
1

Review (Past year question)
• Consider the relations R1(A,B,C), R2(C,D,E) and R3(E,F), with 

primary keys A, C, E respectively. Assume that R1 has 10000 tuples, 
R2 has 15000 tuples and R3 has 7500 tuples. For simplicity, assume 
that all tuples (including the query result) have the same size, and that 
each page can contain 10 tuples of R. Consider the query: R1 JOIN R2 
JOIN R3. Assume that all attributes are of the same size, and any join 
output will include all attributes of all relations. Further, assume 
records do not span pages. Assuming the data are uniformly 
distributed, estimate the result size of the query.

• List all possible plans assuming only left-deep search space is 
considered (assuming only one join method). You may assume that ( g y j ) y
cross product are to be avoided.

• Compute the cost for each of the above plans you listed to determine 
the optimal plan. For simplicity, you may assume that only the nested-
block join is supported, the buffer size is 100 pages, and all 
intermediate results are to be stored in secondary storage.

Review (Past year question)
• Consider the relations R1(A,B,C), R2(C,D,E) and R3(E,F), 

with primary keys A, C, E respectively. Assume that R1 has 
10000 tuples, R2 has 15000 tuples and R3 has 7500 tuples. For10000 tuples, R2 has 15000 tuples and R3 has 7500 tuples. For 
simplicity, assume that all tuples (including the query result) 
have the same size, and that each page can contain 10 tuples of 
R. Consider the query: R1 JOIN R2 JOIN R3. Assume that all 
attributes are of the same size, and any join output will include 
all attributes of all relations. Further, assume records do not 
span pages. Assuming the data are uniformly distributed, 
estimate the result size of the query.q y
• Number of tuples = 10000
• Number of pages = 10000/10
• Number of attributes per page = 30; 
• Number of result tuples per page = 30/8 = 3
• Number of resultant pages = 10000/3

WRONG!!



2

Review (Past year question)

• Assume Left Deep Tree plans and one join method. 
In total there are 6 possible plans but since crossIn total, there are 6 possible plans, but since cross 
products are not permitted, we end up with 4 plans
• (R1 JOIN R2) JOIN R3

• (R2 JOIN R1) JOIN R3

• (R2 JOIN R3) JOIN R1

• (R3 JOIN R2) JOIN R1

Review (Past year question)

• for each plan, compute the cost of each join. there are two 
points to note: (a) remember to include the cost to write p ( )
out intermediate results, (b) the number of tuples per page 
may be different for each intermediate results.

I2Plan P1
Cost of Plan P1 = Cost (R1 JOIN R2) + 

Cost (I1 JOIN R3)

R3

R1 R2

I1
Size (I1) = 10000 tuples; 10000/5 pages
Cost (R1 JOIN R2) = 10000/10 + 

1000/98*(15000/15)+
10000/5

Cost(I1 JOIN R3) = join cost + cost to output I2



3

Transaction Management Overview

There are three side effects of acid  

CS5208 – Concurrency Control 5

There are three side effects of acid. 
Enhanced long term memory, 
decreased short term memory, and 
I forget the third.

- Timothy Leary

Query Optimization

Structure of a DBMS

y
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

These layers must consider 
concurrency
control and recovery
(Transaction Lock

CS5208 – Concurrency Control 6

Disk Space Management

DB

(Transaction, Lock, 
Recovery Managers)



4

Transactions
• Transaction (“xact”)- DBMS’s abstract view of a user program 

(or activity): 
• A sequence of reads and writes of database objects, e.g., a transaction that q j g

transfers $100 from account A to account B can be expressed as:
• Read Account A; 

• Write Updated Account A ($100 less);

• Read Account B;

• Write Updated Account B ($100 more);

• Unit of work that must commit or abort as an atomic unit

• Transaction Manager controls the execution of transactions

CS5208 – Concurrency Control 7

Transaction Manager controls the execution of transactions.

• User’s program logic is invisible to DBMS!
• Arbitrary computation possible on data fetched from the DB

• The DBMS only sees data read/written from/to the DB.

ACID properties of Transaction Executions

•• AAtomicity: All actions in the Xact happen or none•• AAtomicity: All actions in the Xact happen, or none 
happen.

•• CConsistency: If each Xact is consistent, and the DB 
starts consistent, it ends up consistent.

•• IIsolation: Execution of one Xact is isolated from that 
of other Xacts

CS5208 – Concurrency Control 8

of other Xacts.

•• DDurability: If a Xact commits, its effects persist.



5

Atomicity and Durability
• A transaction ends in one of two ways:

• commit after completing all its actions
• “commit” is a contract with the caller of the DB

A.C.I.D.

• abort (or be aborted by the DBMS) after executing some actions. 
• Or system crash while the xact is in progress; treat as abort. 

• Two important properties for a transaction:
• Atomicity : Either execute all its actions, or none of them
• Durability : The effects of a committed xact must survive failures.

DBMS th b b l i ll ti

CS5208 – Concurrency Control 9

• DBMS ensures the above by logging all actions 
(Recovery):
• Undo the actions of aborted/failed transactions.
• Redo actions of committed transactions not yet propagated to disk 

when system crashes.

Transaction Consistency
• Transactions preserve DB consistency

• Given a consistent DB state, produce another consistent DB 
state

A.C.I.D.

• DB Consistency expressed as a set of declarative 
Integrity Constraints
• CREATE TABLE/ASSERTION statements

• E.g. Each CS186 student can only register in one project group. Each 
group must have 2 students.

• Application-level

CS5208 – Concurrency Control 10

• Application-level
• E.g. Bank account total of each customer must stay the same during a 

“transfer” from savings to checking account

• Transactions that violate ICs are aborted
• That’s all the DBMS can automatically check!



6

Isolation (Concurrency)

• DBMS interleaves actions of many xacts concurrently

A.C.I.D.

• Actions = reads/writes of DB objects

• DBMS ensures xacts do not “step onto” one another.
• Each xact executes as if it were running by itself.

• Concurrent accesses have no effect on a Transaction’s behavior
• Net effect must be identical to executing all transactions for some 

i l d

CS5208 – Concurrency Control 11

serial order.
• Users & programmers think about transactions in isolation

• Without considering effects of other concurrent transactions!

Concurrency Control & Recovery

• Concurrency Control
• Provide correct and highly available data access in the presence of g y p

concurrent access by many users

• Recovery
• Ensures database is fault tolerant, and not corrupted by software, 

system or media failure

• 24x7 access to mission critical data

CS5208 – Concurrency Control 12

• A boon to application authors!
• Existence of CC&R allows applications to be written without  

explicit concern for concurrency and fault tolerance



7

Concurrency Control 

Smile, it is the key that fits the 

CS5208 – Concurrency Control 13

, y
lock of everybody's heart.

Anthony J. D'Angelo,
The College Blue Book

Concurrency Control
T1 T2 … Tn

DB
(consistency

Improves 
latency and 
throughput

CS5208 – Concurrency Control 14

constraints)



8

Example:

T1: Read(A) T2: Read(A)
A  A+100 A  A2
Write(A) Write(A)
Read(B) Read(B)
B  B+100 B  B2

CS5208 – Concurrency Control 15

Write(B) Write(B)
Constraint:  A=B

Schedule A: Serial Schedule
T1 T2
Read(A); A  A+100
W i (A)

A B
25 25

Write(A);
Read(B); B  B+100;
Write(B);

Read(A);A  A2;
Write(A);

125

125

250

CS5208 – Concurrency Control 16

Read(B);B  B2;
Write(B); 250

250 250



9

Schedule B
T1 T2
Read(A); A  A+100

A B
25 25

( );
Write(A);

Read(A);A  A2;
Write(A);

Read(B); B  B+100;
Write(B);

125

250

125

CS5208 – Concurrency Control 17

( );

Read(B);B  B2;
Write(B);

125

250
250 250

Schedule C

T1 T2
Read(A); A  A+100

A B
25 25

Read(A); A  A+100
Write(A);

Read(A);A  A2;
Write(A);

Read(B);B  B2;
Write(B);

125

250

50

CS5208 – Concurrency Control 18

Write(B);
Read(B); B  B+100;
Write(B);

50

150
250 150



10

Schedule D

T1 T2’
Read(A); A  A+100

A B
25 25

Same as Schedule C
but with new T2’

Read(A); A  A+100
Write(A);

Read(A);A  A1;
Write(A);

Read(B);B  B1;
Write(B);

125

125

25

CS5208 – Concurrency Control 19

Write(B);
Read(B); B  B+100;
Write(B);

25

125
125 125

• Want schedules that are “good”, regardless of

What are good schedules?

• Only look at order of read and writes

CS5208 – Concurrency Control 20

Example: 

Sb=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B)



11

• Want schedules that are “good”, regardless of

What are good schedules?

• initial state and

• transaction semantics

• Only look at order of read and writes

CS5208 – Concurrency Control 21

Example: 

Sb=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B)

Sb=r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B)

Example:

Sb’=r1(A)w1(A) r1(B)w1(B)r2(A)w2(A)r2(B)w2(B)

T1 T1
T2 T2

CS5208 – Concurrency Control 22

T1 T2

no cycles  Sb is “equivalent” to a serial      
schedule (in this case T1,T2)



12

Example (Cont)

Sd=r1(A)w1(A)r2(A)w2(A) r2(B)w2(B)r1(B)w1(B)( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

CS5208 – Concurrency Control 23

Example (Cont)

Sd=r1(A)w1(A)r2(A)w2(A) r2(B)w2(B)r1(B)w1(B)( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

CS5208 – Concurrency Control 24



13

Example (Cont)

Sd=r1(A)w1(A)r2(A)w2(A) r2(B)w2(B)r1(B)w1(B)

T1  T2

Also, T2  T1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

CS5208 – Concurrency Control 25

T1 T2 Sd cannot be rearranged into a serial schedule

Sd is not “equivalent” to any serial schedule

Sd is “bad”

Concepts

Transaction: sequence of ri(x), wi(x) actions
Conflicting actions: r1(A) w1(A)      w1(A)

w2(A) r2(A)       w2(A)

Schedule: represents chronological order in which 
actions are executed

Serial schedule: no interleaving of actions or 

CS5208 – Concurrency Control 26

g
transactions

Serializable schedule: a schedule whose effect on any 
consistent database instance is guaranteed to be 
identical to that of some complete serial schedule



14

Definition

S1, S2 are conflict equivalent schedules

if S b t f d i t S b i fif S1 can be transformed into S2 by a series of 
swaps on non-conflicting actions.

A schedule is conflict serializable if it is 
conflict equivalent to some serial schedule.

CS5208 – Concurrency Control 27

Note: (a) Some “serializable” schedules are NOT conflict serializable.
A price we pay to achieve efficient enforcement.

(b) There are alternative (weaker) notions of serializability.

Conflict-Serializability is NOT 
necessary for Serializability

• S1: w1(Y); w1(X); w2(Y); w2(X); w3(X)
• Serial schedule

• S2: w1(Y); w2(Y); w2(X); w1(X); w3(X)
• Serializable schedule since effect is same as S1

CS5208 – Concurrency Control 28

• S1, S2 not conflict equivalent



15

Nodes: transactions in S

Precedence graph P(S)  (S is schedule)

Arcs:  Ti  Tj whenever

- pi(A), qj(A) are actions in S

- pi(A) <S qj(A)

at least one of pi qj is a write

CS5208 – Concurrency Control 29

- at least one of pi, qj is a write

Exercise:

• What is P(S) for
S = w3(A) w2(C) r1(A) w1(B) r1(C) w2(A) r4(A) w4(D)S = w3(A) w2(C) r1(A) w1(B) r1(C) w2(A) r4(A) w4(D)

CS5208 – Concurrency Control 30

• Is S serializable?



16

Exercise:

• What is P(S) for
S = w3(A) w2(C) r1(A) w1(B) r1(C) w2(A) r4(A) w4(D)S = w3(A) w2(C) r1(A) w1(B) r1(C) w2(A) r4(A) w4(D)

T3 T1 T2 T4

CS5208 – Concurrency Control 31

• Is S serializable?

Theorem

P(S1) acyclic  S1 conflict serializable

S1, S2 conflict equivalent  P(S1)=P(S2) ???

CS5208 – Concurrency Control 32

P(S1)=P(S2)  S1, S2 conflict equivalent ???



17

Theorem

P(S1) acyclic  S1 conflict serializable

S1, S2 conflict equivalent  P(S1)=P(S2) ???

CS5208 – Concurrency Control 33

P(S1)=P(S2)  S1, S2 conflict equivalent ???

S1 (A) (C) (C) (A) (B) (B) (A)

P(S1)=P(S2)  S1, S2 conflict equivalent 

• S1 = w3(A) w2(C) r1(C) r1(A) w2(B) w1(B) w2(A)

• S2 = w3(A) r1(A) r2(B) w1(B) r1(C) w2(C) w2(A)

T3 T1 T2

CS5208 – Concurrency Control 34

T3 T1 T2



18

prevent P(S) cycles from occurring 

How to enforce serializable schedules?

p ( ) y g

T1  T2 ….. Tn

Scheduler

CS5208 – Concurrency Control 35

DB

A locking protocol
Two new actions:

lock (exclusive): li (A)lock (exclusive): li (A)

unlock: ui (A)

scheduler

T1 T2

lock

CS5208 – Concurrency Control 36

scheduler table



19

Rules

R l #1 W ll f d iRule #1: Well-formed transactions
Ti:  … li(A) … pi(A) … ui(A) ...

Rule #2: Legal scheduler

S = li(A) ui(A)

CS5208 – Concurrency Control 37

S = …….. li(A) ………... ui(A) ……...

no lj(A)

• What schedules are legal?
What transactions are well formed?

Exercise:

What transactions are well-formed?
S1 = l1(A)l1(B)r1(A)w1(B)l2(B)u1(A)u1(B)
r2(B)w2(B)u2(B)l3(B)r3(B)u3(B)

S2 = l1(A)r1(A)w1(B)u1(A)u1(B)
l2(B)r2(B)w2(B)l3(B)r3(B)u3(B)

Not legal

Not well-formed

Not legal

CS5208 – Concurrency Control 38

( ) ( ) ( ) ( ) ( ) ( )

S3 = l1(A)r1(A)u1(A)l1(B)w1(B)u1(B)
l2(B)r2(B)w2(B)u2(B)l3(B)r3(B)u3(B)

g



20

Schedule F (Schedule C with locking)

T1 T2 25    25

A   B

l1(A);Read(A)

AA+100;Write(A);u1(A) 125

l2(A);Read(A)

A Ax2;Write(A);u2(A) 250

l2(B);Read(B)

Rules 1 & 2 are not enough!

CS5208 – Concurrency Control 39

( ); ( )

B  Bx2;Write(B);u2(B) 50

l1(B);Read(B)

B  B+100;Write(B);u1(B) 150

250 150

Rule #3  Two phase locking (2PL)
for transactions

Ti = ……. li(A) ………... ui(A) ……...

no unlocks   no locks

# locks
held by
Ti

CS5208 – Concurrency Control 40

Ti
Time

Growing Shrinking
Phase Phase



21

Schedule G

T1 T2

l1(A);Read(A)l1(A);Read(A)

A A+100;Write(A)

l1(B); u1(A)

l2(A);Read(A)

A Ax2;Write(A);lll222(B)(B)(B)

R d(B) B B+100

delayed

CS5208 – Concurrency Control 41

Read(B);B  B+100

Write(B); u1(B)

l2(B); u2(A);Read(B)

B  Bx2;Write(B);u2(B); 

Schedule H    (T2 reversed)

T1 T2
l (A); Read(A) l (B);Read(B)l1(A); Read(A) l1(B);Read(B)
A  A+100;Write(A) B  Bx2;Write(B)
lll222(B)(B)(B) lll222(A)(A)(A)

delayeddelayed

Transactions are deadlocked

CS5208 – Concurrency Control 42

Transactions are deadlocked
• Some deadlocked transactions are rolled 

back (and all their actions undone) 



22

Theorem

Rules #1,2,3 (2PL)   conflict serializable

schedule

CS5208 – Concurrency Control 43

• Beyond this simple 2PL protocol, it is all a 

What else?

matter of improving performance and 
allowing more concurrency….
• Shared locks

• Multiple granularity

I d l d h

CS5208 – Concurrency Control 44

• Inserts, deletes and phantoms

• Other types of CC mechanisms



23

Shared locks

So far (exclusive lock):

S1 = ...l1(A) r1(A) u1(A) … l2(A) r2(A) u2(A) …

Do not conflict

Instead:

CS5208 – Concurrency Control 45

S2=... ls1(A) r1(A) ls2(A) r2(A) …. us1(A) us2(A) 

Lock actions

l-ti(A): lock A in t mode (t is S or X)( ) ( )

u-ti(A): unlock t mode (t is S or X)

Shorthand:

ui(A): unlock whatever modes Ti has locked A

CS5208 – Concurrency Control 46

ui(A): unlock whatever modes Ti has locked A



24

Rule #1    Well formed transactions

Ti =... l-S1(A) … r1(A) … u1 (A) …

Ti =... l-X1(A) … w1(A) … u1 (A) …

CS5208 – Concurrency Control 47

Option 1: Request exclusive lock

Ti l X1(A) 1(A) 1(A) (A)

What about transactions that read and 
write same object?

Ti = ...l-X1(A) … r1(A) ... w1(A) ... u(A) …

Option 2:  Upgrade
(E.g.,  need to read, but don’t know if will write…)

Ti=... l-S1(A) … r1(A) ... l-X1(A) …w1(A) ...u(A)…

CS5208 – Concurrency Control 48

Think of
- Get 2nd lock on A, or
- Drop S, get X lock



25

Rule #2   Legal scheduler

S = ....l-Si(A) …  … ui(A) …

no l-Xj(A)

S = ... l-Xi(A) …    … ui(A) …

CS5208 – Concurrency Control 49

no l-Xj(A)
no l-Sj(A)

A way to summarize Rule #2

Compatibility matrix
New request

S X

S    true false

X false false
Lock 

already
held in

q

CS5208 – Concurrency Control 50



26

Rule # 3     2PL transactions

No change except for upgrades:

(I)  If upgrade gets more locks

(e.g., S  {S, X})  then no change!

(II) If upgrade releases read (shared)
lock (e.g., S  X)

CS5208 – Concurrency Control 51

- can be allowed in growing phase

Rules 1 2 3 Conf serializable

Theorem

Rules 1,2,3  Conf.serializable
for S/X locks           schedules

CS5208 – Concurrency Control 52



27

Example

T1 T2
l S (A) (A)l-S1(A); r1(A)

l-S2(A); r2(A)
l-S2(B); r2(B)

lll---XXX111(B) (Denied)(B) (Denied)(B) (Denied)
u (A); u (B)

CS5208 – Concurrency Control 53

u2(A); u2(B)
l-X1(B); r1(B); w1(B)
u2(A); u2(B)

Lock types beyond S/X

Examples:

(1) update lock

(2) increment lock

CS5208 – Concurrency Control 54



28

Update locks
A common deadlock problem with upgrades:
T1 T2
l-S1(A)

l-S2(A)
lll---XXX111(A)(A)(A)

lll---XXX222(A)(A)(A)

CS5208 – Concurrency Control 55

( )( )( )
--- Deadlock ---

Solution:  Update Locks - If Ti wants to read A and knows it

may later want to write A, it requests update lock (not shared)

New request

Comp S X U

S T F T

X F F F
Lock 

already
held in

CS5208 – Concurrency Control 56

U   TorF? F F
held in



29

New request

Comp S X U

S T F T

X F F F
Lock 

already
held in

CS5208 – Concurrency Control 57

U   F F F
held in

Increment Locks

• Atomic increment action: INi(A)

{R d(A) A A k W i (A)}{Read(A); A  A+k; Write(A)}

• INi(A), INj(A) do not conflict!

A=7

A=5 A=17

INi(A)
+2

INj(A)
+10

CS5208 – Concurrency Control 58

A=5 A=17

A=15

+2
+10

INj(A)

+2

INi(A)



30

New request

Comp S X I

S T F

X F F

I

Lock 
already
held in

CS5208 – Concurrency Control 59

New request

Comp S X I

S T F F

X F F F

I F F T

Lock 
already
held in

CS5208 – Concurrency Control 60



31

Note: object A may be locked in different 
modes at the same timemodes at the same time...

l-X3(A)…?

S1=...l-S1(A)…l-S2(A)…   l-S3(A)…?

l-U3(A)…? 

CS5208 – Concurrency Control 61

To grant a lock in mode t, mode t must be compatible 
with all currently held locks on object

Review (Past year exam question)
• Consider a relation databases with the following pages and tuples:

• Page 1: t1, t2, t3, t4                                               Page 2: t5, t6, t7

• Page 3: t8, t9, t10                                                  Page 4: t11, t12, t13, t14

• Suppose the system supports ONLY exclusive lock. We define a “convoy” as a point in time in which one 
transaction T holds a lock on an object O (O can be a tuple, or page), and at least two other transactions j ( p , p g ),
are waiting for the lock on object O. We further define a “deadlock” as a point in time in which there is a 
sequence of transactions T1, T2, …, Tn, such that for all i such that i < n, Ti waits for T(i+1), and also Tn
waits for T1.

• Assume that transactions acquire locks at page-level, i.e., to access a tuple, the entire page must be locked. 
Consider the following three transactions (Note: L = lock, U = unlock, R = Read, W = Write)

T1: L(t6), R(t6), L(t9), R(t9), W(t6), U(t6), U(t9)

T2: L(t2), R(t2), L(t6), R(t6), W(t2), U(t2), U(t6)

T3: L(t8), R(t8), L(t3), R(t3), W(t3), U(t3), U(t8)

• Is  there some schedule where a convoy could occur? If so, draw the wait-for graph that shows the convoy. 

CS5208 – Concurrency Control 62

y , g p y
(In a wait-for graph, transactions are nodes and a directed edge from transactions T1 to T2 exists if T1 
waits for T2.) If not, explain why not.

• For the same scenario in (I), is there a schedule where a deadlock could occur? If so, draw the wait-for 
graph that shows the deadlock. Label the edge in the graph with the page that is being waited for. (A wait-
for graph shows a deadlock if there is a cycle in the graph.) If not, explain why not. 



32

Review
• Consider a relation databases with the following pages and tuples:

• Page 1: t1, t2, t3, t4,
• Page 2: t5, t6, t7
• Page 3: t8, t9, t10
• Page 4: t11, t12, t13, t14

• Suppose the system supports ONLY exclusive lock. We define a “convoy” as a point in time in which one 
transaction T holds a lock on an object O (O can be a tuple, or page), and at least two other transactions 
are waiting for the lock on object O. We further define a “deadlock” as a point in time in which there is a 
sequence of transactions T1, T2, …, Tn, such that for all i such that i < n, Ti waits for T(i+1), and also Tn
waits for T1.

• Assume that transactions acquire locks at page-level, i.e., to access a tuple, the entire page must be 
locked. Consider the following three transactions (Note: L = lock, U = unlock, R = Read, W = Write)

T1: L(t6), R(t6), L(t9), R(t9), W(t6), U(t6), U(t9)
T2: L(t2), R(t2), L(t6), R(t6), W(t2), U(t2), U(t6)
T3: L(t8), R(t8), L(t3), R(t3), W(t3), U(t3), U(t8)

CS5208 – Concurrency Control 63

• Is  there some schedule where a convoy could occur? If so, draw the wait-for graph that shows the 
convoy. (In a wait-for graph, transactions are nodes and a directed edge from transactions T1 to T2 exists 
if T1 waits for T2.) If not, explain why not.

No convoy, since no more than two transactions accesses the same page

Review
• Consider a relation databases with the following pages and tuples:

• Page 1: t1, t2, t3, t4,                                             Page 2: t5, t6, t7

• Page 3: t8, t9, t10                                                 Page 4: t11, t12, t13, t14

• Suppose the system supports ONLY exclusive lock. We define a “convoy” as a point in time in which one 
transaction T holds a lock on an object O (O can be a tuple, or page), and at least two other transactions are 
waiting for the lock on object O. We further define a “deadlock” as a point in time in which there is a sequence 
of transactions T1, T2, …, Tn, such that for all i such that i < n, Ti waits for T(i+1), and also Tn waits for T1.

• Assume that transactions acquire locks at page-level, i.e., to access a tuple, the entire page must be locked. 
Consider the following three transactions (Note: L = lock, U = unlock, R = Read, W = Write)

T1: L(t6), R(t6), L(t9), R(t9), W(t6), U(t6), U(t9)

T2: L(t2), R(t2), L(t6), R(t6), W(t2), U(t2), U(t6)

T3: L(t8), R(t8), L(t3), R(t3), W(t3), U(t3), U(t8)

• For the same scenario in (I), is there a schedule where a deadlock could occur? If so, draw the wait-for graph 
that shows the deadlock. Label the edge in the graph with the page that is being waited for. (A wait-for graph 

There is a part 2 to this question: What if we are dealing 
with tuple-level locking?

CS5208 – Concurrency Control 64

shows a deadlock if there is a cycle in the graph.) If not, explain why not. 

T1 locks Page 2; T2 locks Page 1; T3 locks Page 3; T1 attempts 
to lock Page 3 (T1 -> T3); 
T2 attempts to lock Page 2 (T2 -> T1); T3 attempts to lock Page 1 
(T3 -> T1).  Deadlock. 



33

How does locking work in practice?

• Every system is differenty y
(E.g., may not even provide 

CONFLICT-SERIALIZABLE schedules)

• But here is one (simplified) way ...

CS5208 – Concurrency Control 65

(1) Don’t trust transactions to request/release locks

Sample Locking System:

(1) Don t trust transactions to request/release locks

(2) Hold all locks until transaction commits

#
locks

CS5208 – Concurrency Control 66

locks

time



34

Ti

Read(A),Write(B)

Architecture of a Locking Scheduler

l(A),Read(A),l(B),Write(B)…

Scheduler, part I

Scheduler, part II

lock
table

Part I: selects appropriate lock mode, 
and inserts appropriate lock actions 
ahead of  all database operation

CS5208 – Concurrency Control 67

Read(A),Write(B)

DB

Ti

Read(A),Write(B)

Architecture of a Locking Scheduler
Part II:Executes the operations
a) It determines if lock should be granted; 

if not, then transaction is delayed.
b) If transaction is not delayed, 

l(A),Read(A),l(B),Write(B)…

Scheduler, part I

Scheduler, part II

lock
table

- If action is a normal opr, then 
send it to the dbms

- If action is a lock opr, then
check if lock can be granted
* if so, update lock table
* if not, delay transaction but 

update lock table to reflect
transaction waiting

CS5208 – Concurrency Control 68

Read(A),Write(B)

DB

c) When a transaction commits/aborts, 
Part I is notified and releases all locks.
Part II will be notified if there are 
transactions waiting.

d) Part II determines next transactions to
be given the released locks. Those 
that acquired locks can be processed.



35

Lock table (Conceptually)

A
If null, object is unlocked

A 

B
C



Lock info for B

Lock info for C

y 
po

ss
ib

le
 o

bj
ec

t

CS5208 – Concurrency Control 69

...Ev
er

y

But use hash table:

A

..

A
Lock info for AA

.
...

H

CS5208 – Concurrency Control 70

If object not found in hash table, it is unlocked



36

Lock info for A - example

tran  mode wait? Nxt T_link
Object:A SObject:A
Group mode:U
Waiting:yes
List:

T1 S no

T2 U no

T3 XX yes 

CS5208 – Concurrency Control 71

To other T3 
records

What are the objects we lock?

Relation A Tuple A
l

Disk 
bl k

?

Relation B

...

Tuple B
Tuple C

...

block
A

Disk 
block

B

CS5208 – Concurrency Control 72

...

DB DB DB



37

• Locking works in any case, but should we 
choose small or large objects?

If we lock large objects (e.g., Relations)
Need few locks
Low concurrency

If we lock small objects (e.g., tuples,fields)
Need more locks
More concurrency

CS5208 – Concurrency Control 73

More concurrency

We can have it both ways!!

Managing Hierarchies of Database Elements

Tables

Database

R1

B1

B2 B3
B4

Tuples

Tables

Pages

CS5208 – Concurrency Control 74

t2.1 t2.2 t3.1 t3.2



38

Warning Protocol

Comp Requestor

IS    IX    S   SIX  X

IS

Holder   IX

S

T T T T F
F
FFTFT

FFTT

CS5208 – Concurrency Control 75

S

SIX

X

F
F
FFFFF

FFFT
FTFT

Multiple Granularity: Warning Protocol

R1
T1(IS) , T2(IX)

t1
t2 t3

t4

T1(S) T2(X)

CS5208 – Concurrency Control 76

 IS – Intent to get S lock(s) at 
finer granularity.

 IX – Intent to get X lock(s) at 
finer granularity.

 SIX mode: Like S & IX at the 
same time.



39

Warning Protocol

Comp Requestor

IS    IX    S   SIX X

IS

Holder   IX

S

T T T T F
F
FFTFT

FFTT
Does it make 
sense to have 
XIS?

CS5208 – Concurrency Control 77

S

SIX

X

F
F
FFFFF

FFFT
FTFT

Parent Child can be
locked in locked in

P
IS
IX
S
SIX
X

C

IS, S
IS, S, IX, X, SIX
[S, IS] not necessary
X, IX, [SIX]
none

CS5208 – Concurrency Control 78

X



40

Rules

(1) Follow multiple granularity comp function
(2) Lock root of tree first, any mode( ) , y
(3) Node Q can be locked by Ti in S or IS only if      

parent(Q) locked by Ti in IX or IS
(4) Node Q can be locked by Ti in X,SIX,IX only 

if parent(Q) locked by Ti in IX,SIX
(5) Ti i t h

CS5208 – Concurrency Control 79

(5) Ti is two-phase
(6) Ti can unlock node Q only if none of Q’s      

children are locked by Ti

Examples – 2 level hierarchy
• T1 scans R, and updates a few tuples:

• T1 gets an SIX lock on R, then get X lock on tuples that 
are updated.

Tuples

Tables

• T2 uses an index to read only part of R:
• T2 gets an IS lock on R, and repeatedly gets an S lock on 

tuples of R.

• T3 reads all of R:
• T3 gets an S lock on R. 

O 3 ld b h lik 2

IS IX SIX

IS   

S X



CS5208 – Concurrency Control 80

• OR, T3 could behave like T2; can                                      
use lock escalation to decide which.

• Lock escalation dynamically asks for 
coarser-grained locks when too many
low level locks acquired

IS

IX
SIX





 


S

X







41

Insert + delete operations

AA

Z


...

Insert

CS5208 – Concurrency Control 81

Modifications to locking rules:

(1) Get exclusive lock on A before deleting A( ) g

(2) At insert A operation by Ti,
Ti is given exclusive lock on A

CS5208 – Concurrency Control 82



42

Still have a problem: PhantomsPhantoms

Example: relation R (E#,name,…)

constraint: E# is key

use tuple locking

R E# Name ….

CS5208 – Concurrency Control 83

# N e .

o1 55 Smith

o2 75 Jones

T1: Insert <99,Gore,…> into R
T2: Insert <99,Bush,…> into R

T1 T2T1 T2

S1(o1) S2(o1)
S1(o2) S2(o2)
Check Constraint Check Constraint

. .

CS5208 – Concurrency Control 84

Insert o3[99,Gore,..]
Insert o4[99,Bush,..]

... ..



43

Solution

• Use multiple granularity tree

• Before insert of node Q,

lock parent(Q) in

X mode R1

t

CS5208 – Concurrency Control 85

t1
t2 t3

Back to example
T1: Insert<99,Gore> T2: Insert<99,Bush>

T1 T2

X1(R)( )

Check constraint
Insert<99,Gore>
U(R)

XXX222(R)(R)(R) delayed

CS5208 – Concurrency Control 86

X2(R)
Check constraint
Oops! e# = 99 already in R!



44

B+-tree (Tree-based) Locking – Crabbing Protocol

20 A

10 35

6 12 23 38 44

B

CF

CS5208 – Concurrency Control 87

12 13 38 41 4435 3620 22 23 3196 103 4 11

D EG H I

B+-tree Locking (Read 38)

A20
S-Lock

10 35

6 12 23 38 44

B

CF

CS5208 – Concurrency Control 88

12 13 38 41 4435 3620 22 23 3196 103 4 11

D EG H I



45

B+-tree Locking (Read 38)

A20

10 35

6 12 23 38 44

B

CF

CS5208 – Concurrency Control 89

12 13 38 41 4435 3620 22 23 3196 103 4 11

D EG H I

B+-tree Locking (Read 38)

A20

10 35

6 12 23 38 44

B

CF

CS5208 – Concurrency Control 90

12 13 38 41 4435 3620 22 23 3196 103 4 11

D EG H I



46

B+-tree Locking (Read 38)

A20

10 35

6 12 23 38 44

B

CF

CS5208 – Concurrency Control 91

12 13 38 41 4435 3620 22 23 3196 103 4 11

D EG H I

B+-tree Locking (Read 38)

A20

10 35

6 12 23 38 44

B

CF

CS5208 – Concurrency Control 92

12 13 4435 3620 22 23 3196 103 4 11

D EG H I

38 41



47

B+-tree Locking (Read 38)

A20

10 35

6 12 23 38 44

B

CF

CS5208 – Concurrency Control 93

12 13 4435 3620 22 23 3196 103 4 11

D EG H I

38 41

B+-tree Locking (Insert 45)

A20

10 35

6 12 23 38 44

B

CF

CS5208 – Concurrency Control 94

12 13 4435 3620 22 23 3196 103 4 11

D EG H I

38 41



48

B+-tree Locking (Insert 45)

A20 X-Lock

10 35

6 12 23 38 44

B

CF

CS5208 – Concurrency Control 95

12 13 4435 3620 22 23 3196 103 4 11

D EG H I

38 41

B+-tree Locking (Insert 45)

A20 X-Lock

10 35

6 12 23 38 44

B

CF

CS5208 – Concurrency Control 96

12 13 4435 3620 22 23 3196 103 4 11

D EG H I

38 41



49

B+-tree Locking (Insert 45)

A20 X-Lock

10 35

6 12 23 38 44

B

CF

CS5208 – Concurrency Control 97

12 13 35 3620 22 23 3196 103 4 11

D EG H I

38 41 44

B+-tree Locking (Insert 45)

A20 X-Lock

10 35

6 12 23 38 44

B

CF

CS5208 – Concurrency Control 98

12 13 35 3620 22 23 3196 103 4 11

D EG H I

38 41 44

NOTE: B is not released. Why?



50

B+-tree Locking (Insert 45)

A20 X-Lock

10 35

6 12 23 38 44

B

CF

CS5208 – Concurrency Control 99

12 13 35 3620 22 23 3196 103 4 11

D EG H I

38 41 44

B+-tree Locking

• Can further optimize using S-Lock or 
Intention Lock for insertion 
• In this case, you may need to upgrade the lock and 

there is possibility of deadlock arising

• 2PL is not used for index locking
• Deletion can be done “efficiently” at the 

expense of violating the minimum utilization

CS5208 – Concurrency Control 100

expense of violating the minimum utilization 
requirement



51

Deadlocks

• Detection
• Wait-for graph

• Prevention
• Wait-die

• Wound-wait

CS5208 – Concurrency Control 101

Deadlock Detection

• Build Wait-For graph
U l k t bl t t• Use lock table structures

• Build incrementally or periodically
• When cycle found, rollback victim

• How to determine the victim?

T5

CS5208 – Concurrency Control 102

T1

T3

T2

T6

T5

T4
T7



52

Deadlock Prevention: Wait-die

• Transactions given a timestamp when they 
i (T )arrive …. ts(Ti)

• Ti can only wait for Tj if ts(Ti)< ts(Tj)
...else die (i.e., abort)

CS5208 – Concurrency Control 103

T1

( 10) wait

Example:

(ts =10)

T2

(ts =20)

T3

wait

wait
wait?

CS5208 – Concurrency Control 104

T3

(ts =25)

• Important detail: If a transaction re-starts, make sure it gets 
its original timestamp.  Why?



53

T1

( 22)

Second Example:

requests A: wait for T2 or T3?

(ts =22)

T2

(ts =20)

T3

wait(A)

Note: ts between
20 and 25.

CS5208 – Concurrency Control 105

T3

(ts =25)

Second Example (continued):
One option: T1 waits just for T3, transaction holding lock.
But when T2 gets lock, T1 will have to die!

T1

(ts =22)

T2

(ts =20)wait(A)

wait(A)

CS5208 – Concurrency Control 106

T3

(ts =25)



54

Second Example (continued):
Another option: T1 only gets A lock after T2, T3 complete,
so T1 waits for both T2, T3  T1 dies right away!

T1

(ts =22)

T2

(ts =20)wait(A)

wait(A)

wait(A)

CS5208 – Concurrency Control 107

T3

(ts =25)

Second Example (continued):
Yet another option: T1 preempts T2, so T1 only waits for 
T3; T2 then waits for T3 and T1...    T2 may starve?

T1

(ts =22)

T2

(ts =20)wait(A)

wait(A)

wait(A)

CS5208 – Concurrency Control 108

T3

(ts =25)

redundant arc



55

Deadlock Prevention: Wound-wait

• Transactions given a timestamp when they 
i (T )arrive … ts(Ti)

• Ti wounds Tj if  ts(Ti)< ts(Tj)

else Ti waits

CS5208 – Concurrency Control 109

“Wound”: Tj rolls back and gives lock to Ti

T1

( 25) wait

Example:

(ts =25)

T2

(ts =20)

T3

wait

wait
wait

CS5208 – Concurrency Control 110

T3

(ts =10)



56

T1

( 15)

Second Example:

requests A: wait for T2 or T3?

(ts =15)

T2

(ts =20)

T3

wait(A)

Note: ts between
10 and 20.

CS5208 – Concurrency Control 111

T3

(ts =10)

Second Example (continued):
One option: T1 waits just for T3, transaction holding lock.
But when T2 gets lock, T1 waits for T2 and wounds T2.

T1

(ts =15)

T2

(ts =20)wait(A)

wait(A)

CS5208 – Concurrency Control 112

T3

(ts =10)



57

Second Example (continued):
Another option: T1 only gets A lock after T2, T3 complete,
so T1 waits for both T2, T3  T2 wounded right away!

T1

(ts =15)

T2

(ts =20)wait(A)

wait(A)

wait(A)

CS5208 – Concurrency Control 113

T3

(ts =10)

Second Example (continued):
Yet another option: T1 preempts T2, so T1 only waits for 
T3; T2 then waits for T3 and T1...    T2 is spared!

T1

(ts =15)

T2

(ts =20)wait(A)

wait(A)

wait(A)

CS5208 – Concurrency Control 114

T3

(ts =10)



58

Summary

• Have studied lock-based CC mechanisms

- 2 PL

- Multiple granularity

- Deadlock

• Did not cover non locking based CC

CS5208 – Concurrency Control 115

• Did not cover non-locking based CC 
(timestamp/validation-based) schemes


