one sees

• Skyline queries, …

Fast initial response time!

Top-N/Bottom-N Queries

• STOP AFTER N clause in SQL
SELECT h.name, h.addr, h.phone
FROM Hotels h, Airports a
WHERE a.name = ‘Changi’
ORDER BY distance(h.location, a.location)
STOP AFTER 5;

Find the 5 hotels closest to the
Changi airport

CS5208 Advanced QP 3

SELECT p.name, s.gross
FROM Products p, Sales s
WHERE p.type=‘Software’
AND p.prod_num=s.prod_num
ORDER BY s. gross DESC
STOP AFTER (SELECT count(*)/10

FROM Products p
WHERE p.type=‘Software’);

Find the top 10% of
software products in
terms of gross sales
revenues

2 Different Strategies

• ‘Middleware’ approach
• Traditional vs Rewriting

• Can reuse existing optimizer

• Miss opportunities for performance improvement

CS5208 Advanced QP 4

ss oppo tu t es o pe o a ce p ove e t

• Introduce new operator: STOP
• Need to change the optimizer

• Likely to produce better plans

Rewriting Approach

• Rewrite a query into a set of subqueries

• Evaluate each subqueries ‘on-demand’

SELECT name, salary
FROM emp

CS5208 Advanced QP 5

SELECT name, salary
FROM emp
ORDER BY salary DESC
STOP AFTER N

p
WHERE salary > 50K
ORDER BY salary DESC

SELECT name, salary
FROM emp
WHERE salary <= 50K
ORDER BY salary DESC

Rewriting Approach
Rewrite query;
#ans = 0;
answer = 
i = 1;
While #ans < N AND moreSubqueries do {

ans = subquery(i); // suppose there are k answers;
answer = answer  ans;
#ans = #ans + k;

CS5208 Advanced QP 6

#ans #ans k;
if #ans  N

return top N answer;
else

i++;
}
If #ans < N return answer
// as optimization, answers can be returned immediately to reduce initial response time

2

STOP operator

• SCAN-STOP
• Pipelined operator that requests and then passes each of

the first N tuples of its input stream on to its consumer

• SORT-STOP
• Sort the input then return the first N tuples

CS5208 Advanced QP 7

Sort the input, then return the first N tuples
• If N is small, priority heap can be used; otherwise

external sort is used

• Issue: Placement of STOP operator in a query plan
• Pushing deep down cuts the cost of opeators higher up in

plan
• May eliminate too many tuples of intermediate results

Example

Emp(empId, name, salary, works_in, teaNo)
Dept(dno, name, budget, function, description)
TEA(accNo, expenses, comments)

CS5208 Advanced QP 8

works_in is foreign key (same domain as dno)
teaNo is foreign key (for accNo)
Not every employee has a travel account. Suppose 50%.

Conservative STOP Placement

• Never place a STOP operator at a point in a
plan where its presence can cause tuples to be
discarded that may be required to compose the

d l f h l

CS5208 Advanced QP 9

requested N tuples of the query result

Example 1
SELECT *
FROM Emp e, Dept d
WHERE e.works_in = d.dno
ORDER BY e.salary DESC
STOP AFTER 10;

STOP(10)

Emp

Dept

(b)

CS5208 Advanced QP 10

SORT-STOP(10)

DeptEmp

(a)
Plan (b) is better?

Example 1
SELECT *
FROM Emp e, Dept d
WHERE e.works_in = d.dno
ORDER BY e.salary DESC
STOP AFTER 10;

STOP(10)

Emp

Dept

(b)

CS5208 Advanced QP 11

STOP(10)

DeptEmp

(a)

Plan (b) is correct if Emp records
are retrieved in salary order!
and better because of the foreign key
constraint: Every employee
must belong to a department.
The join condition is referred
to as a “non-reductive” predicate

Example 2
SELECT *
FROM Emp e, Dept d
WHERE e.works_in = d.dno
AND d.function = ‘Research’
ORDER BY e.salary DESC
STOP AFTER 10;

STOP(10)

Emp

Dept

(b)

CS5208 Advanced QP 12

STOP(10)

DeptEmp

(a)

3

Example 2
SELECT *
FROM Emp e, Dept d
WHERE e.works_in = d.dno
AND d.function = ‘Research’
ORDER BY e.salary DESC
STOP AFTER 10;

STOP(10)

Emp

Dept

(b)

CS5208 Advanced QP 13

STOP(10)

DeptEmp

(a)
Plan (b) is incorrect.

Example 2
SELECT *
FROM Emp e, Dept d
WHERE e.works_in = d.dno
AND d.function = ‘Research’
ORDER BY e.salary DESC
STOP AFTER 10;

STOP(10)

Emp

Dept

(b)

CS5208 Advanced QP 14

STOP(10)

DeptEmp

(a)

Plan (b) is incorrect.

Some of the top 10 employees
may not belong to the dept
with function = “Research”
d.function is a reductive
predicate.

Example 3
SELECT *
FROM Emp e, Dept d
WHERE e.works_in = d.dno
ORDER BY d.budget DESC
STOP AFTER 10;

STOP(10)

Dept

Emp

(b)

CS5208 Advanced QP 15

STOP(10)

EmpDept

(a)

Example 3
SELECT *
FROM Emp e, Dept d
WHERE e.works_in = d.dno
ORDER BY d.budget DESC
STOP AFTER 10;

STOP(10)

Dept

Emp

(b)

CS5208 Advanced QP 16

STOP(10)

EmpDept

(a)
Plan (b) is incorrect unless
every dept must have
at least one employee (even
though the join predicate
is non-reductive)

Aggressive STOP Placement

• Insert STOP operators in query plans whenever
they can provide a beneficial cardinality
reduction

• Need to estimate intermediate results accurately

CS5208 Advanced QP 17

y

• Need to compute the stopping cardinality for the
STOP operators (may be different from N)

• Need a RESTART operator and placed it well

Example
SELECT e.name, e.salary,

d.name, t.expenses
FROM Emp e, Dept d, TEA t
WHERE e.works_in = d.dno
AND e.teaNo = t.accNo
ORDER BY e.salary DESC

Dept

CS5208 Advanced QP 18

STOP AFTER 10
STOP(10)

Emp

TEA

This is incorrect!

4

Example
SELECT e.name, e.salary,

d.name, t.expenses
FROM Emp e, Dept d, TEA t
WHERE e.works_in = d.dno
AND e.teaNo = t.accNo
ORDER BY e.salary DESC

Dept

CS5208 Advanced QP 19

STOP AFTER 10
STOP(20)

Emp

TEA

This is incorrect!

Example
SELECT e.name, e.salary,

d.name, t.expenses
FROM Emp e, Dept d, TEA t
WHERE e.works_in = d.dno
AND e.teaNo = t.accNo
ORDER BY e.salary DESC

STOP(10)

DeptRestart

CS5208 Advanced QP 20

STOP AFTER 10

STOP(20)

Emp

TEA

Example
SELECT e.name, e.salary,

d.name, t.expenses
FROM Emp e, Dept d, TEA t
WHERE e.works_in = d.dno
AND e.teaNo = t.accNo
ORDER BY e.salary DESC

STOP(10)

Restart

CS5208 Advanced QP 21

STOP AFTER 10

STOP(20)

Emp

Dept

TEA

Query Optimization

• Simply treat STOP operator as one possible
access path

• Need to be careful when pruning plans

CS5208 Advanced QP 22

Example
SELECT *
FROM Emp e, Dept d
WHERE e.works_in = d.dno
ORDER BY e.salary DESC
STOP AFTER 10;

SORT-STOP(10)

Emp

Dept

(b)

SMJoin

CS5208 Advanced QP 23

DeptEmp

(a)
Suppose plan (a) is cheaper.
But, cannot prune (b) since
(b) may be the cheaper
plan eventually

SMJoin

Example
SELECT *
FROM Emp e, Dept d
WHERE e.works_in = d.dno
ORDER BY e.salary DESC
STOP AFTER 10;

SORT-STOP(10)

Emp

Dept

(b)

CS5208 Advanced QP 24

SORT-STOP(10)

DeptEmp

(a)
Plan (a) without SORT-STOP (10)
is cheaper but is more expensive
with SORT-STOP(10)

5

Example
SELECT *
FROM Emp
WHERE age > 50
ORDER BY salary DESC
STOP AFTER 10; TBL-SCAN(Emp.age > 50)

SORT(salary)

SCAN-STOP(10)

CS5208 Advanced QP 25

TBL-SCAN(Emp.age > 50)

SORT-STOP(10)

IDX-SCAN(Emp.salary)

RID-SCAN(age>50)

SCAN-STOP(10)

Exploiting Range Partitioning

• New operators:
• Part-mat: takes a partitioning vector, scan the input

and write out the partitions to disk
• Part-scan: scan the partitions one at a time

P t d t k t f (di t) d

CS5208 Advanced QP 26

• Part-reread: takes a set of (range predicates) and
materializes a partition’s tuples by (re)reading its
input stream from the beginning

• Part-hybrid: materializes a specified number of its
highest (or lowest) ranked partitions and computes
the rest only on demand

SELECT *
FROM Emp
WHERE age > 50
ORDER BY salary DESC
STOP AFTER 10;

Scan-stop(10)

Restart(N)

Scan-stop(10)

Restart(N)

Scan-stop(10)

Restart(N)

CS5208 Advanced QP 27

Sort(salary)

Part-scan

Part-mat

Tblscan(Emp.age>50)

Sort(salary)

Part-reread

Tblscan(Emp.age>50)

Sort(salary)

Part-scan

Part-hybrid

Tblscan(Emp.age>50)

Choosing a partitioning vector

• Histogram

• Sampling

CS5208 Advanced QP 28

Example: Join Query
SELECT *
FROM Emp e, Dept d
WHERE age > 50 AND d.budget > 1000 AND e.works_in = d.dno
ORDER BY salary DESC
STOP AFTER 10;

Scan-sort(10)

Sort(salary)

Restart(10)

CS5208 Advanced QP 29

Scan-sort(10)

INLJ

Sort(salary) Ridscan(b>1000)

Tblscan(Emp.age > 50) idxscan(Dept.dno)

INLJ

Ridscan(b>1000)

Tblscan(Emp.age > 50)
idxscan(Dept.dno)

Part-hybrid

Restart(10)

Part-scan

Commercial Products

• Informix – FIRST N
• Microsoft SQL Server – FAST N
• IBM’s DB2 UDB system

• OPTIMIZE FOR n ROWS
FETCH FIRST ROWS ONLY

CS5208 Advanced QP 30

• FETCH FIRST n ROWS ONLY

• Oracle Rdb – LIMIT TO N ROWS
• Redbrick

• SET ROWCOUNT N
• WHEN RANK(col) < n

6

Interactive Query Processing
• Problems with traditional solutions (for aggregate

queries)
• mismatch between system functionality and mode of HCI

process

query

CS5208 Advanced QP 31

• black boxes
• do batch processing
• frustrating delays in iterative process

process

exact
answer

Interactive processing

• HCI requirements
• users must get continual feedback on results of

processing
• allow users to control processing based on prior

f db k

CS5208 Advanced QP 32

feedback

• Performance goals
• not to minimize time to give complete results
• give continually improving partial results
• adapt to dynamically specified performance goals

Online Aggregation

• Three-fold requirement
• answers are or derived from summary data
• imprecise answers tolerated
• answers must be obtained quickly

CS5208 Advanced QP 33

• Traditional aggregation takes a long time to
return a very small final result from a large
amount of data

• Online aggregation allows users to observe the
progress of their queries and control execution
on the fly

New interface for aggregation

• Observe the progress of their queries

• aggregates have running output and confidence
interval

• Control execution on the fly

CS5208 Advanced QP 34

• Control execution on-the-fly

Statistical estimation

• Users do not need to set a priori specification
of stopping condition

• The interface is easier for users with no
statistical background

CS5208 Advanced QP 35

statistical background

• It requires more powerful statistical estimation
techniques (Hoeffding’s inequality versus
Chebyshev’s inequality)

Usability goals
• Continuous observation

• Control of time/precision

• Control of fairness/partiality

CS5208 Advanced QP 36

7

Performance goals

• Minimum time to accuracy: produce a useful
estimate of the final answer ASAP

• Minimum time to completion: secondary goal,
assume user will terminate processing long

CS5208 Advanced QP 37

assume user will terminate processing long
before the final answer is produced

• Pacing: guarantee a smooth and continuous
improving display

Random access to data

We need to retrieve data in random order to
produce meaningful statistical estimation. Three
ways to get records in random order:

• Heap scans

CS5208 Advanced QP 38

• Assumes that records are not stored in any specific order
otherwise …

• Index scans
• Indexed attributes are different from (and not correlated to)

aggregated attributes

• Sampling from indices (less efficient)

Non-blocking GROUP BY and
DISTINCT

• Sorting is a blocking algorithm and only one
group is computed at a time after sorting

• Hashing is non-blocking, but hash table need to

CS5208 Advanced QP 39

Hashing is non blocking, but hash table need to
fit in memory to have good performance

• Hybrid Cache (an extension of hybrid hashing)
might be good

Index striding

• Hash-based grouping can be unfair

• Solution: probe the index to find all the
groups and then process tuples from each

k1 k2 k3

CS5208 Advanced QP 40

groups and then process tuples from each
group in a “round robin” fashion

• Can control speed by weighting the
schedule

• Fair for groups with different cardinality

Non-blocking join algorithms (1)

• Sort-merge join is not acceptable for online
aggregation because sorting is blocking

• Hash join blocks for the time required to partition the
relations

• Pipeline hash join techniques may be appropriate for

CS5208 Advanced QP 41

• Pipeline hash join techniques may be appropriate for
online aggregations when both relations are small

• Merge join (without sort) and hash join provide output
with orders – not good for statistic estimation

• The “safest” traditional join algorithm is nested loop,
particularly if there is an index on the inner relation

Overview of ripple join (1)

CS5208 Advanced QP 42

8

Overview of ripple join (2)

• online nested-loops join is a special case of
ripple join

CS5208 Advanced QP 43

Ripple join algorithms (1)

• It can be viewed as a generalization of nested-
loops join in which the traditional roles of “inner”
and “outer” relation are continually interchanged
during processing

CS5208 Advanced QP 44

during processing

n-1*n-1

R

S
n-1*n-1

R

S
n-1*n-1

R

S

Skyline queries
• Decision making queries

• Based on multiple criteria

• No single optimal answer

• Satisficing answer

D i d b f

CS5208 Advanced QP 45

• Determined by user preferences
• E.g., budget hotel with reasonable rating and is close to

the city
SELECT name, rating
FROM hotel
WHERE rating = ‘3*’
AND cost BETWEEN 100 AND 150
AND distanceToCity < 1km

SELECT name, rating, cost
FROM hotel
WHERE rating > ‘2*’
AND cost BETWEEN 100 AND 150
AND distanceToCity < 1km
SKYLINE rating MAX, cost MIN, distanceToCity MIN, roomType DIFF

CS5208 Advanced QP 46

A tuple t1 dominates another tuple t2 if
rating1 >= rating2 AND
cost1 <= cost2 AND
distanceToCity1 <= distanceToCity2 AND
roomType1 = roomType2

Distance to beach (km)

CS5208 Advanced QP 47

Price

Block-Nested-Loops Algorithm
• Scan some records of R several times

• Keep a window of incomparable tuples in main memory

• When a tuple p is read, p is compared to all tuples of the window:

• p is dominated by a tuple within the window; throw p away

• p dominates one or more tuples in the window; remove those tuples;
insert p into window

CS5208 Advanced QP 48

insert p into window

• P is incomparable with all tuples in window; insert into window if
there is room; otherwise, p is written to a temporary file on disk.

• At the end of the iteration, output tuples of window which have been
compared to all tuples that have been written to temporary file

• Repeat the process on the temporary file and the remaining content of
memory

9

tuples x y

p1 10 9

p2 6 8

p3 1 7

p4 3 6

WindowWindow

p1

Window

p2

Window

p3

Window

p3 p4

Temporary file on
disk

p7

Window

p3 p4 p6

Window

p3 p8

Temporary file on
disk

p7, p10

Window

p3 p8 p9

Window

p8 p9

Temporary file on
disk

p10

Temporary file on
disk

Window

p8 p9 p10

CS5208 Advanced QP 49

p4 3 6

p5 7 6

p6 4 5

p7 8 4

p8 2 3

p9 5 2

p10 9 1

Skyline

p3

Skyline

p3, p8, p9,
p10

Window
when

temporary
was

created

p3 p4 p6

Summary

• Many new applications call for novel query
processing methods

• In particular, fast initial response time is
desirable

CS5208 Advanced QP 50

desirable.

• New operators may need to be introduced for
optimal performance

