Review

Consider a database of warships. Each warship has the following information associated with it:

- (a) Its name.
- (b) Its displacement (weight), in tons.
- (c) Its type, e.g., battleship, destroyer.
- In addition, there are the following special kinds of ships that have some other information:
- (a) Gunships are ships that carry large guns, such as batterships or cruisers. For these ships, we wish to record the number and bore of the main guns.
- record the number and bore of the main guns. (b) Carriers hold aircraft. For these, we wish to record the length of the flight deck and the set of air groups assigned to them. (c) Submarines which can travel under water. For these, we wish to record their maximum safe depth. You may assume no gunship or carrier is a submarine. (d) Battlecarriers are both gunships and carriers, and have all the information associated with either.

CS5208

	Hourly_Emps (ssn, name, lot, rating, hrly_wages, hrs_worked) Also used SNLRWH to refer to the table										
Evils of Redundancy	S	Ν	L	R	W	Н					
, , , , , , , , , , , , , , , , , , ,	123-22-3666	Attishoo	48	8	10	40					
	231-31-5368	Smiley	22	8	10	30					
	131-24-3650	Smethurst	35	5	7	30					
• <u>Redundant storage</u>	434-26-3751	Guldu	35	5	7	32					
 <u>Update anomaly</u>: Can 	612-67-4134	Madayan	35	8	10	40					
we change W in just											
the 1st tuple of SNLR	NH?										
 <u>Insertion anomaly</u>: What if we want to insert an employee and don't know the hourly wage for his rating? 											
• <u>Deletion anomaly</u> : What if we delete all employees with rating 5?											
CS5208						6					

A]	BAD	S				N		L	R	W	Η	
Re	lational	123	123-22-3666			Atti	shoo	48	8	10	40	
C	1	231	231-31-5368				ley	22	8	10	30	
50	пети	131	-24	-36	50	Sm	thurst	35	5	7	30	
		434	-26	5-37:	51	Gul	du	35	5	7	32	
			612-67-4134			Mac	layan	35	8	10	40	
An	Improt	ved So	ch	en	na	!						
	s	N		L	R	Η						
	123-22-3666	Attishoo	Attishoo		8	40			R	W		
	231-31-5368	Smiley	Smiley228Smethurst355		8	30			8	10	-	
	131-24-3650	Smethur			30			5	7			
	434-26-3751	Guldu		35	5	32			3	/		
	612-67-4134	Madayaı	ı	35	8	40						
CS5208							,					

Functional Dependencies (FDs)

- A *functional dependency* X → Y (X determines Y) holds over relation R if, for *every* allowable instance r of R:
 - given two tuples in *r*, if the X values agree, then the Y values must also agree. (X and Y are *sets* of attributes.)
- K is a *candidate key* for relation R if:
- 1. K determines *all* attributes of R.
- 2. For no proper subset of K is (1) true.
- If K satisfies only (1), then K is a superkey.
- Primary key
- CS5208

Example

Consider relation Hourly_Emps:

Hourly_Emps (<u>ssn</u>, name, lot, rating, hrly_wages, hrs_worked)
FDs S → SNLRWH

• *ssn* is the key FDs give more detail

than the mere assertion of a key

- rating determines
- hrly_wages

 $R \rightarrow W$

CS5208

231-31-5368 Smiley 22 8 10 40 key 131-24-3650 Smethurst 35 5 7 30 aines 612-67-4134 Madayan 35 8 10 40

Ν

123-22-3666 Attishoo

LRWH

48 8 10 40

Who Determines Keys/FDs?

- An FD is a statement about *all* allowable relations.
 - Must be identified based on semantics of application.
 - Given some allowable instance *r1* of R, we can check if it violates some FD *f*, but we *cannot* tell if *f* holds over R!
- We can define a relation schema with a single key K.
 Then the only FD asserted are K → A for every attribute A.
- Or, we can assert some FDs and deduce one or more keys or other FDs.

CS5208

Algorithm to Compute Attribute Closure • Define Y^+ = closure of Y. • Basis: $Y^+ = Y$ • $A \rightarrow B, BC \rightarrow D$ • $A^+ = AB$ • Induction: If $X \subset Y^+$, and X • C⁺ = C \rightarrow A is a given FD, then add • (AC)⁺ = ABCD A to Y⁺ • Thus, AC is a key. • End when Y⁺ cannot be changed. Then Y functionally determines all members of Y⁺, and no other attributes. C\$5208

A	BAD	S			N		L	R	W	Η		
Re	lational	123-22-3666			Atti	shoo	48	8	10	40		
C	1		231-3	31-31-5368		Smiley Smethurst		22	8	10	30	
50	nemu		131-24-36		50			35	5	7	30	
			434-2	6-37:	5-3751		Guldu		5	7	32	
			612-67-4134			Mac	layan	35	8	10	40	
An	Improv	ved	Sch	1en	na	1						
1 1/1	s	N	001	L	R	Н						
	123-22-3666	Attis	Attishoo Smiley Smethurst		8	40			R	W 10		
	231-31-5368	Smil			8	30	30		8			
	131-24-3650	Sme			thurst 35		5	30			5	7
	434-26-3751	Gulc	lu	35	5	32						
	612-67-4134	Mad	ayan	35	8	40						
CS5208							-					

Decomposition of a Relation Scheme

- Suppose that relation R contains attributes *A*1 ... *An*. A *decomposition* of R consists of replacing R by two or more relations such that:
 - Each new relation scheme contains a subset of the attributes of R (and no attributes that do not appear in R), and
 - Every attribute of R appears as an attribute of one of the new relations.
- Intuitively, decomposing R means we will store instances of the relation schemes produced by the decomposition, instead of instances of R.
- E.g., Can decompose SNLRWH into SNLRH and RW.

CS5208

Example Decomposition

- Decompositions should be used only when needed.
 - SNLRWH has FDs $\,S \to SNLRWH\,$ and $\,R \to W$
 - W values repeatedly associated with R values. Easiest way to fix this is to create a relation RW to store these associations, and to remove W from the main schema:
 i.e., we decompose SNLRWH into SNLRH and RW
- The information to be stored consists of SNLRWH tuples. If we just store the projections of these tuples onto SNLRH and RW, are there any potential problems that we should be aware of?

Problems with Decompositions

- There are three potential problems to consider:
 - 1 Some queries become more expensive.
 - e.g., How much did sailor Joe earn? (salary = W^*H)
 - 2 Given instances of the decomposed relations, we may not be able to reconstruct the corresponding instance of the original relation!
 - Fortunately, not in the SNLRWH example.
 - 3 Checking some dependencies may require joining the instances of the decomposed relations.
 - Fortunately, not in the SNLRWH example.
- <u>Tradeoff</u>: Must consider these issues vs. redundancy.

Lossless Join Decompositions

- Decomposition of R into X and Y is *lossless-join* w.r.t. a set of FDs F if, for every instance *r* that satisfies F, "reassembling" X and Y will give R and nothing else.
- It is always true that reassembling X and Y gives exactly R or a superset of R.
- Definition extended to decomposition into 3 or more relations in a straightforward way.
- It is essential that all decompositions used to deal with redundancy be lossless! (Avoids Problem (2).)
- CS5208

Normal Forms

CS5208

- Returning to the issue of schema refinement, the first question to ask is whether any refinement is needed!
- If a relation is in a certain *normal form* (BCNF, 3NF etc.), it is known that certain kinds of problems are avoided/minimized. This can be used to help us decide whether decomposing the relation will help.

Decomposition into BCNF

- Consider relation R with FDs F. If $X \rightarrow Y$ violates BCNF,
 - Expand left side to include X⁺.
 - Decompose R into (R X⁺) U X and X⁺.
 - · Find the FDs for the decomposed relations.
- Repeated application of this idea will give us a collection of relations that are in BCNF; lossless join decomposition, and guaranteed to terminate.
- In general, several dependencies may cause violation of BCNF. The order in which we ``deal with" them could lead to very different sets of relations!

CS5208

CS5208

Example

- R(A, C, B, D, E)
- $F = A \rightarrow B, A \rightarrow E, C \rightarrow D$ • Since AC is a key, not in
- BCNF. • Pick $A \rightarrow B$ for decomposition.
- Expand left side: $A \rightarrow B E$
- Decomposed relations:
- R1(A,B,E) and R2(A,C,D). Projected FDs (skipping a
- lot of work ...) • R1: A \rightarrow B, A \rightarrow E
- R2: $C \rightarrow D$ CS5208

- BCNF violations?
 - For R1, A is key and all left sides are superkeys.
 - For R2, AC is key, and C
 - \rightarrow D violates BCNF.
- Decompose R2 • R3(C,D)
 - R4(A,C)
- Resulting relations are all in BCNF.
 - R1(A,B,E)
 - R3(C,D)

- R4(A,C)

BCNF and Dependency Preservation · The example decomposition is dependency preserving! · In general, there may not be a dependency preserving decomposition into BCNF. • e.g., CSZ, CS \rightarrow Z, Z \rightarrow C · Can't decompose while preserving 1st FD; not in BCNF.

"J <u>Q7</u> . Name: between 1	oin" B	Setwe	een F	Relatio er of cars in	ns creased	d by over 5%	
Consus	State	Abbr	Year	Population	Cars]	
census	ALABAMA ALABAMA	AL AL	1999 2000	4370 4447	3957 3960		
	: WYOMING	: WY	: 2000	: 494	: 586	4	
Selec From Where	t e						
CS5208							44

							CODE CUS_LNA		AME	ME CUS_ZIP		ENT_CODE		
113244							45	Walker			32145	231		1
13212-							42 Rodrigue		driguez 37134		125			
165739							99	Van	loo		32145	231]
1. <u>Product</u> of both tables							Table name: AGENT							
1132445	Walker	32145	231	125	125 6152439887				AGE		NT_CODE	AG	ENT_PHONE	ן ר
1132445	Walker	32145	231	167	6153426778			125		125	25		2439887	
1132445	Walker	32145	231	231	6152431124			16		167		6153426778		
1321242	Rodrguez	37134	125	125	6152439887					231		615.	2431124	ן נ
1321242	Rodrguez	37134	125	167	7 6153426778									
1321242	Rodrguez	37134	125	231	231 6152431124									
1657399	1657399 Vanloo 21145 231 125 6152439887					39887		- 3	3. <u>P</u> 1	roje	<u>ct</u> to el	imin	ate	
1657399	Vanloo	21145	231	167	61534	26778	2 nd agent_code							
1657399	Vanloo	21145	231	231	61524	31124	11324	45	Walk	er	32145	231	61524311	124
							13212	42	Rodr	quez	37134	125	61524398	887
2. <u>Sele</u>	2. <u>Select</u> rows where agent_code mat				atch	16573	99	Vanl	00	21145	231	61524311	124	
1132445	Walker	32145	231	231	61524	31124								_
1321242	Rodrguez	37134	125	125	6152439887									
1657399	Vanloo	21145	231	231	6152431124									
							1							
CS5208	2S5208												5:	5

