
1

Review
• Suppose a doctor can work in several hospitals and receives a

salary from each one. Moreover, suppose each doctor has a
primary home address and several doctors can have the same
primary home address. Is

R(doctor hospital salary primary home address)R(doctor, hospital, salary, primary_home_address)
normalized?

• What are the functional dependencies?
– doctor, hospital  salary
– doctor  primary_home_address
– doctor, hospital  primary_home_address

• The key is (doctor hospital) Since doctor (in second FD) is a

CS5208 1

• The key is (doctor, hospital). Since doctor (in second FD) is a
subset of the key, the table is not normalized.

• A normalized decomposition would be:
– R1(doctor, hospital, salary)
– R2(doctor, primary_home_address)

Disk Storage &Disk, Storage &
Access Methods

CS5208 2

2

Disks and Files

• DBMS stores information on (“hard”) disks• DBMS stores information on (hard) disks.

• This has major implications for DBMS design!
– READ: transfer data from disk to main memory

(RAM).

– WRITE: transfer data from RAM to disk.

CS5208 3

– Both are high-cost operations, relative to in-
memory operations, so must be planned carefully!

Why Not Store Everything in Main Memory?

• Costs too much? Not any more
– $100 will buy you either 1 GB of RAM or 500 GB of disk today.

• Main memory is volatile. We want data to be saved
between runs.

• Data is also increasing at an alarming rate.
– “Big-Data” phenomenon

• Memory error
– Larger memory means higher chances of data corruption

• Typical storage hierarchy:

CS5208 4

Typical storage hierarchy:
– Main memory (RAM) for currently used data.

– SSD/Flash memory (between RAM and Disk)

– Disk for the main database (secondary storage).

– Tapes for archiving older versions of the data (tertiary storage).

3

Disks

• Secondary storage device of choice.

• Main advantage over tapes: random
access vs. sequential.

• Data is stored and retrieved in units
called disk blocks or pages.

• Unlike RAM, time to retrieve a disk page
i d di l ti di k

CS5208 5

varies depending upon location on disk.
– Therefore, relative placement of pages on

disk has major impact on DBMS
performance!

Components of a Disk

The platters spin (say, 120rps).

Spindle

Th bl i d

Disk head Tracks

Sector

Platters
(2 surfaces)

The arm assembly is moved
in or out to position a head
on a desired track. Tracks
under heads make a
cylinder (imaginary!).

Arm movement

Only one head

Sector

CS5208 6

Arm assembly

reads/writes at any
one time.

 Block size is a multiple
of sector size (which is fixed).

4

Accessing a Disk Page

• Time to access (read/write) a disk block:

– seek time (moving arms to position disk head on track)

– rotational delay (waiting for block to rotate under head)

– transfer time (actually moving data to/from disk surface)

• Seek time and rotational delay dominate.

– Seek time varies from about 0.3 to 10msec

Rotational delay varies from 0 to 4msec

CS5208 7

– Rotational delay varies from 0 to 4msec

– Transfer rate is about 0.08msec per 8KB page

• Key to lower I/O cost: reduce seek/rotation delays!

Improving Access Time of Secondary
Storage

• Organization of data on diskOrganization of data on disk

• Disk scheduling algorithms

• Multiple disks or Mirrored disks

• Prefetching and large-scale buffering

• Algorithm design

CS5208 8

• Algorithm design

5

An Example
• How long does it take to read a 2,048,000-byte file

that is divided into 8,000 256-byte records
assuming the following disk characteristics?g g

average seek time 18 ms
track-to-track seek time 5 ms
rotational delay 8.3 ms
maximum transfer rate 16.7 ms/track

bytes/sector 512

sectors/track 40

CS5208 9

tracks/cylinder 11

tracks/surface 1,331

• 1 track contains 40*512 = 20,480 bytes, the file
needs 100 tracks (~10 cylinders).

Design Issues
• Randomly store records

– suppose each record is stored randomly on the disk

– reading the file requires 8,000 random accesses

– each access takes 18 (average seek) + 8.3 (rotational delay)
+ 0.4 (transfer one sector) = 26.7 ms

– total time = 8,000*26.7 = 213,600 ms = 213.6 s

• Store on adjacent cylinders
– read first cylinder = 18 + 8.3 + 11*16.7 = 210 ms

read next 9 cylinders 9*(5+8 3+11*16 7) 1 773 ms

CS5208 10

– read next 9 cylinders = 9*(5+8.3+11*16.7) = 1,773 ms

– total = 1,983 ms = 1.983 s

• Blocks in a file should be arranged sequentially on disk to
minimize seek and rotational delay.

6

Record Formats

F1 F2 F3 F4

Fixed Length
Variable Length:
Two formats

F1 F2 F3 F4

• Information about field
types same for all records

Base address (B)

L1 L2 L3 L4

Address = B+L1+L2

4 $ $ $ $

Field
Count

Fields Delimited by Special Symbols

F1 F2 F3 F4

Array of Field Offsets

CS5208 11

yp
in a file; stored in system
catalogs.

• Finding ith field requires
scan of record.

•Second offers direct access
to i’th field, efficient storage
of nulls; small directory
overhead.

Page Formats: Fixed Length Records

Slot 1
Slot 2

Slot 1
Slot 2

Free

Slot N

.

N M10. . .

M ... 3 2 1
PACKED UNPACKED, BITMAP

Slot N

ee
Space

Slot M

11

number
of records

number
of slots

CS5208 12

• Record id = <page id, slot #>. In first alternative,
moving records for free space management
changes rid; may not be acceptable.

UN C , M

7

Page Formats: Variable Length Records

Page i
Rid = (i,N)

Rid (i 2)Rid = (i,2)

Rid = (i,1)

Pointer20 16 24 N

CS5208 13

• Can move records on page without changing rid;
so, attractive for fixed-length records too.

to start
of free
space

SLOT DIRECTORY

N . . . 2 1 # slots

Files of Records

• Page or block is OK when doing I/O, but higher levels
of DBMS operate on records, and files of records.

• FILE: A collection of pages, each containing a
collection of records. Must support:
– insert/delete/modify record

– read a particular record (specified using record id)

– scan all records (possibly with some conditions on the
records to be retrieved)

CS5208 14

records to be retrieved)

8

Disk Space Management
• Many files will be stored on a single disk

• Need to allocate space to these files so that
disk space is effectively utilized– disk space is effectively utilized

– files can be quickly accessed

• Two issues
– management of free space in a disk

• system maintains a free space list -- implemented
as bitmaps or link lists

CS5208 15

p

– allocation of free space to files

• granularity of allocation (blocks, clusters, extents)

• allocation methods (contiguous, linked)

Bitmap

• each block (one or more
pages) is represented by

bit

• consider a disk whose
blocks 2, 3, 4, 5, 8, 9, 10,
11 12 13 17 etc areone bit

• a bitmap is kept for all
blocks in the disk
– if a block is free, its

corresponding bit is 0

– if a block is allocated, its

11, 12, 13, 17, etc. are
free. The bitmap would
be
• 110000110000001...

CS5208 16

if a block is allocated, its
corresponding bit is 1

• to allocate space, scan the
map for 0s

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

9

Link Lists
• link all the free disk blocks together

– each free block points to the next free block

• DBMS maintains a free space list head (FSLH) to the first
free block

• to allocate space
– look up FSLH

– follow the pointers

t th FSLH
0 1 2 3 4 5 6 7

FSLH

CS5208 17

– reset the FSLH
0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

Unordered (Heap) Files

• Simplest file structure contains records in no particular
order.

• As file grows and shrinks, disk pages are allocated and
de-allocated.

• To support record level operations, we must:
– keep track of the pages in a file

– keep track of free space on pages

CS5208 18

– keep track of the records on a page

• There are many alternatives for keeping track of this.
– We’ll consider 2

10

Heap File Implemented as a
List

Data Data Data Full Pages

• The header page id and Heap file name must be stored

Header
Page

Page Page Page

Data
Page

Data
Page

Data
Page Pages with

Free Space

Full Pages

CS5208 19

The header page id and Heap file name must be stored
someplace.
– Database “catalog”

• Each page contains 2 `pointers’ plus data.

Heap File Using a Page Directory

Data
Page 1

Data

Header
Page

• The entry for a page can include the number of free

Data
Page 2

Data
Page NDIRECTORY

CS5208 20

The entry for a page can include the number of free
bytes on the page.

• The directory is a collection of pages; linked list
implementation is just one alternative.
– Much smaller than linked list of all HF pages!

11

Buffer Management in a DBMS
Page Requests from Higher Levels

BUFFER POOL

MAIN MEMORY

DISK

disk page

free frame

choice of frame dictated

CS5208 21

• Data must be in RAM for DBMS to operate on it!

• Table of <frame#, pageid> pairs is maintained.

DB
DISK choice of frame dictated

by replacement policy

When a Page is Requested ...

• If requested page is not in pool:
– Choose a frame for replacementChoose a frame for replacement

– If frame is dirty, write it to disk

– Read requested page into chosen frame

• Pin the page and return its address.

CS5208 22

If requests can be predicted (e.g., sequential scans)
pages can be pre-fetched several pages at a time!

12

Access Methods

"If you don't find it in the index, look very
f ll th h th ti t l "

CS5208 – Access methods 23

carefully through the entire catalogue."

-- Sears, Roebuck, and Co.,
Consumer's Guide, 1897

Single Record and Range Searches

• Single record retrievals• Single record retrievals
– ``Find student name whose matric# = 921000Y13’’

• Range queries
– ``Find all students with cap > 3.2’’

• Sequentially scanning the file is costly

If d t i i t d fil d bi h t fi d fi t

CS5208 – Access methods 24

• If data is in sorted file, do binary search to find first
such student, then scan to find others.

• cost of binary search can still be quite high.

13

Indexes

• An index on a file speeds up selections on the
search key fields for the indexsearch key fields for the index.
– Any subset of the fields of a relation can be the

search key for an index on the relation.

– Search key is not the same as key (minimal set of
fields that uniquely identify a record in a relation).

• e.g., consider Student(matric#, name, addr, cap), the key is
matric# but the search key can be matric# name addr cap

CS5208 – Access methods 25

matric#, but the search key can be matric#, name, addr, cap
or any combination of them

– For each search key, you build an index

Sequential File

10

Dense Index

Simple Index File (Data File Sorted)

record

20
10

40
30

60
50

10
20
30
40

50
60
70

record
record

record
record

CS5208 – Access methods 26

80
70

100
90

80

90
100
110
120

14

Sequential File
10

Sparse Index
10

Simple Index File (Cont)

20
10

40
30

60
50

10
30
50
70

90
110
130
150

CS5208 – Access methods 27

80
70

100
90

150

170
190
210
230

Sequential File
10

Sparse 2nd level

1010

Simple Index File (Cont)

20
10

40
30

60
50

10
30
50
70

90
110
130
150

10
90
170
250

330
410
490

CS5208 – Access methods 28

80
70

100
90

150

170
190
210
230

570

15

Sequence
field• Dense index

Secondary indexes

50
30

70
20

0
80

• Dense index

10
20
30
40

50
60

10
50
90
...

CS5208 – Access methods 29

40

10
100

60
90

60
70
...

sparse
high
level

Conventional indexes

Advantages:

- Simple
- Index is sequential file
- Good for scans

Disadvantages:
- Inserts expensive, and/or

CS5208 – Access methods 30

- Lose sequentiality & balance

16

10

Example
Index(sequential)

10
20
30

40
50
60

39
31
35
36

32
38

33
continuous

CS5208 – Access methods 31

70
80
90

38
34

overflow area
(not sequential)

free space

Tree-Structured Indexing

• Tree-structured indexing techniques support
both range searches and equality searchesboth range searches and equality searches

CS5208 – Access methods 32

Data
pages

17

B+ Tree: The Most Widely Used Index
– Height-balanced.

• Insert/delete at log N cost (F = fanout N = # leaf• Insert/delete at log F N cost (F = fanout, N = # leaf
pages);

– Grow and shrink dynamically.
– Minimum 50% occupancy (except for root).

• Each node contains d <= m <= 2d entries. The
parameter d is called the order of the tree.
O d (d) t l d b h i l

CS5208 – Access methods 33

• Order (d) concept replaced by physical space
criterion in practice (`at least half-full’).

– `next-leaf-pointer’ to chain up the leaf nodes.
– Data entries at leaf are sorted.

Example B+ Tree

• Each node can hold 4 entries (order = 2)

Root

17

24 30135

CS5208 – Access methods 34

2 3 14 16 19 20 22 24 27 29 33 34 38 3975 8

18

Node structure

index entry

• Non-leaf nodes

P
0

K
1 P

1
K 2 P

2
K m

P m

• Leaf nodes

CS5208 – Access methods 35

P
0

K
1 P

1
K 2 P

2
K m

P m Next leaf
node

Searching in B+ Tree

• Search begins at root, and key comparisons
direct it to a leaf

• Search for 5, 15, all data entries >= 24 ...
Root

17 24 3013

CS5208 – Access methods 36

Based on the search for 15*, we know it is not in the tree!

2 3 5 14 16 19 20 22 24 27 29 33 34 38 39

19

B+ Trees in Practice

• Typical order: 100 Typical fill-factor: 67%Typical order: 100. Typical fill factor: 67%.
– average fanout = 133

• Typical capacities (root at Level 1, and has 1 entry):
– Level 5: 1334 = 312,900,700 records
– Level 4: 1333 = 2,352,637 records

• Can often hold top levels in buffer pool:

CS5208 – Access methods 37

– Level 1 = 1 page = 8 Kbytes
– Level 2 = 133 pages = 1 Mbyte
– Level 3 = 17,689 pages = 133 MBytes

Inserting a Data Entry into a B+ Tree
• Find correct leaf L.

• Put data entry onto LPut data entry onto L.
– If L has enough space, done!

– Else, must split L (into L and a new node L2)
• Redistribute entries evenly, copy up middle key.

• Insert index entry pointing to L2 into parent of L.

• This can happen recursively

CS5208 – Access methods 38

– To split index node, redistribute entries evenly, but
push up middle key. (Contrast with leaf splits.)

• Splits “grow” tree; root split increases height.
– Tree growth: gets wider or one level taller at top.

20

Inserting 7 & 8 into Example B+ Tree

Root

17 24 3013

2 3 5 14 16 19 20 22 24 27 29 33 34 38 39

CS5208 – Access methods 39

Inserting 7 & 8 into Example B+ Tree

Root

17 24 3013

2 3 5 7 14 16 19 20 22 24 27 29 33 34 38 39

CS5208 – Access methods 40

21

Inserting 7 & 8 into Example B+ Tree

Root

17 24 3013

2 3 5 7 14 16 19 20 22 24 27 29 33 34 38 39

(Note that 5 is copied up and
continues to appear in the leaf.)• Observe how minimum

CS5208 – Access methods 41

2 3 5 7 8

5 17 24 3013

• Observe how minimum
occupancy is
guaranteed in both leaf
and index pg splits.

Insertion (Cont)

• Note
appears once in the index. Contrast
(Note that 17 is pushed up and only

this with a leaf split.)

• Note
difference
between
copy-up and
push-up; be
sure you

5 24 30

17

13

CS5208 – Access methods 42

sure you
understand
the reasons
for this. 2 3 5 7 8

5 17 24 3013

22

Example B+ Tree After Inserting 8

Root

17

2 3

17

24 30

14 16 19 20 22 24 27 29 33 34 38 39

135

75 8

CS5208 – Access methods 43

• Notice that root was split, leading to increase in height.

• In this example, we can avoid splitting by re-distributing
entries; however, this is usually not done in practice. Why?

Deleting a Data Entry from a B+ Tree

• Start at root, find leaf L where entry belongs.
• Remove the entry.

– If L is at least half-full, done!
– If L has only d-1 entries,

• Try to re-distribute, borrowing from sibling (adjacent
node with same parent as L).

• If re-distribution fails, merge L and sibling.

CS5208 – Access methods 44

If re distribution fails, merge L and sibling.

• If merge occurred, must delete entry (pointing to L
or sibling) from parent of L.

• Merge could propagate to root, decreasing height.

23

Example Tree After (Inserting 8, Then)
Deleting 19

2 3

Root

17

24 30

14 16 19 20 24 27 29 33 34 38 39

135

75 8 22

CS5208 – Access methods 45

Example Tree After (Inserting 8, Then)
Deleting 19

2 3

Root

17

24 30

14 16 20 22 24 27 29 33 34 38 39

135

75 8

CS5208 – Access methods 46

• Deleting 19 is easy.

24

Example Tree After Deleting 20 ...

Root

2 3

17

30

14 16 33 34 38 39

135

75 8 22 24

27

27 29

CS5208 – Access methods 47

• Deleting 20 is done with re-distribution.
Notice how middle key is copied up.

Example Tree After Deleting 24 ...

Root

2 3

17

30

14 16 33 34 38 39

135

75 8 22

27

27 29

Node underflow

CS5208 – Access methods 48

Node underflow

25

... And Then Deleting 24

• Must merge.
30

• Observe `toss’ of
index entry (on right),
and `pull down’ of
index entry (below).

22 27 29 33 34 38 39

Root

CS5208 – Access methods 49

2 3 7 14 16 22 27 29 33 34 38 395 8

30135 17

Example of Non-leaf Re-distribution
(Delete 24)

Root22

• In contrast to previous
example, can re-

22

135 17 20 30

14 16 17 18 20

33 34 38 3927 29

2175 832

22 24

27

CS5208 – Access methods 50

example, can re
distribute entry from left
child of root to right child.

Root

135 17 20

22

30

14 16 17 18 20 33 34 38 3922 27 292175 832

26

After Re-distribution
• Intuitively, entries are re-distributed by `pushing

through’ the splitting entry in the parent node.

• It suffices to re-distribute index entry with key 20;
we’ve re-distributed 17 as well for illustration.

Root

17

CS5208 – Access methods 51

14 16 33 34 38 3922 27 2917 18 20 2175 82 3

135 3020 22

Hash-based Index

• Hash-based indexes
– (Ideally) best for equality selections

– Performance degenerate for skewed data
distributions

– Inefficient for range searches
• Depends on hash function used

CS5208 – Access methods 52

Depends on hash function used

• Static and dynamic hashing techniques exist

27

Static Hashing

• # primary pages fixed, allocated sequentially,
never de-allocated; overflow pages if needednever de allocated; overflow pages if needed.

• h(k) mod M = bucket to which data entry with
key k belongs. (M = # of buckets)

h(key) mod M

key

1
0

CS5208 – Access methods 53

h
key

Primary
buckets

Overflow
buckets

M-1

Buckets are typically
1 disk block

Two alternatives

(1) key  h(key)
record

(1) key  h(key)

Index

record
k

CS5208 – Access methods 54

(2) key  h(key) key 1

• Alt (2) for “secondary” search key

28

Static Hashing (Cont.)

• Buckets may contain data records or pointers.
– Unless otherwise stated we assume the former– Unless otherwise stated, we assume the former.

• Hash fn works on search key field of record r.
Must distribute values over range 0 ... M-1.
– h(key) = (a * key + b) mod M usually works well.

• a and b are constants
• h has to be tuned for different applications.

Long overflow chains can develop and degrade

CS5208 – Access methods 55

• Long overflow chains can develop and degrade
performance.
– Extendible and Linear Hashing: Dynamic techniques to

fix this problem.

Within a bucket or a chain of
buckets:

• Do we keep keys sorted?p y

• Yes, if CPU time critical

& Inserts/Deletes not too frequent

CS5208 – Access methods 56

29

EXAMPLE 2 records/bucket

INSERT: 0INSERT:

h(a) = 1

h(b) = 2

h(c) = 1

h(d) = 0

0

1

2

3

d

a
c
b

e

CS5208 – Access methods 57

h(d) 0 3

h(e) = 1

0

EXAMPLE: deletion

Delete: 0

1

2

3

a

b
c
e

d

Delete:
e
f

f

c
d

CS5208 – Access methods 58

3 f
g

maybe move
“g” up

30

Rule of thumb:

• Try to keep space utilization between 50%

• If < 50%, waste space
• If > 80%, overflows significant

– Depends on how good hash function is & on #keys/bucket

y p p
and 80%

Utilization = # keys used/total # keys that fit

CS5208 – Access methods 59

• How to cope with growth?
– Overflows and reorganization
– Dynamic hashing

Clustered vs. Unclustered Index
• Suppose the data file is unsorted.

– To build clustered index, first sort the data file (with some
f h f f i)free space on each page for future inserts).

– Overflow pages may be needed for inserts. (Thus, order of
data recs is `close to’, but not identical to, the sort order.)

Index entries
direct search for
data entries

CLUSTERED UNCLUSTERED

CS5208 – Access methods 60

Data entries

(Index File)

(Data file)

Data Records

Data entries

Data Records

31

Dense vs. Sparse

• If there is at least
one data entry perone data entry per
search key value (in
some data record),
then dense.
– Every sparse index

is clustered!

Ashby, 25, 3000

Smith, 44, 3000

Ashby

Cass

Smith

22

25

30

40

44

44

50

33

Bristow, 30, 2007

Basu, 33, 4003

Cass, 50, 5004

T 44 5004

Daniels, 22, 6003

Jones, 40, 6003

CS5208 – Access methods 61

– Sparse indexes are
smaller.

Sparse Index
on

Name Data File

Dense Index
on

Age

Tracy, 44, 5004

Multi-attribute Indexes
• Composite Search Keys: Search on

a combination of fields.
– Equality query: Every field value is

Examples of composite key
indexes using lexicographic order.

equal to a constant value. E.g. wrt
<sal,age> index:

• age=12 & sal =75

– Range query: Some field value is not
a constant. E.g.:

• age=12 & sal > 10 (use <age, sal>)
• age < 12 & sal = 10 (use <age,sal>

may fetch more records than desired)

• Data entries in index sorted by sue 13 75

bob

cal

joe 12

10

20

8011

12

name age sal

<age, sal> <age>

12,20

12,10

11,80

13,75

10,12

11

12

12

13

10

CS5208 – Access methods 62

Data entries in index sorted by
search key to support range queries.
– Lexicographic order, or
– Spatial order

• There are also multi-attribute
indexing structures (e.g., R-trees)

<sal, age> <sal>

20,12

75,13

80,11

20

75

80

Data records
sorted by name

Data entries in index
sorted by <sal,age>

Data entries
sorted by <sal>

32

Summary

• Is it always beneficial to use an index for
data retrieval?

• Is it beneficial to build indexes on ALL
tt ib t f t bl ?

CS5208 – Access methods 63

attributes of a table?

