
1

Lecture 13Lecture 13
Advanced Query Processing

CS5208 Advanced QP 1

New Requirements

• Top-N/Bottom-N queries
• Interactive queries

• Decision making queries
• Tolerant of errors – approximate answers acceptable

• Control over what one sees

• Skyline queries, …

CS5208 Advanced QP 2

Skyline queries, …

Fast initial response time!

2

Top-N/Bottom-N Queries

• STOP AFTER N clause in SQL
SELECT h.name, h.addr, h.phone
FROM Hotels h, Airports a

Find the 5 hotels closest to the
Changi airportp

WHERE a.name = ‘Changi’
ORDER BY distance(h.location, a.location)
STOP AFTER 5;

SELECT p.name, s.gross
FROM Products p, Sales s
WHERE p.type=‘Software’

Changi airport

Find the top 10% of
software products in

CS5208 Advanced QP 3

AND p.prod_num=s.prod_num
ORDER BY s. gross DESC
STOP AFTER (SELECT count(*)/10

FROM Products p
WHERE p.type=‘Software’);

software products in
terms of gross sales
revenues

2 Different Strategies

• ‘Middleware’ approach
• Traditional vs Rewriting• Traditional vs Rewriting

• Can reuse existing optimizer

• Miss opportunities for performance improvement

• Introduce new operator: STOP
• Need to change the optimizer

CS5208 Advanced QP 4

Need to change the optimizer

• Likely to produce better plans

3

Rewriting Approach

• Rewrite a query into a set of subqueries

• Evaluate each subqueries ‘on demand’• Evaluate each subqueries on-demand

SELECT name, salary
FROM emp
ORDER BY l DESC

SELECT name, salary
FROM emp
WHERE salary > 50K
ORDER BY salary DESC

SELECT l

CS5208 Advanced QP 5

ORDER BY salary DESC
STOP AFTER N

SELECT name, salary
FROM emp
WHERE salary <= 50K
ORDER BY salary DESC

Rewriting Approach
Rewrite query;
#ans = 0;
answer =
i = 1;i 1;
While #ans < N AND moreSubqueries do {

ans = subquery(i); // suppose there are k answers;
answer = answer ans;
#ans = #ans + k;
if #ans N

return top N answer;
else

i++;

CS5208 Advanced QP 6

i ;
}
If #ans < N return answer
// as optimization, answers can be returned immediately to reduce initial response time

4

STOP operator

• SCAN-STOP
• Pipelined operator that requests and then passes each of

the first N tuples of its input stream on to its consumer

• SORT-STOP
• Sort the input, then return the first N tuples
• If N is small, priority heap can be used; otherwise

external sort is used

I Pl t f STOP t i l

CS5208 Advanced QP 7

• Issue: Placement of STOP operator in a query plan
• Pushing deep down cuts the cost of opeators higher up in

plan
• May eliminate too many tuples of intermediate results

Example

Emp(empId, name, salary, works in, teaNo)p(p , , y, _ ,)
Dept(dno, name, budget, function, description)
TEA(accNo, expenses, comments)

works_in is foreign key (same domain as dno)
teaNo is foreign key (for accNo)

CS5208 Advanced QP 8

g y ()
Not every employee has a travel account. Suppose 50%.

5

Conservative STOP Placement

• Never place a STOP operator at a point in a
plan where its presence can cause tuples to be
discarded that may be required to compose the
requested N tuples of the query result

CS5208 Advanced QP 9

Example 1
SELECT *
FROM Emp e, Dept d
WHERE e works in = d dno

STOP(10) Dept
WHERE e.works_in d.dno
ORDER BY e.salary DESC
STOP AFTER 10; Emp

SORT-STOP(10)

(b)

Plan (b) is better?

CS5208 Advanced QP 10

DeptEmp

(a)
Plan (b) is better?

6

Example 1
SELECT *
FROM Emp e, Dept d
WHERE e works in = d dno

STOP(10) Dept
WHERE e.works_in d.dno
ORDER BY e.salary DESC
STOP AFTER 10; Emp

STOP(10)

(b)

Plan (b) is correct if Emp records
are retrieved in salary order!

d b tt b f th f i k

CS5208 Advanced QP 11

DeptEmp

(a)
and better because of the foreign key
constraint: Every employee
must belong to a department.
The join condition is referred
to as a “non-reductive” predicate

Example 2
SELECT *
FROM Emp e, Dept d
WHERE e.works_in = d.dno

STOP(10) Dept

AND d.function = ‘Research’
ORDER BY e.salary DESC
STOP AFTER 10;

Emp

STOP(10)

(b)

CS5208 Advanced QP 12

DeptEmp

(a)

7

Example 2
SELECT *
FROM Emp e, Dept d
WHERE e.works_in = d.dno

STOP(10) Dept

AND d.function = ‘Research’
ORDER BY e.salary DESC
STOP AFTER 10;

Emp

STOP(10)

(b)

Plan (b) is incorrect

CS5208 Advanced QP 13

DeptEmp

(a)
Plan (b) is incorrect.

Example 2
SELECT *
FROM Emp e, Dept d
WHERE e.works_in = d.dno

STOP(10) Dept

AND d.function = ‘Research’
ORDER BY e.salary DESC
STOP AFTER 10;

Emp

STOP(10)

(b)

Plan (b) is incorrect.

CS5208 Advanced QP 14

DeptEmp

(a) Some of the top 10 employees
may not belong to the dept
with function = “Research”
d.function is a reductive
predicate.

8

Example 3
SELECT *
FROM Emp e, Dept d
WHERE e works in = d dno

STOP(10) Emp
WHERE e.works_in d.dno
ORDER BY d.budget DESC
STOP AFTER 10; Dept

STOP(10)

(b)

CS5208 Advanced QP 15

EmpDept

(a)

Example 3
SELECT *
FROM Emp e, Dept d
WHERE e works in = d dno

STOP(10) Emp
WHERE e.works_in d.dno
ORDER BY d.budget DESC
STOP AFTER 10; Dept

STOP(10)

(b)

Plan (b) is incorrect unless

CS5208 Advanced QP 16

EmpDept

(a)
Plan (b) is incorrect unless
every dept must have
at least one employee (even
though the join predicate
is non-reductive)

9

Aggressive STOP Placement

• Insert STOP operators in query plans whenever
they can provide a beneficial cardinalitythey can provide a beneficial cardinality
reduction

• Need to estimate intermediate results accurately

• Need to compute the stopping cardinality for the
STOP operators (may be different from N)

CS5208 Advanced QP 17

• Need a RESTART operator and placed it well

Example
SELECT e.name, e.salary,

d.name, t.expenses
FROM Emp e Dept d TEA tFROM Emp e, Dept d, TEA t
WHERE e.works_in = d.dno
AND e.teaNo = t.accNo
ORDER BY e.salary DESC
STOP AFTER 10

STOP(10) TEA

Dept

CS5208 Advanced QP 18

Emp
This is incorrect!

10

Example
SELECT e.name, e.salary,

d.name, t.expenses
FROM Emp e Dept d TEA tFROM Emp e, Dept d, TEA t
WHERE e.works_in = d.dno
AND e.teaNo = t.accNo
ORDER BY e.salary DESC
STOP AFTER 10

STOP(20) TEA

Dept

CS5208 Advanced QP 19

Emp
This is incorrect!

Example
SELECT e.name, e.salary,

d.name, t.expenses
FROM Emp e Dept d TEA t

STOP(10)

FROM Emp e, Dept d, TEA t
WHERE e.works_in = d.dno
AND e.teaNo = t.accNo
ORDER BY e.salary DESC
STOP AFTER 10

DeptRestart

CS5208 Advanced QP 20

STOP(20)

Emp

TEA

11

Example
SELECT e.name, e.salary,

d.name, t.expenses
FROM Emp e Dept d TEA t

STOP(10)

Restart

FROM Emp e, Dept d, TEA t
WHERE e.works_in = d.dno
AND e.teaNo = t.accNo
ORDER BY e.salary DESC
STOP AFTER 10

TEA

CS5208 Advanced QP 21

STOP(20)

Emp

Dept

Query Optimization

• Simply treat STOP operator as one possible
access pathaccess path

• Need to be careful when pruning plans

CS5208 Advanced QP 22

12

Example
SELECT *
FROM Emp e, Dept d
WHERE e works in = d dno

SORT-STOP(10) Dept

SMJoin

WHERE e.works_in d.dno
ORDER BY e.salary DESC
STOP AFTER 10; Emp

(b)

Suppose plan (a) is cheaper

CS5208 Advanced QP 23

DeptEmp

(a)
Suppose plan (a) is cheaper.
But, cannot prune (b) since
(b) may be the cheaper
plan eventually

SMJoin

Example
SELECT *
FROM Emp e, Dept d
WHERE e works in = d dno

SORT-STOP(10) Dept
WHERE e.works_in d.dno
ORDER BY e.salary DESC
STOP AFTER 10; Emp

SORT-STOP(10)

(b)

Pl () ith t SORT STOP (10)

CS5208 Advanced QP 24

DeptEmp

(a)
Plan (a) without SORT-STOP (10)
is cheaper but is more expensive
with SORT-STOP(10)

13

Example
SELECT *
FROM Emp
WHERE age > 50

SORT(salary)

SCAN-STOP(10)

WHERE age > 50
ORDER BY salary DESC
STOP AFTER 10;

SORT-STOP(10)

TBL-SCAN(Emp.age > 50)

SCAN-STOP(10)

CS5208 Advanced QP 25

TBL-SCAN(Emp.age > 50)

()

IDX-SCAN(Emp.salary)

RID-SCAN(age>50)

Exploiting Range Partitioning

• New operators:
• Part-mat: takes a partitioning vector, scan the input p g , p

and write out the partitions to disk
• Part-scan: scan the partitions one at a time
• Part-reread: takes a set of (range predicates) and

materializes a partition’s tuples by (re)reading its
input stream from the beginning

CS5208 Advanced QP 26

• Part-hybrid: materializes a specified number of its
highest (or lowest) ranked partitions and computes
the rest only on demand

14

SELECT *
FROM Emp
WHERE age > 50
ORDER BY salary DESC
STOP AFTER 10;

Scan-stop(10)

Restart(N)

Sort(salary)

Part scan

Scan-stop(10)

Restart(N)

Sort(salary)

Part reread

Scan-stop(10)

Restart(N)

Sort(salary)

P t

CS5208 Advanced QP 27

Part-scan

Part-mat

Tblscan(Emp.age>50)

Part-reread

Tblscan(Emp.age>50)

Part-scan

Part-hybrid

Tblscan(Emp.age>50)

Choosing a partitioning vector

• Histogram

• Sampling• Sampling

CS5208 Advanced QP 28

15

Example: Join Query
SELECT *
FROM Emp e, Dept d
WHERE age > 50 AND d.budget > 1000 AND e.works_in = d.dno
ORDER BY salary DESC Scan sort(10)ORDER BY salary DESC
STOP AFTER 10;

Scan-sort(10)

INLJ

Scan-sort(10)

INLJ

Sort(salary)

Restart(10)

CS5208 Advanced QP 29

Sort(salary) Ridscan(b>1000)

Tblscan(Emp.age > 50) idxscan(Dept.dno)

Ridscan(b>1000)

Tblscan(Emp.age > 50)
idxscan(Dept.dno)

Part-hybrid

Part-scan

Commercial Products

• Informix – FIRST N
• Microsoft SQL Server – FAST NQ
• IBM’s DB2 UDB system

• OPTIMIZE FOR n ROWS
• FETCH FIRST n ROWS ONLY

• Oracle Rdb – LIMIT TO N ROWS
• Redbrick

CS5208 Advanced QP 30

Redbrick
• SET ROWCOUNT N
• WHEN RANK(col) < n

16

Interactive Query Processing
• Problems with traditional solutions (for aggregate

queries)
• mismatch between system functionality and mode of HCI

process

query

exact
answer

CS5208 Advanced QP 31

• black boxes
• do batch processing
• frustrating delays in iterative process

Interactive processing

• HCI requirements
• users must get continual feedback on results ofusers must get continual feedback on results of

processing
• allow users to control processing based on prior

feedback

• Performance goals
• not to minimize time to give complete results

CS5208 Advanced QP 32

• not to minimize time to give complete results
• give continually improving partial results
• adapt to dynamically specified performance goals

17

Online Aggregation

• Three-fold requirement
• answers are or derived from summary data y
• imprecise answers tolerated
• answers must be obtained quickly

• Traditional aggregation takes a long time to
return a very small final result from a large
amount of data

CS5208 Advanced QP 33

amount of data
• Online aggregation allows users to observe the

progress of their queries and control execution
on the fly

New interface for aggregation

• Observe the progress of their queries

• aggregates have running output and confidence• aggregates have running output and confidence
interval

• Control execution on-the-fly

CS5208 Advanced QP 34

18

Statistical estimation

• Users do not need to set a priori specification
of stopping conditionof stopping condition

• The interface is easier for users with no
statistical background

• It requires more powerful statistical estimation
techniques (Hoeffding’s inequality versus

CS5208 Advanced QP 35

techniques (Hoeffding s inequality versus
Chebyshev’s inequality)

Usability goals

• Continuous observation

• Control of time/precision

• Control of fairness/partiality

CS5208 Advanced QP 36

19

Performance goals

• Minimum time to accuracy: produce a useful
estimate of the final answer ASAPestimate of the final answer ASAP

• Minimum time to completion: secondary goal,
assume user will terminate processing long
before the final answer is produced

• Pacing: guarantee a smooth and continuous

CS5208 Advanced QP 37

Pacing: guarantee a smooth and continuous
improving display

Random access to data

We need to retrieve data in random order to
produce meaningful statistical estimation. Three p g
ways to get records in random order:

• Heap scans
• Assumes that records are not stored in any specific order

otherwise …

• Index scans

CS5208 Advanced QP 38

Index scans
• Indexed attributes are different from (and not correlated to)

aggregated attributes

• Sampling from indices (less efficient)

20

Non-blocking GROUP BY and
DISTINCT

• Sorting is a blocking algorithm and only oneSorting is a blocking algorithm and only one
group is computed at a time after sorting

• Hashing is non-blocking, but hash table need to
fit in memory to have good performance

• Hybrid Cache (an extension of hybrid hashing)

CS5208 Advanced QP 39

Hybrid Cache (an extension of hybrid hashing)
might be good

Index striding

• Hash based grouping can be unfair

k1 k2 k3

• Hash-based grouping can be unfair

• Solution: probe the index to find all the
groups and then process tuples from each
group in a “round robin” fashion

• Can control speed by weighting the

CS5208 Advanced QP 40

• Can control speed by weighting the
schedule

• Fair for groups with different cardinality

21

Non-blocking join algorithms (1)

• Sort-merge join is not acceptable for online
aggregation because sorting is blocking

• Hash join blocks for the time required to partition the
relations

• Pipeline hash join techniques may be appropriate for
online aggregations when both relations are small

• Merge join (without sort) and hash join provide output

CS5208 Advanced QP 41

with orders – not good for statistic estimation
• The “safest” traditional join algorithm is nested loop,

particularly if there is an index on the inner relation

Overview of ripple join (1)

CS5208 Advanced QP 42

22

Overview of ripple join (2)

• online nested-loops join is a special case of
ripple joinripple join

CS5208 Advanced QP 43

Ripple join algorithms (1)

• It can be viewed as a generalization of nested-g
loops join in which the traditional roles of “inner”
and “outer” relation are continually interchanged
during processing

R R R

CS5208 Advanced QP 44

n-1*n-1
S

n-1*n-1
S

n-1*n-1
S

23

Skyline queries
• Decision making queries

• Based on multiple criteria

• No single optimal answer

• Satisficing answer

• Determined by user preferences
• E.g., budget hotel with reasonable rating and is close to

the city

CS5208 Advanced QP 45

y
SELECT name, rating
FROM hotel
WHERE rating = ‘3*’
AND cost BETWEEN 100 AND 150
AND distanceToCity < 1km

SELECT name, rating, cost
FROM hotel
WHERE rating > ‘2*’
AND cost BETWEEN 100 AND 150
AND distanceToCity < 1kmy
SKYLINE rating MAX, cost MIN, distanceToCity MIN, roomType DIFF

A tuple t1 dominates another tuple t2 if
rating1 >= rating2 AND

t1 < t2 AND

CS5208 Advanced QP 46

cost1 <= cost2 AND
distanceToCity1 <= distanceToCity2 AND
roomType1 = roomType2

24

Distance to beach (km)

CS5208 Advanced QP 47

Price

Block-Nested-Loops Algorithm
• Scan some records of R several times

• Keep a window of incomparable tuples in main memory

• When a tuple p is read p is compared to all tuples of the window:• When a tuple p is read, p is compared to all tuples of the window:

• p is dominated by a tuple within the window; throw p away

• p dominates one or more tuples in the window; remove those tuples;
insert p into window

• P is incomparable with all tuples in window; insert into window if
there is room; otherwise, p is written to a temporary file on disk.

• At the end of the iteration output tuples of window which have been

CS5208 Advanced QP 48

• At the end of the iteration, output tuples of window which have been
compared to all tuples that have been written to temporary file

• Repeat the process on the temporary file and the remaining content of
memory

25

tuples x y

10 9

WindowWindowWindowWindowWindow Temporary file on
di k

WindowWindow Temporary file on
di k

WindowWindow Temporary file on
di k
Temporary file on
di k

Window
p1 10 9

p2 6 8

p3 1 7

p4 3 6

p5 7 6

p6 4 5

p7 8 4

p1p2p3p3 p4
disk

p7

p3 p4 p6p3 p8
disk

p7, p10

p3 p8 p9

Skyline

p3

p8 p9
disk

p10

diskp8 p9 p10

Skyline

p3, p8, p9,
p10

Window
when

temporary
was

CS5208 Advanced QP 49

p8 2 3

p9 5 2

p10 9 1

was
created

p3 p4 p6

Summary

• Many new applications call for novel query
processing methodsprocessing methods

• In particular, fast initial response time is
desirable.

• New operators may need to be introduced for
optimal performance

CS5208 Advanced QP 50

optimal performance

