
1

Review (Past year question)
• Consider the relations R1(A,B,C), R2(C,D,E) and R3(E,F), with

primary keys A, C, E respectively. Assume that R1 has 10000 tuples,
R2 has 15000 tuples and R3 has 7500 tuples. For simplicity, assume
that all tuples (including the query result) have the same size, and that
each page can contain 10 tuples of R. Consider the query: R1 JOIN R2
JOIN R3. Assume that all attributes are of the same size, and any join
output will include all attributes of all relations. Further, assume

d d i h d if lrecords do not span pages. Assuming the data are uniformly
distributed, estimate the result size of the query.

• List all possible plans assuming only left-deep search space is
considered (assuming only one join method). You may assume that
cross product are to be avoided.

• Compute the cost for each of the above plans you listed to determine
the optimal plan. For simplicity, you may assume that only the nested-
block join is supported, the buffer size is 100 pages, and all
intermediate results are to be stored in secondary storage.

Review (Past year question)
• Consider the relations R1(A,B,C), R2(C,D,E) and R3(E,F),

with primary keys A, C, E respectively. Assume that R1 has
10000 tuples, R2 has 15000 tuples and R3 has 7500 tuples. For
simplicity, assume that all tuples (including the query result)
have the same size, and that each page can contain 10 tuples of
R. Consider the query: R1 JOIN R2 JOIN R3. Assume that all
attrib tes are of the same si e and an join o tp t ill incl deattributes are of the same size, and any join output will include
all attributes of all relations. Further, assume records do not
span pages. Assuming the data are uniformly distributed,
estimate the result size of the query.
• Number of tuples = 10000
• Number of pages = 10000/10
• Number of attributes per page = 30;
• Number of result tuples per page = 30/8 = 3
• Number of resultant pages = 10000/3

WRONG!!

Review (Past year question)

• Assume Left Deep Tree plans and one join method.
In total, there are 6 possible plans, but since cross
products are not permitted, we end up with 4 plans
• (R1 JOIN R2) JOIN R3()

• (R2 JOIN R1) JOIN R3

• (R2 JOIN R3) JOIN R1

• (R3 JOIN R2) JOIN R1

Review (Past year question)

• for each plan, compute the cost of each join. there are two
points to note: (a) remember to include the cost to write
out intermediate results, (b) the number of tuples per page
may be different for each intermediate results.

R3

R1 R2

I1

I2Plan P1
Cost of Plan P1 = Cost (R1 JOIN R2) +

Cost (I1 JOIN R3)

Size (I1) = 10000 tuples; 10000/5 pages
Cost (R1 JOIN R2) = 10000/10 +

1000/98*(15000/15)+
10000/5

Cost(I1 JOIN R3) = join cost + cost to output I2

Transaction Management Overview

CS5208 – Concurrency Control 5

g

There are three side effects of acid.
Enhanced long term memory,
decreased short term memory, and
I forget the third.

- Timothy Leary

Query Optimization
and Execution

Relational Operators

Fil d A M th d These layers must consider

Structure of a DBMS

CS5208 – Concurrency Control 6

Files and Access Methods

Buffer Management

Disk Space Management

DB

These layers must consider
concurrency
control and recovery
(Transaction, Lock,
Recovery Managers)

2

Transactions
• Transaction (“xact”)- DBMS’s abstract view of a user program

(or activity):
• A sequence of reads and writes of database objects, e.g., a transaction that

transfers $100 from account A to account B can be expressed as:
• Read Account A;

• Write Updated Account A ($100 less);

• Read Account B;

CS5208 – Concurrency Control 7

• Read Account B;

• Write Updated Account B ($100 more);

• Unit of work that must commit or abort as an atomic unit

• Transaction Manager controls the execution of transactions.

• User’s program logic is invisible to DBMS!
• Arbitrary computation possible on data fetched from the DB

• The DBMS only sees data read/written from/to the DB.

ACID properties of Transaction Executions

•• AAtomicity: All actions in the Xact happen, or none
happen.

•• CConsistency: If each Xact is consistent, and the DB

CS5208 – Concurrency Control 8

starts consistent, it ends up consistent.

•• IIsolation: Execution of one Xact is isolated from that
of other Xacts.

•• DDurability: If a Xact commits, its effects persist.

Atomicity and Durability
• A transaction ends in one of two ways:

• commit after completing all its actions
• “commit” is a contract with the caller of the DB

• abort (or be aborted by the DBMS) after executing some actions.
• Or system crash while the xact is in progress; treat as abort.

• Two important properties for a transaction:

A.C.I.D.

CS5208 – Concurrency Control 9

Two important properties for a transaction:
• Atomicity : Either execute all its actions, or none of them
• Durability : The effects of a committed xact must survive failures.

• DBMS ensures the above by logging all actions
(Recovery):
• Undo the actions of aborted/failed transactions.
• Redo actions of committed transactions not yet propagated to disk

when system crashes.

Transaction Consistency
• Transactions preserve DB consistency

• Given a consistent DB state, produce another consistent DB
state

• DB Consistency expressed as a set of declarative
Integrity Constraints
• CREATE TABLE/ASSERTION statements

A.C.I.D.

CS5208 – Concurrency Control 10

• CREATE TABLE/ASSERTION statements
• E.g. Each CS186 student can only register in one project group. Each

group must have 2 students.

• Application-level
• E.g. Bank account total of each customer must stay the same during a

“transfer” from savings to checking account

• Transactions that violate ICs are aborted
• That’s all the DBMS can automatically check!

Isolation (Concurrency)

• DBMS interleaves actions of many xacts concurrently
• Actions = reads/writes of DB objects

• DBMS ensures xacts do not “step onto” one another.
• Each xact executes as if it were running by itself

A.C.I.D.

CS5208 – Concurrency Control 11

• Each xact executes as if it were running by itself.
• Concurrent accesses have no effect on a Transaction’s behavior
• Net effect must be identical to executing all transactions for some

serial order.
• Users & programmers think about transactions in isolation

• Without considering effects of other concurrent transactions!

Concurrency Control & Recovery

• Concurrency Control
• Provide correct and highly available data access in the presence of

concurrent access by many users

• Recovery

CS5208 – Concurrency Control 12

• Ensures database is fault tolerant, and not corrupted by software,
system or media failure

• 24x7 access to mission critical data

• A boon to application authors!
• Existence of CC&R allows applications to be written without

explicit concern for concurrency and fault tolerance

3

Concurrency Control

CS5208 – Concurrency Control 13

Smile, it is the key that fits the
lock of everybody's heart.

Anthony J. D'Angelo,
The College Blue Book

Concurrency Control
T1 T2 … Tn

Improves
latency and

CS5208 – Concurrency Control 14

DB
(consistency
constraints)

latency and
throughput

Example:

T1: Read(A) T2: Read(A)
A  A+100 A  A2
Write(A) Write(A)

CS5208 – Concurrency Control 15

Read(B) Read(B)
B  B+100 B  B2
Write(B) Write(B)

Constraint: A=B

Schedule A: Serial Schedule
T1 T2
Read(A); A  A+100
Write(A);
Read(B); B  B+100;
Write(B);

A B
25 25

125

125

CS5208 – Concurrency Control 16

();

Read(A);A  A2;
Write(A);

Read(B);B  B2;
Write(B);

125

250

250
250 250

Schedule B
T1 T2
Read(A); A  A+100
Write(A);

Read(A);A  A2;
i (A)

A B
25 25

125

2 0

CS5208 – Concurrency Control 17

Write(A);
Read(B); B  B+100;
Write(B);

Read(B);B  B2;
Write(B);

250

125

250
250 250

Schedule C

T1 T2
Read(A); A  A+100
Write(A);

Read(A);A  A2;

A B
25 25

125

CS5208 – Concurrency Control 18

Write(A);

Read(B);B  B2;
Write(B);

Read(B); B  B+100;
Write(B);

250

50

150
250 150

4

Schedule D

T1 T2’
Read(A); A  A+100
Write(A);

Read(A);A  A1;

A B
25 25

125

Same as Schedule C
but with new T2’

CS5208 – Concurrency Control 19

Write(A);

Read(B);B  B1;
Write(B);

Read(B); B  B+100;
Write(B);

125

25

125
125 125

• Want schedules that are “good”, regardless of

What are good schedules?

CS5208 – Concurrency Control 20

• Only look at order of read and writes

Example:

Sb=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B)

• Want schedules that are “good”, regardless of
• initial state and

• transaction semantics

What are good schedules?

CS5208 – Concurrency Control 21

• Only look at order of read and writes

Example:

Sb=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B)

Sb=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B)

Example:

T1 T1
T2 T2

CS5208 – Concurrency Control 22

Sb’=r1(A)w1(A) r1(B)w1(B)r2(A)w2(A)r2(B)w2(B)

T1 T2

no cycles  Sb is “equivalent” to a serial
schedule (in this case T1,T2)

Example (Cont)

Sd=r1(A)w1(A)r2(A)w2(A) r2(B)w2(B)r1(B)w1(B)

CS5208 – Concurrency Control 23

Example (Cont)

Sd=r1(A)w1(A)r2(A)w2(A) r2(B)w2(B)r1(B)w1(B)

CS5208 – Concurrency Control 24

5

Example (Cont)

Sd=r1(A)w1(A)r2(A)w2(A) r2(B)w2(B)r1(B)w1(B)

CS5208 – Concurrency Control 25

T1 T2 Sd cannot be rearranged into a serial schedule

Sd is not “equivalent” to any serial schedule

Sd is “bad”

T1  T2

Also, T2  T1

Concepts

Transaction: sequence of ri(x), wi(x) actions
Conflicting actions: r1(A) w1(A) w1(A)

w2(A) r2(A) w2(A)

Schedule: represents chronological order in which

CS5208 – Concurrency Control 26

Schedule: represents chronological order in which
actions are executed

Serial schedule: no interleaving of actions or
transactions

Serializable schedule: a schedule whose effect on any
consistent database instance is guaranteed to be
identical to that of some complete serial schedule

Definition

S1, S2 are conflict equivalent schedules

if S1 can be transformed into S2 by a series of
swaps on non-conflicting actions.

CS5208 – Concurrency Control 27

A schedule is conflict serializable if it is
conflict equivalent to some serial schedule.

Note: (a) Some “serializable” schedules are NOT conflict serializable.
A price we pay to achieve efficient enforcement.

(b) There are alternative (weaker) notions of serializability.

Conflict-Serializability is NOT
necessary for Serializability

• S1: w1(Y); w1(X); w2(Y); w2(X); w3(X)
• Serial schedule

CS5208 – Concurrency Control 28

• S2: w1(Y); w2(Y); w2(X); w1(X); w3(X)
• Serializable schedule since effect is same as S1

• S1, S2 not conflict equivalent

Nodes: transactions in S

Arcs: Ti  Tj whenever

- pi(A), qj(A) are actions in S

Precedence graph P(S) (S is schedule)

CS5208 – Concurrency Control 29

pi(A), qj(A) are actions in S

- pi(A) <S qj(A)

- at least one of pi, qj is a write

Exercise:

• What is P(S) for
S = w3(A) w2(C) r1(A) w1(B) r1(C) w2(A) r4(A) w4(D)

CS5208 – Concurrency Control 30

• Is S serializable?

6

Exercise:

• What is P(S) for
S = w3(A) w2(C) r1(A) w1(B) r1(C) w2(A) r4(A) w4(D)

T3 T1 T2 T4

CS5208 – Concurrency Control 31

• Is S serializable?

T3 T1 T2 T4

Theorem

P(S1) acyclic  S1 conflict serializable

CS5208 – Concurrency Control 32

S1, S2 conflict equivalent  P(S1)=P(S2) ???

P(S1)=P(S2)  S1, S2 conflict equivalent ???

Theorem

P(S1) acyclic  S1 conflict serializable

CS5208 – Concurrency Control 33

S1, S2 conflict equivalent  P(S1)=P(S2) ???

P(S1)=P(S2)  S1, S2 conflict equivalent ???

• S1 = w3(A) w2(C) r1(C) r1(A) w2(B) w1(B) w2(A)

• S2 = w3(A) r1(A) r2(B) w1(B) r1(C) w2(C) w2(A)

P(S1)=P(S2)  S1, S2 conflict equivalent

CS5208 – Concurrency Control 34

T3 T1 T2

prevent P(S) cycles from occurring

T1 T2 ….. Tn

How to enforce serializable schedules?

CS5208 – Concurrency Control 35

Scheduler

DB

A locking protocol
Two new actions:

lock (exclusive): li (A)

unlock: ui (A)

CS5208 – Concurrency Control 36

scheduler

T1 T2

lock
table

7

Rules

Rule #1: Well-formed transactions
Ti: … li(A) … pi(A) … ui(A) ...

CS5208 – Concurrency Control 37

Rule #2: Legal scheduler

S = …….. li(A) ………... ui(A) ……...

no lj(A)

• What schedules are legal?
What transactions are well-formed?
S1 = l1(A)l1(B)r1(A)w1(B)l2(B)u1(A)u1(B)
r2(B)w2(B)u2(B)l3(B)r3(B)u3(B)

Exercise:

Not legal

CS5208 – Concurrency Control 38

()w ()u () () ()u ()

S2 = l1(A)r1(A)w1(B)u1(A)u1(B)
l2(B)r2(B)w2(B)l3(B)r3(B)u3(B)

S3 = l1(A)r1(A)u1(A)l1(B)w1(B)u1(B)
l2(B)r2(B)w2(B)u2(B)l3(B)r3(B)u3(B)

Not well-formed

Not legal

Schedule F (Schedule C with locking)

T1 T2 25 25

l1(A);Read(A)

AA+100;Write(A);u1(A) 125

l (A) R d(A)

A B

CS5208 – Concurrency Control 39

l2(A);Read(A)

A Ax2;Write(A);u2(A) 250

l2(B);Read(B)

B  Bx2;Write(B);u2(B) 50

l1(B);Read(B)

B  B+100;Write(B);u1(B) 150

250 150

Rules 1 & 2 are not enough!

Rule #3 Two phase locking (2PL)
for transactions

Ti = ……. li(A) ………... ui(A) ……...

no unlocks no locks

CS5208 – Concurrency Control 40

locks
held by
Ti

Time
Growing Shrinking
Phase Phase

Schedule G

T1 T2

l1(A);Read(A)

A A+100;Write(A)

l1(B); u1(A) delayed

CS5208 – Concurrency Control 41

l2(A);Read(A)

A Ax2;Write(A);lll222(B)(B)(B)

Read(B);B  B+100

Write(B); u1(B)

l2(B); u2(A);Read(B)

B  Bx2;Write(B);u2(B);

y

Schedule H (T2 reversed)

T1 T2
l1(A); Read(A) l1(B);Read(B)
A  A+100;Write(A) B  Bx2;Write(B)
lll222(B)(B)(B) lll222(A)(A)(A)

CS5208 – Concurrency Control 42

()()() ()()()
delayeddelayed

Transactions are deadlocked
• Some deadlocked transactions are rolled

back (and all their actions undone)

8

Rules #1,2,3 (2PL)  conflict serializable

h d l

Theorem

CS5208 – Concurrency Control 43

schedule

• Beyond this simple 2PL protocol, it is all a
matter of improving performance and
allowing more concurrency….

What else?

CS5208 – Concurrency Control 44

• Shared locks

• Multiple granularity

• Inserts, deletes and phantoms

• Other types of CC mechanisms

Shared locks

So far (exclusive lock):

S1 = ...l1(A) r1(A) u1(A) … l2(A) r2(A) u2(A) …

CS5208 – Concurrency Control 45

Do not conflict

Instead:
S2=... ls1(A) r1(A) ls2(A) r2(A) …. us1(A) us2(A)

Lock actions

l-ti(A): lock A in t mode (t is S or X)

u-ti(A): unlock t mode (t is S or X)

CS5208 – Concurrency Control 46

Shorthand:

ui(A): unlock whatever modes Ti has locked A

Rule #1 Well formed transactions

Ti =... l-S1(A) … r1(A) … u1 (A) …

Ti =... l-X1(A) … w1(A) … u1 (A) …

CS5208 – Concurrency Control 47

Option 1: Request exclusive lock

Ti = ...l-X1(A) … r1(A) ... w1(A) ... u(A) …

What about transactions that read and
write same object?

Option 2: Upgrade
(E g need to read but don’t know if will write)

CS5208 – Concurrency Control 48

(E.g., need to read, but don t know if will write…)

Ti=... l-S1(A) … r1(A) ... l-X1(A) …w1(A) ...u(A)…

Think of
- Get 2nd lock on A, or
- Drop S, get X lock

9

Rule #2 Legal scheduler

S =l-Si(A) … … ui(A) …

no l-Xj(A)

CS5208 – Concurrency Control 49

S = ... l-Xi(A) … … ui(A) …

no l-Xj(A)
no l-Sj(A)

A way to summarize Rule #2

Compatibility matrix

S X

New request

CS5208 – Concurrency Control 50

S true false

X false false
Lock

already
held in

Rule # 3 2PL transactions

No change except for upgrades:

(I) If upgrade gets more locks

(e.g., S  {S, X}) then no change!

CS5208 – Concurrency Control 51

(II) If upgrade releases read (shared)
lock (e.g., S  X)

- can be allowed in growing phase

Rules 1,2,3  Conf.serializable
for S/X locks schedules

Theorem

CS5208 – Concurrency Control 52

Example

T1 T2
l-S1(A); r1(A)

l-S2(A); r2(A)
l S2(B); r (B)

CS5208 – Concurrency Control 53

l-S2(B); r2(B)
lll---XXX111(B) (Denied)(B) (Denied)(B) (Denied)

u2(A); u2(B)
l-X1(B); r1(B); w1(B)
u2(A); u2(B)

Lock types beyond S/X

Examples:

(1) update lock

(2) increment lock

CS5208 – Concurrency Control 54

()

10

Update locks
A common deadlock problem with upgrades:
T1 T2
l-S1(A)

l-S2(A)

CS5208 – Concurrency Control 55

()
lll---XXX111(A)(A)(A)

lll---XXX222(A)(A)(A)
--- Deadlock ---

Solution: Update Locks - If Ti wants to read A and knows it

may later want to write A, it requests update lock (not shared)

Comp S X U

New request

CS5208 – Concurrency Control 56

S T F T

X F F F

U TorF? F F

Lock
already
held in

Comp S X U

New request

CS5208 – Concurrency Control 57

S T F T

X F F F

U F F F

Lock
already
held in

Increment Locks

• Atomic increment action: INi(A)

{Read(A); A  A+k; Write(A)}

• INi(A), INj(A) do not conflict!

CS5208 – Concurrency Control 58

A=7

A=5 A=17

A=15

INi(A)
+2

INj(A)
+10

+10

INj(A)

+2

INi(A)

Comp S X I

S T F
Lock

New request

CS5208 – Concurrency Control 59

X F F

I

Lock
already
held in

Comp S X I

S T F F
Lock

New request

CS5208 – Concurrency Control 60

X F F F

I F F T

Lock
already
held in

11

Note: object A may be locked in different
modes at the same time...

l-X3(A)…?

S1= l S1(A) l S2(A) l S3(A) ?

CS5208 – Concurrency Control 61

S1=...l-S1(A)…l-S2(A)… l-S3(A)…?

l-U3(A)…?

To grant a lock in mode t, mode t must be compatible
with all currently held locks on object

Review (Past year exam question)
• Consider a relation databases with the following pages and tuples:

• Page 1: t1, t2, t3, t4 Page 2: t5, t6, t7

• Page 3: t8, t9, t10 Page 4: t11, t12, t13, t14

• Suppose the system supports ONLY exclusive lock. We define a “convoy” as a point in time in which one
transaction T holds a lock on an object O (O can be a tuple, or page), and at least two other transactions
are waiting for the lock on object O. We further define a “deadlock” as a point in time in which there is a
sequence of transactions T1, T2, …, Tn, such that for all i such that i < n, Ti waits for T(i+1), and also Tn
waits for T1.

• Assume that transactions acquire locks at page-level, i.e., to access a tuple, the entire page must be locked.
Consider the following three transactions (Note: L = lock U = unlock R = Read W = Write)

CS5208 – Concurrency Control 62

Consider the following three transactions (Note: L lock, U unlock, R Read, W Write)

T1: L(t6), R(t6), L(t9), R(t9), W(t6), U(t6), U(t9)

T2: L(t2), R(t2), L(t6), R(t6), W(t2), U(t2), U(t6)

T3: L(t8), R(t8), L(t3), R(t3), W(t3), U(t3), U(t8)

• Is there some schedule where a convoy could occur? If so, draw the wait-for graph that shows the convoy.
(In a wait-for graph, transactions are nodes and a directed edge from transactions T1 to T2 exists if T1
waits for T2.) If not, explain why not.

• For the same scenario in (I), is there a schedule where a deadlock could occur? If so, draw the wait-for
graph that shows the deadlock. Label the edge in the graph with the page that is being waited for. (A wait-
for graph shows a deadlock if there is a cycle in the graph.) If not, explain why not.

Review
• Consider a relation databases with the following pages and tuples:

• Page 1: t1, t2, t3, t4,
• Page 2: t5, t6, t7
• Page 3: t8, t9, t10
• Page 4: t11, t12, t13, t14

• Suppose the system supports ONLY exclusive lock. We define a “convoy” as a point in time in which one
transaction T holds a lock on an object O (O can be a tuple, or page), and at least two other transactions
are waiting for the lock on object O. We further define a “deadlock” as a point in time in which there is a
sequence of transactions T1, T2, …, Tn, such that for all i such that i < n, Ti waits for T(i+1), and also Tn
waits for T1.

• Assume that transactions acquire locks at page-level i e to access a tuple the entire page must be

CS5208 – Concurrency Control 63

Assume that transactions acquire locks at page level, i.e., to access a tuple, the entire page must be
locked. Consider the following three transactions (Note: L = lock, U = unlock, R = Read, W = Write)

T1: L(t6), R(t6), L(t9), R(t9), W(t6), U(t6), U(t9)
T2: L(t2), R(t2), L(t6), R(t6), W(t2), U(t2), U(t6)
T3: L(t8), R(t8), L(t3), R(t3), W(t3), U(t3), U(t8)

• Is there some schedule where a convoy could occur? If so, draw the wait-for graph that shows the
convoy. (In a wait-for graph, transactions are nodes and a directed edge from transactions T1 to T2 exists
if T1 waits for T2.) If not, explain why not.

No convoy, since no more than two transactions accesses the same page

Review
• Consider a relation databases with the following pages and tuples:

• Page 1: t1, t2, t3, t4, Page 2: t5, t6, t7

• Page 3: t8, t9, t10 Page 4: t11, t12, t13, t14

• Suppose the system supports ONLY exclusive lock. We define a “convoy” as a point in time in which one
transaction T holds a lock on an object O (O can be a tuple, or page), and at least two other transactions are
waiting for the lock on object O. We further define a “deadlock” as a point in time in which there is a sequence
of transactions T1, T2, …, Tn, such that for all i such that i < n, Ti waits for T(i+1), and also Tn waits for T1.

• Assume that transactions acquire locks at page-level, i.e., to access a tuple, the entire page must be locked.
Consider the following three transactions (Note: L = lock, U = unlock, R = Read, W = Write)

T1: L(t6), R(t6), L(t9), R(t9), W(t6), U(t6), U(t9)

There is a part 2 to this question: What if we are dealing
with tuple-level locking?

CS5208 – Concurrency Control 64

T1: L(t6), R(t6), L(t9), R(t9), W(t6), U(t6), U(t9)

T2: L(t2), R(t2), L(t6), R(t6), W(t2), U(t2), U(t6)

T3: L(t8), R(t8), L(t3), R(t3), W(t3), U(t3), U(t8)

• For the same scenario in (I), is there a schedule where a deadlock could occur? If so, draw the wait-for graph
that shows the deadlock. Label the edge in the graph with the page that is being waited for. (A wait-for graph
shows a deadlock if there is a cycle in the graph.) If not, explain why not.

T1 locks Page 2; T2 locks Page 1; T3 locks Page 3; T1 attempts
to lock Page 3 (T1 -> T3);
T2 attempts to lock Page 2 (T2 -> T1); T3 attempts to lock Page 1
(T3 -> T1). Deadlock.

How does locking work in practice?

• Every system is different
(E.g., may not even provide

CONFLICT-SERIALIZABLE schedules)

h i (i lifi d)

CS5208 – Concurrency Control 65

• But here is one (simplified) way ...

(1) Don’t trust transactions to request/release locks

(2) Hold all locks until transaction commits

Sample Locking System:

CS5208 – Concurrency Control 66

#
locks

time

12

Ti

Read(A),Write(B)

Scheduler, part I
lock

Architecture of a Locking Scheduler

Part I: selects appropriate lock mode,
and inserts appropriate lock actions
ahead of all database operation

CS5208 – Concurrency Control 67

l(A),Read(A),l(B),Write(B)…

Read(A),Write(B)

Scheduler, part II

DB

lock
table

p

Ti

Read(A),Write(B)

Scheduler, part I
lock

Architecture of a Locking Scheduler
Part II:Executes the operations
a) It determines if lock should be granted;

if not, then transaction is delayed.
b) If transaction is not delayed,

- If action is a normal opr, then
send it to the dbms

- If action is a lock opr, then
check if lock can be granted

CS5208 – Concurrency Control 68

l(A),Read(A),l(B),Write(B)…

Read(A),Write(B)

Scheduler, part II

DB

lock
table

* if so, update lock table
* if not, delay transaction but

update lock table to reflect
transaction waiting

c) When a transaction commits/aborts,
Part I is notified and releases all locks.
Part II will be notified if there are
transactions waiting.

d) Part II determines next transactions to
be given the released locks. Those
that acquired locks can be processed.

Lock table (Conceptually)

A 

B
C

Lock info for B

Lock info for C

If null, object is unlocked

e
ob

je
ct

CS5208 – Concurrency Control 69

C


...

Lock info for C

Ev
er

y
po

ss
ib

le

But use hash table:

A
Lock info for AA

...
.

H

CS5208 – Concurrency Control 70

If object not found in hash table, it is unlocked

...

Lock info for A - example

tran mode wait? Nxt T_link
Object:A
Group mode:U
Waiting:yes
List:

T1 S no

T2 U no

CS5208 – Concurrency Control 71

List: U

T3 XX yes 

To other T3
records

What are the objects we lock?

Relation A

Relation B

Tuple A
Tuple B
Tuple C

Disk
block

A

Disk

CS5208 – Concurrency Control 72

?... ... block
B

...

DB DB DB

13

• Locking works in any case, but should we
choose small or large objects?

If we lock large objects (e.g., Relations)
Need few locks
Low concurrency

CS5208 – Concurrency Control 73

Low concurrency
If we lock small objects (e.g., tuples,fields)

Need more locks
More concurrency

We can have it both ways!!

R1

B1

Managing Hierarchies of Database Elements

Tuples

Tables

Pages

Database

CS5208 – Concurrency Control 74

B1

B2 B3
B4

t2.1 t2.2 t3.1 t3.2

Tuples

Warning Protocol

Comp Requestor

IS IX S SIX X

IS T T T T F

CS5208 – Concurrency Control 75

Holder IX

S

SIX

X

F
F
F
FFFFF

FFFT
FTFT
FFTT

Multiple Granularity: Warning Protocol

R1

t1
t2 t3

t4

T1(IS) , T2(IX)

CS5208 – Concurrency Control 76

t2 t3

T1(S) T2(X)
 IS – Intent to get S lock(s) at

finer granularity.
 IX – Intent to get X lock(s) at

finer granularity.
 SIX mode: Like S & IX at the

same time.

Warning Protocol

Comp Requestor

IS IX S SIX X

IS T T T T F

CS5208 – Concurrency Control 77

Holder IX

S

SIX

X

F
F
F
FFFFF

FFFT
FTFT
FFTT

Does it make
sense to have
XIS?

Parent Child can be
locked in locked in

IS
IX

P

C

IS, S
IS, S, IX, X, SIX
[S IS] t

CS5208 – Concurrency Control 78

S
SIX
X

C[S, IS] not necessary
X, IX, [SIX]
none

14

Rules

(1) Follow multiple granularity comp function
(2) Lock root of tree first, any mode
(3) Node Q can be locked by Ti in S or IS only if

parent(Q) locked by Ti in IX or IS

CS5208 – Concurrency Control 79

(4) Node Q can be locked by Ti in X,SIX,IX only
if parent(Q) locked by Ti in IX,SIX

(5) Ti is two-phase
(6) Ti can unlock node Q only if none of Q’s

children are locked by Ti

Examples – 2 level hierarchy
• T1 scans R, and updates a few tuples:

• T1 gets an SIX lock on R, then get X lock on tuples that
are updated.

• T2 uses an index to read only part of R:
• T2 gets an IS lock on R, and repeatedly gets an S lock on

tuples of R.

Tuples

Tables

CS5208 – Concurrency Control 80

tuples of R.

• T3 reads all of R:
• T3 gets an S lock on R.
• OR, T3 could behave like T2; can

use lock escalation to decide which.
• Lock escalation dynamically asks for

coarser-grained locks when too many
low level locks acquired

IS IX SIX

IS

IX
SIX





 


S X

S

X





Insert + delete operations

A

...

CS5208 – Concurrency Control 81

Z
 Insert

Modifications to locking rules:

(1) Get exclusive lock on A before deleting A

(2) At insert A operation by Ti,
Ti is given exclusive lock on A

CS5208 – Concurrency Control 82

g

Still have a problem: PhantomsPhantoms

Example: relation R (E#,name,…)

constraint: E# is key

use tuple locking

CS5208 – Concurrency Control 83

R E# Name ….

o1 55 Smith

o2 75 Jones

T1: Insert <99,Gore,…> into R
T2: Insert <99,Bush,…> into R

T1 T2

S1(o1) S2(o1)
S1(o2) S2(o2)

CS5208 – Concurrency Control 84

S1(o2) S2(o2)
Check Constraint Check Constraint

Insert o3[99,Gore,..]
Insert o4[99,Bush,..]

...

...

15

Solution

• Use multiple granularity tree

• Before insert of node Q,

lock parent(Q) in
R1

CS5208 – Concurrency Control 85

X mode R1

t1
t2 t3

Back to example
T1: Insert<99,Gore> T2: Insert<99,Bush>

T1 T2

X1(R)

Ch k t i t

XXX222(R)(R)(R) delayed

CS5208 – Concurrency Control 86

Check constraint
Insert<99,Gore>
U(R)

X2(R)
Check constraint
Oops! e# = 99 already in R!

B+-tree (Tree-based) Locking – Crabbing Protocol

20

10 35

A

B

CS5208 – Concurrency Control 87

12 13 38 41 4435 3620 22 23 3196 10

6 12 23 38 44

3 4 11

C

D E

F

G H I

B+-tree Locking (Read 38)

10 35

A

B

20
S-Lock

CS5208 – Concurrency Control 88

12 13 38 41 4435 3620 22 23 3196 10

6 12 23 38 44

3 4 11

C

D E

F

G H I

B+-tree Locking (Read 38)

10 35

A

B

20

CS5208 – Concurrency Control 89

12 13 38 41 4435 3620 22 23 3196 10

6 12 23 38 44

3 4 11

C

D E

F

G H I

B+-tree Locking (Read 38)

10 35

A

B

20

CS5208 – Concurrency Control 90

12 13 38 41 4435 3620 22 23 3196 10

6 12 23 38 44

3 4 11

C

D E

F

G H I

16

B+-tree Locking (Read 38)

10 35

A

B

20

CS5208 – Concurrency Control 91

12 13 38 41 4435 3620 22 23 3196 10

6 12 23 38 44

3 4 11

C

D E

F

G H I

B+-tree Locking (Read 38)

10 35

A

B

20

CS5208 – Concurrency Control 92

12 13 4435 3620 22 23 3196 10

6 12 23 38 44

3 4 11

C

D E

F

G H I

38 41

B+-tree Locking (Read 38)

10 35

A

B

20

CS5208 – Concurrency Control 93

12 13 4435 3620 22 23 3196 10

6 12 23 38 44

3 4 11

C

D E

F

G H I

38 41

B+-tree Locking (Insert 45)

10 35

A

B

20

CS5208 – Concurrency Control 94

12 13 4435 3620 22 23 3196 10

6 12 23 38 44

3 4 11

C

D E

F

G H I

38 41

B+-tree Locking (Insert 45)

10 35

A

B

20 X-Lock

CS5208 – Concurrency Control 95

12 13 4435 3620 22 23 3196 10

6 12 23 38 44

3 4 11

C

D E

F

G H I

38 41

B+-tree Locking (Insert 45)

10 35

A

B

20 X-Lock

CS5208 – Concurrency Control 96

12 13 4435 3620 22 23 3196 10

6 12 23 38 44

3 4 11

C

D E

F

G H I

38 41

17

B+-tree Locking (Insert 45)

10 35

A

B

20 X-Lock

CS5208 – Concurrency Control 97

12 13 35 3620 22 23 3196 10

6 12 23 38 44

3 4 11

C

D E

F

G H I

38 41 44

B+-tree Locking (Insert 45)

10 35

A

B

20 X-Lock

CS5208 – Concurrency Control 98

12 13 35 3620 22 23 3196 10

6 12 23 38 44

3 4 11

C

D E

F

G H I

38 41 44

NOTE: B is not released. Why?

B+-tree Locking (Insert 45)

10 35

A

B

20 X-Lock

CS5208 – Concurrency Control 99

12 13 35 3620 22 23 3196 10

6 12 23 38 44

3 4 11

C

D E

F

G H I

38 41 44

B+-tree Locking

• Can further optimize using S-Lock or
Intention Lock for insertion
• In this case, you may need to upgrade the lock and

there is possibility of deadlock arising

2PL i d f i d l ki

CS5208 – Concurrency Control 100

• 2PL is not used for index locking
• Deletion can be done “efficiently” at the

expense of violating the minimum utilization
requirement

Deadlocks

• Detection
• Wait-for graph

• Prevention

CS5208 – Concurrency Control 101

• Wait-die

• Wound-wait

Deadlock Detection

• Build Wait-For graph
• Use lock table structures
• Build incrementally or periodically
• When cycle found rollback victim

CS5208 – Concurrency Control 102

When cycle found, rollback victim
• How to determine the victim?

T1

T3

T2

T6

T5

T4
T7

18

Deadlock Prevention: Wait-die

• Transactions given a timestamp when they
arrive …. ts(Ti)

• Ti can only wait for Tj if ts(Ti)< ts(Tj)
l di (i b)

CS5208 – Concurrency Control 103

...else die (i.e., abort)

T1

(ts =10)

T2

(t 20)

wait

Example:

wait?

CS5208 – Concurrency Control 104

(ts =20)

T3

(ts =25)

wait
wait?

• Important detail: If a transaction re-starts, make sure it gets
its original timestamp. Why?

T1

(ts =22)

T2

(t 20)

Second Example:

requests A: wait for T2 or T3?

Note: ts between
20 and 25

CS5208 – Concurrency Control 105

(ts =20)

T3

(ts =25)

wait(A)
20 and 25.

T1

(ts =22)

Second Example (continued):
One option: T1 waits just for T3, transaction holding lock.
But when T2 gets lock, T1 will have to die!

CS5208 – Concurrency Control 106

T2

(ts =20)

T3

(ts =25)

wait(A)

wait(A)

T1

(ts =22)

Second Example (continued):

wait(A)

Another option: T1 only gets A lock after T2, T3 complete,
so T1 waits for both T2, T3  T1 dies right away!

CS5208 – Concurrency Control 107

T2

(ts =20)

T3

(ts =25)

wait(A)

wait(A)

T1

(ts =22)

Second Example (continued):

wait(A)

Yet another option: T1 preempts T2, so T1 only waits for
T3; T2 then waits for T3 and T1...  T2 may starve?

CS5208 – Concurrency Control 108

T2

(ts =20)

T3

(ts =25)

wait(A)

wait(A)

redundant arc

19

Deadlock Prevention: Wound-wait

• Transactions given a timestamp when they
arrive … ts(Ti)

• Ti wounds Tj if ts(Ti)< ts(Tj)

CS5208 – Concurrency Control 109

else Ti waits

“Wound”: Tj rolls back and gives lock to Ti

T1

(ts =25)

T2

(t 20)

wait

Example:

wait

CS5208 – Concurrency Control 110

(ts =20)

T3

(ts =10)

wait
wait

T1

(ts =15)

T2

(t 20)

Second Example:

requests A: wait for T2 or T3?

Note: ts between
10 and 20

CS5208 – Concurrency Control 111

(ts =20)

T3

(ts =10)

wait(A)
10 and 20.

T1

(ts =15)

Second Example (continued):
One option: T1 waits just for T3, transaction holding lock.
But when T2 gets lock, T1 waits for T2 and wounds T2.

CS5208 – Concurrency Control 112

T2

(ts =20)

T3

(ts =10)

wait(A)

wait(A)

T1

(ts =15)

Second Example (continued):

wait(A)

Another option: T1 only gets A lock after T2, T3 complete,
so T1 waits for both T2, T3  T2 wounded right away!

CS5208 – Concurrency Control 113

T2

(ts =20)

T3

(ts =10)

wait(A)

wait(A)

T1

(ts =15)

Second Example (continued):

wait(A)

Yet another option: T1 preempts T2, so T1 only waits for
T3; T2 then waits for T3 and T1...  T2 is spared!

CS5208 – Concurrency Control 114

T2

(ts =20)

T3

(ts =10)

wait(A)

wait(A)

20

Summary

• Have studied lock-based CC mechanisms

- 2 PL

- Multiple granularity

CS5208 – Concurrency Control 115

Multiple granularity

- Deadlock

• Did not cover non-locking based CC
(timestamp/validation-based) schemes

