
1

Review (Past year question)
• Consider the relations R1(A,B,C), R2(C,D,E) and R3(E,F), with 

primary keys A, C, E respectively. Assume that R1 has 10000 tuples, 
R2 has 15000 tuples and R3 has 7500 tuples. For simplicity, assume 
that all tuples (including the query result) have the same size, and that 
each page can contain 10 tuples of R. Consider the query: R1 JOIN R2 
JOIN R3. Assume that all attributes are of the same size, and any join 
output will include all attributes of all relations. Further, assume 

d d i h d if lrecords do not span pages. Assuming the data are uniformly 
distributed, estimate the result size of the query.

• List all possible plans assuming only left-deep search space is 
considered (assuming only one join method). You may assume that 
cross product are to be avoided.

• Compute the cost for each of the above plans you listed to determine 
the optimal plan. For simplicity, you may assume that only the nested-
block join is supported, the buffer size is 100 pages, and all 
intermediate results are to be stored in secondary storage.

Review (Past year question)
• Consider the relations R1(A,B,C), R2(C,D,E) and R3(E,F), 

with primary keys A, C, E respectively. Assume that R1 has 
10000 tuples, R2 has 15000 tuples and R3 has 7500 tuples. For 
simplicity, assume that all tuples (including the query result) 
have the same size, and that each page can contain 10 tuples of 
R. Consider the query: R1 JOIN R2 JOIN R3. Assume that all 
attrib tes are of the same si e and an join o tp t ill incl deattributes are of the same size, and any join output will include 
all attributes of all relations. Further, assume records do not 
span pages. Assuming the data are uniformly distributed, 
estimate the result size of the query.
• Number of tuples = 10000
• Number of pages = 10000/10
• Number of attributes per page = 30; 
• Number of result tuples per page = 30/8 = 3
• Number of resultant pages = 10000/3

WRONG!!

Review (Past year question)

• Assume Left Deep Tree plans and one join method. 
In total, there are 6 possible plans, but since cross 
products are not permitted, we end up with 4 plans
• (R1 JOIN R2) JOIN R3( )

• (R2 JOIN R1) JOIN R3

• (R2 JOIN R3) JOIN R1

• (R3 JOIN R2) JOIN R1

Review (Past year question)

• for each plan, compute the cost of each join. there are two 
points to note: (a) remember to include the cost to write 
out intermediate results, (b) the number of tuples per page 
may be different for each intermediate results.

R3

R1 R2

I1

I2Plan P1
Cost of Plan P1 = Cost (R1 JOIN R2) + 

Cost (I1 JOIN R3)

Size (I1) = 10000 tuples; 10000/5 pages
Cost (R1 JOIN R2) = 10000/10 + 

1000/98*(15000/15)+
10000/5

Cost(I1 JOIN R3) = join cost + cost to output I2

Transaction Management Overview
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There are three side effects of acid. 
Enhanced long term memory, 
decreased short term memory, and 
I forget the third.

- Timothy Leary

Query Optimization
and Execution

Relational Operators

Fil d A M th d These layers must consider

Structure of a DBMS
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Files and Access Methods

Buffer Management

Disk Space Management

DB

These layers must consider 
concurrency
control and recovery
(Transaction, Lock, 
Recovery Managers)
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Transactions
• Transaction (“xact”)- DBMS’s abstract view of a user program 

(or activity): 
• A sequence of reads and writes of database objects, e.g., a transaction that 

transfers $100 from account A to account B can be expressed as:
• Read Account A; 

• Write Updated Account A ($100 less);

• Read Account B;
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• Read Account B;

• Write Updated Account B ($100 more);

• Unit of work that must commit or abort as an atomic unit

• Transaction Manager controls the execution of transactions.

• User’s program logic is invisible to DBMS!
• Arbitrary computation possible on data fetched from the DB

• The DBMS only sees data read/written from/to the DB.

ACID properties of Transaction Executions

•• AAtomicity: All actions in the Xact happen, or none 
happen.

•• CConsistency: If each Xact is consistent, and the DB 
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starts consistent, it ends up consistent.

•• IIsolation: Execution of one Xact is isolated from that 
of other Xacts.

•• DDurability: If a Xact commits, its effects persist.

Atomicity and Durability
• A transaction ends in one of two ways:

• commit after completing all its actions
• “commit” is a contract with the caller of the DB

• abort (or be aborted by the DBMS) after executing some actions. 
• Or system crash while the xact is in progress; treat as abort. 

• Two important properties for a transaction:

A.C.I.D.
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Two important properties for a transaction:
• Atomicity : Either execute all its actions, or none of them
• Durability : The effects of a committed xact must survive failures.

• DBMS ensures the above by logging all actions 
(Recovery):
• Undo the actions of aborted/failed transactions.
• Redo actions of committed transactions not yet propagated to disk 

when system crashes.

Transaction Consistency
• Transactions preserve DB consistency

• Given a consistent DB state, produce another consistent DB 
state

• DB Consistency expressed as a set of declarative 
Integrity Constraints
• CREATE TABLE/ASSERTION statements

A.C.I.D.
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• CREATE TABLE/ASSERTION statements
• E.g. Each CS186 student can only register in one project group. Each 

group must have 2 students.

• Application-level
• E.g. Bank account total of each customer must stay the same during a 

“transfer” from savings to checking account

• Transactions that violate ICs are aborted
• That’s all the DBMS can automatically check!

Isolation (Concurrency)

• DBMS interleaves actions of many xacts concurrently
• Actions = reads/writes of DB objects

• DBMS ensures xacts do not “step onto” one another.
• Each xact executes as if it were running by itself

A.C.I.D.
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• Each xact executes as if it were running by itself.
• Concurrent accesses have no effect on a Transaction’s behavior
• Net effect must be identical to executing all transactions for some 

serial order.
• Users & programmers think about transactions in isolation

• Without considering effects of other concurrent transactions!

Concurrency Control & Recovery

• Concurrency Control
• Provide correct and highly available data access in the presence of 

concurrent access by many users

• Recovery
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• Ensures database is fault tolerant, and not corrupted by software, 
system or media failure

• 24x7 access to mission critical data

• A boon to application authors!
• Existence of CC&R allows applications to be written without  

explicit concern for concurrency and fault tolerance
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Concurrency Control 
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Smile, it is the key that fits the 
lock of everybody's heart.

Anthony J. D'Angelo,
The College Blue Book

Concurrency Control
T1 T2 … Tn

Improves 
latency and
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DB
(consistency
constraints)

latency and 
throughput

Example:

T1: Read(A) T2: Read(A)
A  A+100 A  A2
Write(A) Write(A)
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Read(B) Read(B)
B  B+100 B  B2
Write(B) Write(B)

Constraint:  A=B

Schedule A: Serial Schedule
T1 T2
Read(A); A  A+100
Write(A);
Read(B); B  B+100;
Write(B);

A B
25 25

125

125
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( );

Read(A);A  A2;
Write(A);

Read(B);B  B2;
Write(B);

125

250

250
250 250

Schedule B
T1 T2
Read(A); A  A+100
Write(A);

Read(A);A  A2;
i (A)

A B
25 25

125

2 0
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Write(A);
Read(B); B  B+100;
Write(B);

Read(B);B  B2;
Write(B);

250

125

250
250 250

Schedule C

T1 T2
Read(A); A  A+100
Write(A);

Read(A);A  A2;

A B
25 25

125
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Write(A);

Read(B);B  B2;
Write(B);

Read(B); B  B+100;
Write(B);

250

50

150
250 150
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Schedule D

T1 T2’
Read(A); A  A+100
Write(A);

Read(A);A  A1;

A B
25 25

125

Same as Schedule C
but with new T2’
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Write(A);

Read(B);B  B1;
Write(B);

Read(B); B  B+100;
Write(B);

125

25

125
125 125

• Want schedules that are “good”, regardless of

What are good schedules?
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• Only look at order of read and writes

Example: 

Sb=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B)

• Want schedules that are “good”, regardless of
• initial state and

• transaction semantics

What are good schedules?
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• Only look at order of read and writes

Example: 

Sb=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B)

Sb=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B)

Example:

T1 T1
T2 T2
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Sb’=r1(A)w1(A) r1(B)w1(B)r2(A)w2(A)r2(B)w2(B)

T1 T2

no cycles  Sb is “equivalent” to a serial      
schedule (in this case T1,T2)

Example (Cont)

Sd=r1(A)w1(A)r2(A)w2(A) r2(B)w2(B)r1(B)w1(B)
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Example (Cont)

Sd=r1(A)w1(A)r2(A)w2(A) r2(B)w2(B)r1(B)w1(B)

CS5208 – Concurrency Control 24
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Example (Cont)

Sd=r1(A)w1(A)r2(A)w2(A) r2(B)w2(B)r1(B)w1(B)
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T1 T2 Sd cannot be rearranged into a serial schedule

Sd is not “equivalent” to any serial schedule

Sd is “bad”

T1  T2

Also, T2  T1

Concepts

Transaction: sequence of ri(x), wi(x) actions
Conflicting actions: r1(A) w1(A)      w1(A)

w2(A) r2(A)       w2(A)

Schedule: represents chronological order in which
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Schedule: represents chronological order in which 
actions are executed

Serial schedule: no interleaving of actions or 
transactions

Serializable schedule: a schedule whose effect on any 
consistent database instance is guaranteed to be 
identical to that of some complete serial schedule

Definition

S1, S2 are conflict equivalent schedules

if S1 can be transformed into S2 by a series of 
swaps on non-conflicting actions.
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A schedule is conflict serializable if it is 
conflict equivalent to some serial schedule.

Note: (a) Some “serializable” schedules are NOT conflict serializable.
A price we pay to achieve efficient enforcement.

(b) There are alternative (weaker) notions of serializability.

Conflict-Serializability is NOT 
necessary for Serializability

• S1: w1(Y); w1(X); w2(Y); w2(X); w3(X)
• Serial schedule
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• S2: w1(Y); w2(Y); w2(X); w1(X); w3(X)
• Serializable schedule since effect is same as S1

• S1, S2 not conflict equivalent

Nodes: transactions in S

Arcs:  Ti  Tj whenever

- pi(A), qj(A) are actions in S

Precedence graph P(S)  (S is schedule)
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pi(A), qj(A) are actions in S

- pi(A) <S qj(A)

- at least one of pi, qj is a write

Exercise:

• What is P(S) for
S = w3(A) w2(C) r1(A) w1(B) r1(C) w2(A) r4(A) w4(D)

CS5208 – Concurrency Control 30

• Is S serializable?
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Exercise:

• What is P(S) for
S = w3(A) w2(C) r1(A) w1(B) r1(C) w2(A) r4(A) w4(D)

T3 T1 T2 T4
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• Is S serializable?

T3 T1 T2 T4

Theorem

P(S1) acyclic  S1 conflict serializable

CS5208 – Concurrency Control 32

S1, S2 conflict equivalent  P(S1)=P(S2) ???

P(S1)=P(S2)  S1, S2 conflict equivalent ???

Theorem

P(S1) acyclic  S1 conflict serializable
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S1, S2 conflict equivalent  P(S1)=P(S2) ???

P(S1)=P(S2)  S1, S2 conflict equivalent ???

• S1 = w3(A) w2(C) r1(C) r1(A) w2(B) w1(B) w2(A)

• S2 = w3(A) r1(A) r2(B) w1(B) r1(C) w2(C) w2(A)

P(S1)=P(S2)  S1, S2 conflict equivalent 
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T3 T1 T2

prevent P(S) cycles from occurring 

T1  T2 ….. Tn

How to enforce serializable schedules?

CS5208 – Concurrency Control 35

Scheduler

DB

A locking protocol
Two new actions:

lock (exclusive): li (A)

unlock: ui (A)

CS5208 – Concurrency Control 36

scheduler

T1 T2

lock
table



7

Rules

Rule #1: Well-formed transactions
Ti:  … li(A) … pi(A) … ui(A) ...
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Rule #2: Legal scheduler

S = …….. li(A) ………... ui(A) ……...

no lj(A)

• What schedules are legal?
What transactions are well-formed?
S1 = l1(A)l1(B)r1(A)w1(B)l2(B)u1(A)u1(B)
r2(B)w2(B)u2(B)l3(B)r3(B)u3(B)

Exercise:

Not legal
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( )w ( )u ( ) ( ) ( )u ( )

S2 = l1(A)r1(A)w1(B)u1(A)u1(B)
l2(B)r2(B)w2(B)l3(B)r3(B)u3(B)

S3 = l1(A)r1(A)u1(A)l1(B)w1(B)u1(B)
l2(B)r2(B)w2(B)u2(B)l3(B)r3(B)u3(B)

Not well-formed

Not legal

Schedule F (Schedule C with locking)

T1 T2 25    25

l1(A);Read(A)

AA+100;Write(A);u1(A) 125

l (A) R d(A)

A   B
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l2(A);Read(A)

A Ax2;Write(A);u2(A) 250

l2(B);Read(B)

B  Bx2;Write(B);u2(B) 50

l1(B);Read(B)

B  B+100;Write(B);u1(B) 150

250 150

Rules 1 & 2 are not enough!

Rule #3  Two phase locking (2PL)
for transactions

Ti = ……. li(A) ………... ui(A) ……...

no unlocks   no locks
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# locks
held by
Ti

Time
Growing Shrinking
Phase Phase

Schedule G

T1 T2

l1(A);Read(A)

A A+100;Write(A)

l1(B); u1(A) delayed
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l2(A);Read(A)

A Ax2;Write(A);lll222(B)(B)(B)

Read(B);B  B+100

Write(B); u1(B)

l2(B); u2(A);Read(B)

B  Bx2;Write(B);u2(B); 

y

Schedule H    (T2 reversed)

T1 T2
l1(A); Read(A) l1(B);Read(B)
A  A+100;Write(A) B  Bx2;Write(B)
lll222(B)(B)(B) lll222(A)(A)(A)

CS5208 – Concurrency Control 42

( )( )( ) ( )( )( )
delayeddelayed

Transactions are deadlocked
• Some deadlocked transactions are rolled 

back (and all their actions undone) 
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Rules #1,2,3 (2PL)   conflict serializable

h d l

Theorem
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schedule

• Beyond this simple 2PL protocol, it is all a 
matter of improving performance and 
allowing more concurrency….

What else?
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• Shared locks

• Multiple granularity

• Inserts, deletes and phantoms

• Other types of CC mechanisms

Shared locks

So far (exclusive lock):

S1 = ...l1(A) r1(A) u1(A) … l2(A) r2(A) u2(A) …
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Do not conflict

Instead:
S2=... ls1(A) r1(A) ls2(A) r2(A) …. us1(A) us2(A) 

Lock actions

l-ti(A): lock A in t mode (t is S or X)

u-ti(A): unlock t mode (t is S or X)
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Shorthand:

ui(A): unlock whatever modes Ti has locked A

Rule #1    Well formed transactions

Ti =... l-S1(A) … r1(A) … u1 (A) …

Ti =... l-X1(A) … w1(A) … u1 (A) …
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Option 1: Request exclusive lock

Ti = ...l-X1(A) … r1(A) ... w1(A) ... u(A) …

What about transactions that read and 
write same object?

Option 2:  Upgrade
(E g need to read but don’t know if will write )
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(E.g.,  need to read, but don t know if will write…)

Ti=... l-S1(A) … r1(A) ... l-X1(A) …w1(A) ...u(A)…

Think of
- Get 2nd lock on A, or
- Drop S, get X lock
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Rule #2   Legal scheduler

S = ....l-Si(A) …  … ui(A) …

no l-Xj(A)
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S = ... l-Xi(A) …    … ui(A) …

no l-Xj(A)
no l-Sj(A)

A way to summarize Rule #2

Compatibility matrix

S X

New request
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S    true false

X false false
Lock 

already
held in

Rule # 3     2PL transactions

No change except for upgrades:

(I)  If upgrade gets more locks

(e.g., S  {S, X})  then no change!
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(II) If upgrade releases read (shared)
lock (e.g., S  X)

- can be allowed in growing phase

Rules 1,2,3  Conf.serializable
for S/X locks           schedules

Theorem

CS5208 – Concurrency Control 52

Example

T1 T2
l-S1(A); r1(A)

l-S2(A); r2(A)
l S2(B); r (B)
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l-S2(B); r2(B)
lll---XXX111(B) (Denied)(B) (Denied)(B) (Denied)

u2(A); u2(B)
l-X1(B); r1(B); w1(B)
u2(A); u2(B)

Lock types beyond S/X

Examples:

(1) update lock

(2) increment lock

CS5208 – Concurrency Control 54

( )
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Update locks
A common deadlock problem with upgrades:
T1 T2
l-S1(A)

l-S2(A)

CS5208 – Concurrency Control 55

( )
lll---XXX111(A)(A)(A)

lll---XXX222(A)(A)(A)
--- Deadlock ---

Solution:  Update Locks - If Ti wants to read A and knows it

may later want to write A, it requests update lock (not shared)

Comp S X U

New request
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S T F T

X F F F

U   TorF? F F

Lock 
already
held in

Comp S X U

New request
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S T F T

X F F F

U   F F F

Lock 
already
held in

Increment Locks

• Atomic increment action: INi(A)

{Read(A); A  A+k; Write(A)}

• INi(A), INj(A) do not conflict!
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A=7

A=5 A=17

A=15

INi(A)
+2

INj(A)
+10

+10

INj(A)

+2

INi(A)

Comp S X I

S T F
Lock

New request
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X F F

I

Lock 
already
held in

Comp S X I

S T F F
Lock

New request
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X F F F

I F F T

Lock 
already
held in
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Note: object A may be locked in different 
modes at the same time...

l-X3(A)…?

S1= l S1(A) l S2(A) l S3(A) ?
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S1=...l-S1(A)…l-S2(A)…   l-S3(A)…?

l-U3(A)…? 

To grant a lock in mode t, mode t must be compatible 
with all currently held locks on object

Review (Past year exam question)
• Consider a relation databases with the following pages and tuples:

• Page 1: t1, t2, t3, t4                                               Page 2: t5, t6, t7

• Page 3: t8, t9, t10                                                  Page 4: t11, t12, t13, t14

• Suppose the system supports ONLY exclusive lock. We define a “convoy” as a point in time in which one 
transaction T holds a lock on an object O (O can be a tuple, or page), and at least two other transactions 
are waiting for the lock on object O. We further define a “deadlock” as a point in time in which there is a 
sequence of transactions T1, T2, …, Tn, such that for all i such that i < n, Ti waits for T(i+1), and also Tn
waits for T1.

• Assume that transactions acquire locks at page-level, i.e., to access a tuple, the entire page must be locked. 
Consider the following three transactions (Note: L = lock U = unlock R = Read W = Write)
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Consider the following three transactions (Note: L  lock, U  unlock, R  Read, W  Write)

T1: L(t6), R(t6), L(t9), R(t9), W(t6), U(t6), U(t9)

T2: L(t2), R(t2), L(t6), R(t6), W(t2), U(t2), U(t6)

T3: L(t8), R(t8), L(t3), R(t3), W(t3), U(t3), U(t8)

• Is  there some schedule where a convoy could occur? If so, draw the wait-for graph that shows the convoy. 
(In a wait-for graph, transactions are nodes and a directed edge from transactions T1 to T2 exists if T1 
waits for T2.) If not, explain why not.

• For the same scenario in (I), is there a schedule where a deadlock could occur? If so, draw the wait-for 
graph that shows the deadlock. Label the edge in the graph with the page that is being waited for. (A wait-
for graph shows a deadlock if there is a cycle in the graph.) If not, explain why not. 

Review
• Consider a relation databases with the following pages and tuples:

• Page 1: t1, t2, t3, t4,
• Page 2: t5, t6, t7
• Page 3: t8, t9, t10
• Page 4: t11, t12, t13, t14

• Suppose the system supports ONLY exclusive lock. We define a “convoy” as a point in time in which one 
transaction T holds a lock on an object O (O can be a tuple, or page), and at least two other transactions 
are waiting for the lock on object O. We further define a “deadlock” as a point in time in which there is a 
sequence of transactions T1, T2, …, Tn, such that for all i such that i < n, Ti waits for T(i+1), and also Tn
waits for T1.

• Assume that transactions acquire locks at page-level i e to access a tuple the entire page must be
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Assume that transactions acquire locks at page level, i.e., to access a tuple, the entire page must be 
locked. Consider the following three transactions (Note: L = lock, U = unlock, R = Read, W = Write)

T1: L(t6), R(t6), L(t9), R(t9), W(t6), U(t6), U(t9)
T2: L(t2), R(t2), L(t6), R(t6), W(t2), U(t2), U(t6)
T3: L(t8), R(t8), L(t3), R(t3), W(t3), U(t3), U(t8)

• Is  there some schedule where a convoy could occur? If so, draw the wait-for graph that shows the 
convoy. (In a wait-for graph, transactions are nodes and a directed edge from transactions T1 to T2 exists 
if T1 waits for T2.) If not, explain why not.

No convoy, since no more than two transactions accesses the same page

Review
• Consider a relation databases with the following pages and tuples:

• Page 1: t1, t2, t3, t4,                                             Page 2: t5, t6, t7

• Page 3: t8, t9, t10                                                 Page 4: t11, t12, t13, t14

• Suppose the system supports ONLY exclusive lock. We define a “convoy” as a point in time in which one 
transaction T holds a lock on an object O (O can be a tuple, or page), and at least two other transactions are 
waiting for the lock on object O. We further define a “deadlock” as a point in time in which there is a sequence 
of transactions T1, T2, …, Tn, such that for all i such that i < n, Ti waits for T(i+1), and also Tn waits for T1.

• Assume that transactions acquire locks at page-level, i.e., to access a tuple, the entire page must be locked. 
Consider the following three transactions (Note: L = lock, U = unlock, R = Read, W = Write)

T1: L(t6), R(t6), L(t9), R(t9), W(t6), U(t6), U(t9)

There is a part 2 to this question: What if we are dealing 
with tuple-level locking?
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T1: L(t6), R(t6), L(t9), R(t9), W(t6), U(t6), U(t9)

T2: L(t2), R(t2), L(t6), R(t6), W(t2), U(t2), U(t6)

T3: L(t8), R(t8), L(t3), R(t3), W(t3), U(t3), U(t8)

• For the same scenario in (I), is there a schedule where a deadlock could occur? If so, draw the wait-for graph 
that shows the deadlock. Label the edge in the graph with the page that is being waited for. (A wait-for graph 
shows a deadlock if there is a cycle in the graph.) If not, explain why not. 

T1 locks Page 2; T2 locks Page 1; T3 locks Page 3; T1 attempts 
to lock Page 3 (T1 -> T3); 
T2 attempts to lock Page 2 (T2 -> T1); T3 attempts to lock Page 1 
(T3 -> T1).  Deadlock. 

How does locking work in practice?

• Every system is different
(E.g., may not even provide 

CONFLICT-SERIALIZABLE schedules)

h i ( i lifi d)

CS5208 – Concurrency Control 65

• But here is one (simplified) way ...

(1) Don’t trust transactions to request/release locks

(2) Hold all locks until transaction commits

Sample Locking System:
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#
locks

time
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Ti

Read(A),Write(B)

Scheduler, part I
lock

Architecture of a Locking Scheduler

Part I: selects appropriate lock mode, 
and inserts appropriate lock actions 
ahead of  all database operation
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l(A),Read(A),l(B),Write(B)…

Read(A),Write(B)

Scheduler, part II

DB

lock
table

p

Ti

Read(A),Write(B)

Scheduler, part I
lock

Architecture of a Locking Scheduler
Part II:Executes the operations
a) It determines if lock should be granted; 

if not, then transaction is delayed.
b) If transaction is not delayed, 

- If action is a normal opr, then 
send it to the dbms

- If action is a lock opr, then
check if lock can be granted
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l(A),Read(A),l(B),Write(B)…

Read(A),Write(B)

Scheduler, part II

DB

lock
table

* if so, update lock table
* if not, delay transaction but 

update lock table to reflect
transaction waiting

c) When a transaction commits/aborts, 
Part I is notified and releases all locks.
Part II will be notified if there are 
transactions waiting.

d) Part II determines next transactions to
be given the released locks. Those 
that acquired locks can be processed.

Lock table (Conceptually)

A 

B
C

Lock info for B

Lock info for C

If null, object is unlocked

e 
ob

je
ct
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C


...

Lock info for C

Ev
er

y 
po

ss
ib

le

But use hash table:

A
Lock info for AA

...
.

H

CS5208 – Concurrency Control 70

If object not found in hash table, it is unlocked

...

Lock info for A - example

tran  mode wait? Nxt T_link
Object:A
Group mode:U
Waiting:yes
List:

T1 S no

T2 U no
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List: U

T3 XX yes 

To other T3 
records

What are the objects we lock?

Relation A

Relation B

Tuple A
Tuple B
Tuple C

Disk 
block

A

Disk 
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?... ... block
B

...

DB DB DB
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• Locking works in any case, but should we 
choose small or large objects?

If we lock large objects (e.g., Relations)
Need few locks
Low concurrency
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Low concurrency
If we lock small objects (e.g., tuples,fields)

Need more locks
More concurrency

We can have it both ways!!

R1

B1

Managing Hierarchies of Database Elements

Tuples

Tables

Pages

Database
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B1

B2 B3
B4

t2.1 t2.2 t3.1 t3.2

Tuples

Warning Protocol

Comp Requestor

IS    IX    S   SIX  X

IS T T T T F
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Holder   IX

S

SIX

X

F
F
F
FFFFF

FFFT
FTFT
FFTT

Multiple Granularity: Warning Protocol

R1

t1
t2 t3

t4

T1(IS) , T2(IX)
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t2 t3

T1(S) T2(X)
 IS – Intent to get S lock(s) at 

finer granularity.
 IX – Intent to get X lock(s) at 

finer granularity.
 SIX mode: Like S & IX at the 

same time.

Warning Protocol

Comp Requestor

IS    IX    S   SIX X

IS T T T T F
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Holder   IX

S

SIX

X

F
F
F
FFFFF

FFFT
FTFT
FFTT

Does it make 
sense to have 
XIS?

Parent Child can be
locked in locked in

IS
IX

P

C

IS, S
IS, S, IX, X, SIX
[S IS] t
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S
SIX
X

C[S, IS] not necessary
X, IX, [SIX]
none
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Rules

(1) Follow multiple granularity comp function
(2) Lock root of tree first, any mode
(3) Node Q can be locked by Ti in S or IS only if      

parent(Q) locked by Ti in IX or IS
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(4) Node Q can be locked by Ti in X,SIX,IX only 
if parent(Q) locked by Ti in IX,SIX

(5) Ti is two-phase
(6) Ti can unlock node Q only if none of Q’s      

children are locked by Ti

Examples – 2 level hierarchy
• T1 scans R, and updates a few tuples:

• T1 gets an SIX lock on R, then get X lock on tuples that 
are updated.

• T2 uses an index to read only part of R:
• T2 gets an IS lock on R, and repeatedly gets an S lock on 

tuples of R.

Tuples

Tables

CS5208 – Concurrency Control 80

tuples of R.

• T3 reads all of R:
• T3 gets an S lock on R. 
• OR, T3 could behave like T2; can                                      

use lock escalation to decide which.
• Lock escalation dynamically asks for 

coarser-grained locks when too many
low level locks acquired

IS IX SIX

IS

IX
SIX





 


S X

S

X





Insert + delete operations

A

...
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Z
 Insert

Modifications to locking rules:

(1) Get exclusive lock on A before deleting A

(2) At insert A operation by Ti,
Ti is given exclusive lock on A
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g

Still have a problem: PhantomsPhantoms

Example: relation R (E#,name,…)

constraint: E# is key

use tuple locking
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R E# Name ….

o1 55 Smith

o2 75 Jones

T1: Insert <99,Gore,…> into R
T2: Insert <99,Bush,…> into R

T1 T2

S1(o1) S2(o1)
S1(o2) S2(o2)
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S1(o2) S2(o2)
Check Constraint Check Constraint

Insert o3[99,Gore,..]
Insert o4[99,Bush,..]

...

...
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Solution

• Use multiple granularity tree

• Before insert of node Q,

lock parent(Q) in
R1
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X mode R1

t1
t2 t3

Back to example
T1: Insert<99,Gore> T2: Insert<99,Bush>

T1 T2

X1(R)

Ch k t i t

XXX222(R)(R)(R) delayed

CS5208 – Concurrency Control 86

Check constraint
Insert<99,Gore>
U(R)

X2(R)
Check constraint
Oops! e# = 99 already in R!

B+-tree (Tree-based) Locking – Crabbing Protocol

20

10 35

A

B
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12 13 38 41 4435 3620 22 23 3196 10

6 12 23 38 44

3 4 11

C

D E

F

G H I

B+-tree Locking (Read 38)

10 35

A

B

20
S-Lock
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12 13 38 41 4435 3620 22 23 3196 10

6 12 23 38 44

3 4 11

C

D E

F

G H I

B+-tree Locking (Read 38)

10 35

A

B

20
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12 13 38 41 4435 3620 22 23 3196 10

6 12 23 38 44

3 4 11

C

D E

F

G H I

B+-tree Locking (Read 38)

10 35

A

B

20
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12 13 38 41 4435 3620 22 23 3196 10

6 12 23 38 44

3 4 11

C

D E

F

G H I
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B+-tree Locking (Read 38)

10 35

A

B

20

CS5208 – Concurrency Control 91

12 13 38 41 4435 3620 22 23 3196 10

6 12 23 38 44

3 4 11

C

D E

F

G H I

B+-tree Locking (Read 38)

10 35

A

B

20
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12 13 4435 3620 22 23 3196 10

6 12 23 38 44

3 4 11

C

D E

F

G H I

38 41

B+-tree Locking (Read 38)

10 35

A

B

20
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12 13 4435 3620 22 23 3196 10

6 12 23 38 44

3 4 11

C

D E

F

G H I

38 41

B+-tree Locking (Insert 45)

10 35

A

B

20
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12 13 4435 3620 22 23 3196 10

6 12 23 38 44

3 4 11

C

D E

F

G H I

38 41

B+-tree Locking (Insert 45)

10 35

A

B

20 X-Lock
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12 13 4435 3620 22 23 3196 10

6 12 23 38 44

3 4 11

C

D E

F

G H I

38 41

B+-tree Locking (Insert 45)

10 35

A

B

20 X-Lock
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12 13 4435 3620 22 23 3196 10

6 12 23 38 44

3 4 11

C

D E

F

G H I

38 41
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B+-tree Locking (Insert 45)

10 35

A

B

20 X-Lock
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12 13 35 3620 22 23 3196 10

6 12 23 38 44

3 4 11

C

D E

F

G H I

38 41 44

B+-tree Locking (Insert 45)

10 35

A

B

20 X-Lock
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12 13 35 3620 22 23 3196 10

6 12 23 38 44

3 4 11

C

D E

F

G H I

38 41 44

NOTE: B is not released. Why?

B+-tree Locking (Insert 45)

10 35

A

B

20 X-Lock
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12 13 35 3620 22 23 3196 10

6 12 23 38 44

3 4 11

C

D E

F

G H I

38 41 44

B+-tree Locking

• Can further optimize using S-Lock or 
Intention Lock for insertion 
• In this case, you may need to upgrade the lock and 

there is possibility of deadlock arising

2PL i d f i d l ki
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• 2PL is not used for index locking
• Deletion can be done “efficiently” at the 

expense of violating the minimum utilization 
requirement

Deadlocks

• Detection
• Wait-for graph

• Prevention
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• Wait-die

• Wound-wait

Deadlock Detection

• Build Wait-For graph
• Use lock table structures
• Build incrementally or periodically
• When cycle found rollback victim
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When cycle found, rollback victim
• How to determine the victim?

T1

T3

T2

T6

T5

T4
T7
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Deadlock Prevention: Wait-die

• Transactions given a timestamp when they 
arrive …. ts(Ti)

• Ti can only wait for Tj if ts(Ti)< ts(Tj)
l di (i b )
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...else die (i.e., abort)

T1

(ts =10)

T2

(t 20)

wait

Example:

wait?
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(ts =20)

T3

(ts =25)

wait
wait?

• Important detail: If a transaction re-starts, make sure it gets 
its original timestamp.  Why?

T1

(ts =22)

T2

(t 20)

Second Example:

requests A: wait for T2 or T3?

Note: ts between
20 and 25
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(ts =20)

T3

(ts =25)

wait(A)
20 and 25.

T1

(ts =22)

Second Example (continued):
One option: T1 waits just for T3, transaction holding lock.
But when T2 gets lock, T1 will have to die!
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T2

(ts =20)

T3

(ts =25)

wait(A)

wait(A)

T1

(ts =22)

Second Example (continued):

wait(A)

Another option: T1 only gets A lock after T2, T3 complete,
so T1 waits for both T2, T3  T1 dies right away!
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T2

(ts =20)

T3

(ts =25)

wait(A)

wait(A)

T1

(ts =22)

Second Example (continued):

wait(A)

Yet another option: T1 preempts T2, so T1 only waits for 
T3; T2 then waits for T3 and T1...    T2 may starve?
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T2

(ts =20)

T3

(ts =25)

wait(A)

wait(A)

redundant arc



19

Deadlock Prevention: Wound-wait

• Transactions given a timestamp when they 
arrive … ts(Ti)

• Ti wounds Tj if  ts(Ti)< ts(Tj)
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else Ti waits

“Wound”: Tj rolls back and gives lock to Ti

T1

(ts =25)

T2

(t 20)

wait

Example:

wait
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(ts =20)

T3

(ts =10)

wait
wait

T1

(ts =15)

T2

(t 20)

Second Example:

requests A: wait for T2 or T3?

Note: ts between
10 and 20
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(ts =20)

T3

(ts =10)

wait(A)
10 and 20.

T1

(ts =15)

Second Example (continued):
One option: T1 waits just for T3, transaction holding lock.
But when T2 gets lock, T1 waits for T2 and wounds T2.
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T2

(ts =20)

T3

(ts =10)

wait(A)

wait(A)

T1

(ts =15)

Second Example (continued):

wait(A)

Another option: T1 only gets A lock after T2, T3 complete,
so T1 waits for both T2, T3  T2 wounded right away!
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T2

(ts =20)

T3

(ts =10)

wait(A)

wait(A)

T1

(ts =15)

Second Example (continued):

wait(A)

Yet another option: T1 preempts T2, so T1 only waits for 
T3; T2 then waits for T3 and T1...    T2 is spared!
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T2

(ts =20)

T3

(ts =10)

wait(A)

wait(A)
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Summary

• Have studied lock-based CC mechanisms

- 2 PL

- Multiple granularity
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Multiple granularity

- Deadlock

• Did not cover non-locking based CC 
(timestamp/validation-based) schemes


