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It is normal to design and then refine your design.

Evils of Redundancy

• Redundant storage
• Update anomaly:  Can

we change W in just             
the 1st  tuple of SNLRWH?

• Insertion anomaly:  What if we want to insert an 
employee and don’t know the hourly wage for his 
rating?

• Deletion anomaly: What if we delete all employees with 
rating 5?

S N L R W H
123-22-3666 Attishoo 48 8 10 40
231-31-5368 Smiley 22 8 10 30
131-24-3650 Smethurst 35 5 7 30
434-26-3751 Guldu 35 5 7 32
612-67-4134 Madayan 35 8 10 40

CS5208

Hourly_Emps (ssn, name, lot, rating, hrly_wages, hrs_worked)
Also used SNLRWH to refer to the table
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A BAD 
Relational
Schema

S N L R W H
123-22-3666 Attishoo 48 8 10 40
231-31-5368 Smiley 22 8 10 30
131-24-3650 Smethurst 35 5 7 30
434-26-3751 Guldu 35 5 7 32
612-67-4134 Madayan 35 8 10 40

S N L R H
123-22-3666 Attishoo 48 8 40
231-31-5368 Smiley 22 8 30
131-24-3650 Smethurst 35 5 30
434-26-3751 Guldu 35 5 32
612-67-4134 Madayan 35 8 40

R W
8 10
5 7

An Improved Schema
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Refinements

• Integrity constraints, in particular functional 
dependencies, can be used to identify schemas with 
such problems and to suggest refinements.

• Main refinement technique:  decomposition (replacing 
ABCD with, say, AB and BCD, or ACD and ABD).

• Decomposition should be used judiciously:
• Is there reason to decompose a relation?
• What problems (if any) does the decomposition cause?
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Functional Dependencies (FDs)
• A functional dependency X → Y (X determines Y) 

holds over relation R if, for every allowable instance r
of R:
• given two tuples in r, if the X values agree, then the Y 

values must also agree.  (X and Y are sets of attributes.)
• K is a candidate key for relation R if:

1.  K determines all attributes of R.
2.  For no proper subset of K is (1) true.

• If K satisfies only (1), then K is a superkey.
• Primary key 
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Example
• Consider relation Hourly_Emps:

• Hourly_Emps (ssn, name, lot, rating, hrly_wages, hrs_worked)
• FDs S → SNLRWH 

• ssn is the key    
• FDs give more detail 

than the mere 
assertion of a key
• rating determines 

hrly_wages
• R → W

S N L R W H
123-22-3666 Attishoo 48 8 10 40
231-31-5368 Smiley 22 8 10 40
131-24-3650 Smethurst 35 5 7 30
434-26-3751 Guldu 35 5 7 30
612-67-4134 Madayan 35 8 10 40
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Who Determines Keys/FDs?

• An FD is a statement about all allowable relations.
• Must be identified based on semantics of application.
• Given some allowable instance r1 of R, we can check if it 

violates some FD f, but we cannot tell if f holds over R!
• We can define a relation schema with a single key K.

• Then the only FD asserted are K → A for every attribute A.
• Or, we can assert some FDs and deduce one or more 

keys or other FDs.
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Reasoning About FDs
• Given some FDs, we can usually infer additional FDs:

• ssn → did,  did → lot    implies    ssn → lot
• An FD f is implied by a set of FDs F if f holds 

whenever all FDs in F hold.
• F+ = closure of F is the set of all FDs that are implied by F.

• Armstrong’s Axioms (X, Y, Z are sets of attributes):
• Reflexivity:  If  Y⊆ X,  then   X → Y 
• Augmentation:  If  X → Y,  then   XZ → YZ   for any Z
• Transitivity:  If  X → Y  and  Y → Z,  then   X → Z

• These are sound and complete inference rules for FDs!

CS5208 12



Reasoning About FDs (Cont.)

• Example:    Contracts(cid,sid,jid,did,pid,qty,value)
• C is the key:   C → CSJDPQV
• Project purchases each part using single contract: JP → C
• Dept purchases at most one part from a supplier: SD → P

• JP → C,  C → CSJDPQV   imply   JP → CSJDPQV
• SD → P   implies   SDJ → JP
• SDJ → JP,   JP → CSJDPQV   imply   SDJ → CSJDPQV
• So, JP and SDJ are candidate keys!
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Reasoning About FDs (Cont.)
• Computing the closure of a set of FDs can be 

expensive.  (Size of closure is exponential in # attrs!)
• Typically, we just want to check if a given FD X → Y 

is in the closure of a set of FDs F.  An efficient check:
• Compute attribute closure of X (denoted  X+) wrt F:

• Set of all attributes A such that X → A is in
• There is a linear time algorithm to compute this. 

• Check if Y is in X+

• Does F = {A → B,  B → C,  C D → E }  imply  A → E?
• i.e,  is  A → E  in the closure F+ ?  Equivalently, is E in A+ ? 

F+
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Algorithm to Compute Attribute Closure

• Define Y+ = closure of Y.
• Basis: Y+ = Y
• Induction: If X ⊆ Y+, and X 
→A is a given FD, then add 
A to Y+

• End when Y+ cannot be 
changed. Then Y 
functionally determines all 
members of Y+, and no 
other attributes.
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• A → B, BC → D
• A+ = AB
• C+ = C
• (AC)+ = ABCD

• Thus, AC is a key.

Finding All Implied FDs
• Motivation: Suppose we have a relation ABCD with 

some FDs F. If we decide to decompose ABCD into 
ABC and AD, what are the FDs for ABC, AD?

• Example: F = AB → C, C → D, D → A. It looks like just 
AB → C holds in ABC, but in fact C → A follows from 
F and applies to relation ABC.

• Problem is exponential in worst case.
• Algorithm to find F+:

• For each set of attributes X of R, compute  X+.

CS5208
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A   B   C   D
1    1    2    3
1    2    2    3

A   B   C              A    D
1 1    2               1     3
1    2    2              

2    2    2    4

2    2    2
2     4 

Example
• F = AB → C, C → D, D → A. What FDs follow?

• A+ = A; B+ = B (nothing)
• C+ = ACD (add C → A)
• D+ = AD (nothing new)
• (AB)+ = ABCD (add AB → D; skip all supersets of AB).
• (BC)+ = ABCD (nothing new; skip all supersets of BC). 
• (BD)+ = ABCD (add BD → C; skip all supersets of BD).
• (AC)+ = ACD; (AD)+ = AD; (CD)+ = ACD (nothing new).
• (ACD)+ = ACD (nothing new).
• All other sets contain AB, BC, or BD, so skip.
• Thus, the only interesting FDs that follow from F are: 

• C → A, AB → D, BD → C.
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Projection of set of FDs

• If R is decomposed into X, ... projection of F 
onto X  (denoted FX ) is the set of FDs U → V 
in F+ (closure of F ) such that U, V are in X.

• Using the same example, 
• R1(ABC): AB → C, C → A
• R2(AD): D → A

CS5208 18



A BAD 
Relational
Schema

S N L R W H
123-22-3666 Attishoo 48 8 10 40
231-31-5368 Smiley 22 8 10 30
131-24-3650 Smethurst 35 5 7 30
434-26-3751 Guldu 35 5 7 32
612-67-4134 Madayan 35 8 10 40

S N L R H
123-22-3666 Attishoo 48 8 40
231-31-5368 Smiley 22 8 30
131-24-3650 Smethurst 35 5 30
434-26-3751 Guldu 35 5 32
612-67-4134 Madayan 35 8 40

R W
8 10
5 7

An Improved Schema
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What’s a Good Design?

• Three properties:
• No anomalies.
• Can reconstruct all original information.
• Ability to check all FDs within a single relation.

• Role of FDs in detecting redundancy:
• Consider a relation R with 3 attributes, ABC.  

• No FDs hold:   There is no redundancy here.
• Given A →B:   Several tuples could have the same 

A value, and if so, they’ll all have the same B 
value!
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Decomposition of a Relation Scheme
• Suppose that relation R contains attributes A1 ... An.  

A decomposition of R consists of replacing R by two or 
more relations such that:
• Each new relation scheme contains a subset of the attributes 

of R (and no attributes that do not appear in R), and
• Every attribute of R appears as an attribute of one of the 

new relations.
• Intuitively, decomposing R means we will store 

instances of the relation schemes produced by the 
decomposition, instead of instances of R.

• E.g.,  Can decompose SNLRWH into SNLRH and RW.
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Example Decomposition

• Decompositions should be used only when needed.
• SNLRWH has FDs S → SNLRWH  and  R → W
• W values repeatedly associated with R values.  Easiest way 

to fix this is to create a relation RW to store these 
associations, and to remove W from the main schema: 

• i.e., we decompose SNLRWH into SNLRH and RW 
• The information to be stored consists of SNLRWH 

tuples.  If we just store the projections of these tuples
onto SNLRH and RW, are there any potential 
problems that we should be aware of?
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Problems with Decompositions

• There are three potential problems to consider:
1 Some queries become more expensive.  

• e.g.,  How much did sailor Joe earn?  (salary = W*H)
2 Given instances of the decomposed relations, we may not 

be able to reconstruct the corresponding instance of the 
original relation!  

• Fortunately, not in the SNLRWH example.
3 Checking some dependencies may require joining the 

instances of the decomposed relations.
• Fortunately, not in the SNLRWH example.

• Tradeoff:   Must consider these issues vs. redundancy.
CS5208 23

Lossless Join Decompositions

• Decomposition of R into X and Y is lossless-join w.r.t. 
a set of FDs F if, for every instance r that satisfies F, 
“reassembling” X and Y will give R and nothing else.

• It is always true that  reassembling X and Y gives 
exactly R or a superset of R. 

• Definition extended to decomposition into 3 or more 
relations in a straightforward way.

• It is essential that all decompositions used to deal with 
redundancy be lossless!  (Avoids Problem (2).) 
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More on Lossless Join

• The decomposition of R into   
X and Y is lossless-join wrt F  
if and only if the closure of F 
contains:
• X ∩ Y → X,   or
• X ∩ Y → Y

• In particular, the 
decomposition of R into        
UV and R - V is lossless-join     
if  U → V  holds over R.

A B C
1 2 3
4 5 6
7 2 8
1 2 8
7 2 3

A B C
1 2 3
4 5 6
7 2 8

A B
1 2
4 5
7 2

B C
2 3
5 6
2 8
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Dependency Preserving Decomposition

• Consider CSJDPQV,  C is key,  JP → C  and  SD → P.
• (BCNF) Decomposition:   CSJDQV and SDP
• Problem:  Checking  JP → C  requires a join!

• Dependency preserving decomposition (Intuitive):
• If R is decomposed into X, Y and Z, and we enforce the FDs

that hold on X, on Y and on Z, then all FDs that were given 
to hold on R must also hold.  (Avoids Problem (3).)
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Dependency Preserving Decompositions (Cont.)

• Decomposition of R into X and Y is dependency
preserving if  (FX union   FY ) +  =  F +

• i.e., if we consider only dependencies in the closure F + that 
can be checked in X without considering Y, and in Y 
without considering X,  these imply all dependencies in F +.

• Important to consider F +, not F, in this definition:
• ABC,  A → B,  B → C,  C → A, decomposed into AB and BC.
• Is this dependency preserving?  Is  C → A  preserved?????

• Dependency preserving does not imply lossless join:
• ABC,  A → B,  decomposed into AB and BC.

• And vice-versa!  (Example?)
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Normal Forms
• Returning to the issue of schema refinement, the 

first question to ask is whether any refinement is 
needed!

• If a relation is in a certain normal form (BCNF, 3NF 
etc.), it is known that certain kinds of problems are 
avoided/minimized.  This can be used to help us 
decide whether decomposing the relation will help.

CS5208 28

Boyce-Codd Normal Form  (BCNF)
• Reln R with FDs F is in BCNF if, for all X →A  in F+

• A ∈ X   (called a trivial FD), or
• X contains a key for R.

• In other words, R is in BCNF if the only non-trivial FDs that 
hold over R are key constraints.

• Why? 
• Guarantees no redundancy due to FDs.
• Guarantees no insert/update/delete anomalies.
• Guarantees no loss of information.

• But …
• May destroy the ability to check FDs within a single relation

CS5208 29

Example

• Consider relation Beers(name, manf, manfAddr). 
• FDs = name → manf, manf → manfAddr
• Only key is name.

• manf → manfAddr violates BCNF with a left side 
unrelated to any key.

• Redundancy (every manf has the same manfAddr)
• Update anomalies (if manf moves, all manfAddr in ALL tuples)
• Deletion anomalies (deleting all beers produced by a particular 

manf will lose info on manf and manfAddr)

• Not in BCNF.
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Decomposition into BCNF
• Consider relation R with FDs F.  If X → Y violates 

BCNF, 
• Expand left side to include X+.
• Decompose R into  (R - X+) U X and X+.
• Find the FDs for the decomposed relations.

• Repeated application of this idea will give us a 
collection of relations that are in BCNF; lossless join 
decomposition, and guaranteed to terminate.

• In general, several dependencies may cause violation 
of BCNF.  The order in which we ``deal with’’ them 
could lead to very different sets of relations!

→
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Example
• R(A, C, B, D, E)
• F = A → B, A → E, C → D
• Since AC is a key, not in 

BCNF.
• Pick A → B for 

decomposition.
• Expand left side:  A → B E
• Decomposed relations: 

R1(A,B,E) and R2(A,C,D).
• Projected FDs (skipping a 

lot of work …)
• R1: A → B, A → E
• R2: C → D
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• BCNF violations? 
• For R1, A is key and all 

left sides are superkeys.
• For R2, AC is key, and C 

→ D violates BCNF.
• Decompose R2

• R3(C,D)
• R4(A,C)

• Resulting relations are all 
in BCNF.
• R1(A,B,E)
• R3(C,D)
• R4(A,C)

BCNF and Dependency Preservation

• The example decomposition is dependency preserving!
• In general, there may not be a dependency preserving 

decomposition into BCNF.
• e.g.,  CSZ,  CS → Z,  Z → C
• Can’t decompose while preserving 1st FD;  not in BCNF.
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Summary of Schema Refinement
• If a relation is in BCNF, it is free of redundancies that 

can be detected using FDs.  Thus, trying to ensure 
that all relations are in BCNF is a good heuristic.

• If a relation is not in BCNF, we can try to decompose 
it into a collection of BCNF relations.
• Must consider whether all FDs are preserved.  If a lossless-

join, dependency preserving decomposition into BCNF is 
not possible (or unsuitable, given typical queries), should 
consider decomposition into 3NF.

• Decompositions should be carried out and/or re-examined 
while keeping performance requirements in mind.

CS5208 34
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SQL – Structured Query Language

Relational Database

Census Table (Relation/File)

Census

Name Major Year Home
Student

• Database Schema

• Example Data

Column
(Attribute/Field/Domain)

State Abbr Year        Population      Cars
ALABAMA
ALABAMA...
WYOMING

AL
AL...
WY

1999
2000...
2000

4370
4447...
494

3957
3960...
586

Row
(Tuple/Record)

State Abbr Year        Population Cars

CS5208 36



SQL - Relational Calculus Query Language

• Structured Query Language (SQL)
– Most common/standard language (IBM, Oracle, Sybase, Informix, Microsoft)

Q1. Population in MASSACHUSETTS (all available years)
select year, population Domain name(s)
from census Relation name(s)
where state = “MASSACHUSETTS” Tuple restriction(s)

Q2. Names of states with more than 9 million people in 2000.

Census

Select   

State Abbr Year        Population      Cars
ALABAMA
ALABAMA...
WYOMING

AL
AL...
WY

1999
2000...
2000

4370
4447...
494

3957
3960...
586
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SQL - Relational Calculus Query Language

• Structured Query Language (SQL)
– Most common/standard language (IBM, Oracle, Sybase, Informix, Microsoft)

Q1. Population in MASSACHUSETTS (all available years)
select year, population Domain name(s)
from census Relation name(s)
where state = “MASSACHUSETTS” Tuple restriction(s)

Q2. Names of states with more than 9 million people in 2000.

Census

Select state, population 
FROM census 
WHERE population>9000 and year=2000;

State Abbr Year        Population      Cars
ALABAMA
ALABAMA...
WYOMING

AL
AL...
WY

1999
2000...
2000

4370
4447...
494

3957
3960...
586
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SQL Clauses
• Where clause
– Conditions:

< Less than <=  Less than or equal
> Greater than >=  Greater than or eqal
= Equal to != or <>  Not equal

– Compound conditions:
not logical not
and logical and or logical or

• Order by clause
– Sort in either ascending (default) or descending (desc) order
– Can use column name or number

Q3. Names of states with more than 9 million people in 2000 --
ordered from highest to lowest population.

Select  . . . 
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SQL Clauses
• Where clause
– Conditions:

< Less than <=  Less than or equal
> Greater than >=  Greater than or eqal
= Equal to != or <>  Not equal

– Compound conditions:
not logical not
and logical and or logical or

• Order by clause
– Sort in either ascending (default) or descending (desc) order
– Can use column name or number

Q3. Names of states with more than 9 million people in 2000 --
ordered from highest to lowest population.

Select  . . . Order by population desc
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Calculations
• Calculations with SQL query to create “virtual” columns or 
within “where” clause.

– Operations include:
+ Addition - Subtraction
* Multiplication / Division

Q4.  Which states have highest cars per capita in 2000?

select state, cars/population as carspercapita
from census
where year=2000
order by  2  desc

Note: “as” clause not needed.

calculation name of
“virtual” column
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Calculations
• Calculations with SQL query to create “virtual” columns or 
within “where” clause.

– Operations include:
+ Addition - Subtraction
* Multiplication / Division

Q4.  Which states have highest cars per capita in 2000?

select state, cars/population as carspercapita
from census
where year=2000
order by  2  desc

Note: “as” clause not needed.

calculation name of
“virtual” column
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You can get the correct answer, but the 
query is “incorrect”. What is wrong?



“Join” Between Relations

Census

Q6. Names of all students from states with more than 9 million people in 2000.

Name Major Year Home

GUPTA
MADNICK
TAN
ZHAO

WYOMING
MASSACHUSETTS
ALABAMA
WYOMING

Student

• SQL: select    student.name
from      student, census
where   student.home = census.state
and     census.year = 2000
and     census.population > 9000

State Abbr Year        Population      Cars
ALABAMA
ALABAMA...
WYOMING

AL
AL...
WY

1999
2000...
2000

4370
4447...
494

3957
3960...
586

ECE
EE
CS
CS

1
3
4
1
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“Join” Between Relations

Census

Q7. Names of all states where number of cars increased by over 5% 
between 1999 and 2000.

Select
From
Where

State Abbr Year        Population      Cars
ALABAMA
ALABAMA...
WYOMING

AL
AL...
WY

1999
2000...
2000

4370
4447...
494

3957
3960...
586
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“Join” Between Relations

Census

Q7. Names of all states where number of cars increased by over 5% 
between 1999 and 2000.

Select select c00.state, c99.cars, c00.cars, c00.cars/c99.cars
From census c00, census c99 
Where c00.year=2000 and c99.year=1999  and 

c99.state=c00.state and c00.cars/c99.cars>1.05;

State Abbr Year        Population      Cars
ALABAMA
ALABAMA...
WYOMING

AL
AL...
WY

1999
2000...
2000

4370
4447...
494

3957
3960...
586
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Relational AlgebraRelational Algebra

• Relational algebra defines the theoretical way of 
manipulating table contents using the five basic 
relational functions: UNION, SELECT, PROJECT, 
DIFFERENCE, PRODUCT.

• JOIN, INTERSECT, and DIVIDE, etc. helpful, but 
derivable from five basics.

• Often underlying implementation of relational 
calculus

CS5208 46

Basic Relational Database OperatorsBasic Relational Database Operators

• - UNION combines all rows from two 
tables. The two tables must be union 
compatible.

P_CODE
123456
123457
123458

P_CODE
123457
345678
345679

P_CODE
123456
123457
123458
345678
345679

UNION yields

∪

Relation A Relation B Relation C

[Supplier A] [Supplier B]
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• - DIFFERENCE yields all rows in one 
table that are not found in the other table; 
i.e., it subtracts one table from the other. 
The tables must be union compatible.

F_NAME
George
Jane
Elaine
Wilfred
Albert

F_NAME
George
Elaine
Wilfred

F_NAME
Jane
Larry
Albert

DIFFERENCE yields

−

[Classmates]

[Unfriendly] [Invite]

A B C
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Basic Relational Database OperatorsBasic Relational Database Operators



• - PRODUCT produces a list of all 
possible pairs of rows from two tables.

P_CODE PRICE
AA
BB

5.99
22.75

PRODUCT

yields

STORE AISLE SHELF
23
24
25

W
K
Z

5
9
6

P_CODE PRICE STORE AISLE SHELF
AA
AA
AA
BB
BB
BB

5.99
5.99
5.99
22.75
22.75
22.75

23
24
25
23
24
25

W
K
Z
W
K
Z

5
9
6
5
9
6

×
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Basic Relational Database OperatorsBasic Relational Database Operators

• - SELECT yields values for all attributes
found in a table. It yields a horizontal 
subset of a table.

P_CODE P_DESCRIPT PRICE

213345
311452
254467

9v battery
Power drill
100W bulb

1.92
34.99
1.92

P_CODE P_DESCRIPT PRICE

213345
311452
254467

9v battery
Power drill
100W bulb

1.92
34.99
1.92

P_CODE P_DESCRIPT PRICE

311452 Power drill 34.99

P_CODE P_DESCRIPT PRICE

213345
254467

9v battery
100W bulb

1.92
1.92

Original table (X) New table or list (T1)

T1 = SELECT X where P_CODE = 311452

T1 = SELECT X where PRICE < 2.00

T1 = SELECT X all  will yield

σ
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Basic Relational Database OperatorsBasic Relational Database Operators

• - PROJECT produces a list of all values 
for selected attributes. It yields a vertical 
subset of a table.

P_CODE P_DESCRIPT PRICE

213345
311452
254467

9v battery
Power drill
100W bulb

1.92
34.99
1.92

PRICE

1.92
34.99

P_DESCRIPT PRICE

9v battery
Power drill
100W bulb

1.92
34.99
1.92

P_CODE PRICE

213345
311452
254467

1.92
34.99
1.92

T1 = PROJECT X on PRICE yields

T1 = PROJECT X on P_DESCRIPT and PRICE

T1 = PROJECT X on P_CODE and PRICE

Original table (X)
New table or list (T1)

π
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Basic Relational Database OperatorsBasic Relational Database Operators

• - INTERSECT produces a listing that 
contains only the rows that appear in both 
tables. The two tables must be union 
compatible.

F_NAME
George
Jane
Elaine
Wilfred
Fred

F_NAME
Jane
William
Jorge
Dennis

F_NAME
Jane
FredINTERSECT yields

• How to accomplish INTERSECT with basic operators?

∩

A B C

[Classmates]
[Friends]

[Invite]
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Additional Relational Database OperatorsAdditional Relational Database Operators

• - JOIN allows us to combine
information from two or more tables, 
allowing the use of independent tables 
linked by common attributes.

CUS_CODE CUS_LNAME CUS_ZIP AGENT_CODE

1132445
1321242
1657399
1312243
1542311
1217782

Walker
Rodriguez
Vanloo
Rakowski
Smithson
Adares

32145
37134
32145
34129
37134
32145

231
125
231
167
421
125

AGENT_CODE AGENT_PHONE

125
167
231
333

6152439887
6153426778
6152431124
9041234445

Table name: CUSTOMER Table name: AGENT
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Additional Relational Database OperatorsAdditional Relational Database Operators
JOIN Relational Database OperatorsJOIN Relational Database Operators

• Natural JOIN links tables by selecting only the 
rows with common values in their common 
attribute(s). It is the result of a three-stage 
process.

• A PRODUCT is performed on two tables.
• SELECT is performed to yield only the rows for 

which the common attribute values match.
• A PROJECT is performed to yield a single copy of 

each attribute, thereby eliminating duplicate 
column.
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JOIN ExampleJOIN Example CUS_CODE CUS_LNAME CUS_ZIP AGENT_CODE

1132445
1321242
1657399

Walker
Rodriguez
Vanloo

32145
37134
32145

231
125
231

AGENT_CODE AGENT_PHONE

125
167
231

6152439887
6153426778
6152431124

Table name: CUSTOMER

Table name: AGENT
1132445 Walker 32145 231 125 6152439887

1132445 Walker 32145 231 167 6153426778

1132445 Walker 32145 231 231 6152431124

1321242 Rodrguez 37134 125 125 6152439887

1321242 Rodrguez 37134 125 167 6153426778

1321242 Rodrguez 37134 125 231 6152431124

1657399 Vanloo 21145 231 125 6152439887

1657399 Vanloo 21145 231 167 6153426778

1657399 Vanloo 21145 231 231 6152431124

1132445 Walker 32145 231 231 6152431124

1321242 Rodrguez 37134 125 125 6152439887

1657399 Vanloo 21145 231 231 6152431124

1132445 Walker 32145 231 6152431124

1321242 Rodrguez 37134 125 6152439887

1657399 Vanloo 21145 231 6152431124

1. Product of both tables

2. Select rows where agent_code match

3. Project to eliminate
2nd agent_code
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Summary

• Relational Calculus:
• Very user-friendly, easy-to-use

• Relational Algebra:
• Sound theoretical basis
• Often underlying implementation of calculus
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