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Review (1)
• We would like to sort the tuples of a relation R on a given key. The 

following is known about the relation: R contains 100,000 tuples. The 
size of a page on disk is 4000 bytes. The size of each R tuple is 400 
bytes. R is clustered, i.e., each disk page holding R tuples is full of R 
tuples. The size of the sort key is 32 bytes. A record pointer is 8 bytes. 
Answer the following questions:

• If we use a two pass sorting algorithm, what is the minimum amount of main 
memory (in terms of number of pages) required?memory (in terms of number of pages) required?

• What is the cost of the two pass sorting algorithm in terms of number of disk I/Os? 
Include the cost of writing the sorted file to disk.

• Consider the following variant of the sorting algorithm. Instead of sorting the entire 
tuple, we just sort the (key, recordPointer) for each tuple. As in the conventional 
two pass sorting algorithm, we sort chunks of (key, recordPointer) in main memory 
and write the chunks to the tuple (from the original copy of R) and write the sorted 
relation to disk. What is the minimum amount of main memory required for this 
operation? What is the cost in terms of number of disk I/Os?

• Keeping all other parameters constant, for what values of tuple size is the variant 
discussed above better (in the number of I/Os)?

Review (2)
• √|R| + 1 = 101, where |R| denotes the size of R in pages
• 2 X 2 X |R| = 40000

• Memory required = 34 (an additional page is needed for the 
random access step in the second phase)

• This is an optimized version. The I/Os of the sorting scheme is 
122000. This includes 10000 for initially reading R and 
constructing (key, recordPointer) pairs; 1000 I/Os for writing the 
sorted runs of (key, recordPointer) pairs to disk; 1000 for reading 
the same from disk to merge the runs; 100000 I/Os for random 
access to retrieve the tuples pointed by the record pointer; and 
finally 10000 I/Os to write the sorted relation R to disk

• Assume that records are unspanned, then tuplesize > 2001

Relational  Operators
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First comes thought; then 
organization of that thought, into 
ideas and plans; then                       
transformation of those plans into 
reality. The beginning, as you will 
observe, is in your imagination.

Napolean Hill

Introduction

• We’ve covered the basic underlying storage, buffering, and 
indexing technology.
• Now we can move on to query processing.

• Some database operations are EXPENSIVE
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• Can greatly improve performance by being “smart”
• e.g., can speed up 1,000,000x over naïve approach

• Main weapons are:
• clever implementation techniques for operators
• exploiting “equivalences” of relational operators
• using statistics and cost models to choose among these.

Steps of processing a high-level 
query

Statistics Cost Model
Database
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Parser
Query

Optimizer
QEPParsed Query

High Level Query Query Result

Query
Evaluator

SELECT * FROM EMP
WHERE SAL > 50k

P1: Sequential Scan
P2: Use SAL index

Relational Operations
• We will consider how to implement:

• Selection ()    Selects a subset of rows from relation.

• Projection (   )   Deletes unwanted columns from relation.

• Join (     )  Allows us to combine two relations.
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• Set-difference (  - )  Tuples in reln. 1, but not in reln. 2.

• Union (  U )  Tuples in reln. 1 and in reln. 2.

• Aggregation (SUM, MIN, etc.) and GROUP BY

Since each op returns a relation, ops can be composed!  
Queries that require multiple ops to be composed may be composed in 
different ways - thus optimization is necessary for good performance
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Example
SELECT  S.sname
FROM  Reserves R, Sailors S
WHERE  R.sid=S.sid AND 

R.bid=100 AND S.rating>5

sname

sname

sname

ti 5
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Sailors Reserves

sid=sid

bid=100 rating > 5

Reserves Sailors

sid=sid

bid=100 rating > 5

Reserves

Sailors

sid=sid

bid=100 

rating > 5

Paradigm

• Cross product

• Index
• B+-tree, Hash 

• assume index entries to be (rid pointer) pair
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assume index entries to be (rid,pointer) pair

• Clustered, Unclustered

• Sort

• Hash

Schema for Examples

• Reserves (R):

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)
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• pR tuples per page, M pages. pR = 100. M = 1000.

• Sailors (S):
• pS tuples per page, N pages. pS = 80. N = 500.

• Cost metric:  # of I/Os (pages)
• We will ignore output costs in the following discussion. 

Equality Joins With One Join Column

SELECT *
FROM Reserves R, Sailors S
WHERE R.sid=S.sid Sailors Reserves

sid=sid
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• In algebra: R      S.  

• Most frequently used operation; very costly operation.

• join_selectivity = join_size/(#R tuples x #S tuples)

Equality Joins With One Join Column

SELECT sname
FROM Reserves R, Sailors S
WHERE R.sid=S.sid sid=sid

sname
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• In algebra: R      S.  

• Most frequently used operation; very costly operation.

• join_selectivity = join_size/(#R tuples x #S tuples)

Sailors Reserves

Join Example 

sid sname rating age
22 dustin 7 45.0
28 yuppy 9 35.0
31 lubber 8 55.5

sid bid day rname

31 101 10/11/96 lubber
58 103 11/12/96 dustin

Sailor Reserve

CS5208 12

44 guppy 5 35.0
58 rusty 10 35.0
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Join Example 

sid sname rating age 
22 dustin 7 45.0 
28 yuppy 9 35.0 
31 lubber 8 55.5 

sid bid day rname 

31 101 10/11/96 lubber 
58 103 11/12/96 dustin 

 

 

Sailor Reserve
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44 guppy 5 35.0 
58 rusty 10 35.0 

 

 

sid sname rating age bid day rname

31 lubber 8 55.5 101 10/11/96 lubber 
58 rusty 10 35.0 103 11/12/96 dustin 

 

 

Query (join) output

Simple Nested Loops Join

• For each tuple in the outer relation R  we scan the 

foreach tuple r in R do
foreach tuple s in S do

if r.sid == s.sid then add <r, s> to result
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• For each tuple in the outer relation R, we scan the 
entire inner relation S. 
• I/O Cost?

• Memory?

Simple Nested Loops Join

• For each tuple in the outer relation R  we scan the 

foreach tuple r in R do
foreach tuple s in S do

if r.sid == s.sid then add <r, s> to result
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• For each tuple in the outer relation R, we scan the 
entire inner relation S. 
• Cost:  M +  pR * M * N  =  1000 + 100*1000*500  I/Os.

Simple Nested Loops Join

• For each tuple in the outer relation R  we scan the 

foreach tuple r in R do
foreach tuple s in S do

if r.sid == s.sid then add <r, s> to result
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• For each tuple in the outer relation R, we scan the 
entire inner relation S. 
• Cost:  M +  pR * M * N  =  1000 + 100*1000*500  I/Os.

• Memory: 3 pages!

Block Nested Loops Join

• Use one page as an input buffer for scanning the inner S, one 
page as the output buffer, and use all remaining pages to hold 
``block’’ of outer R.
• For each matching tuple r in R-block, s in S-page, add <r, s> to result.  
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g p , p g , ,
Then read next R-block, scan S, etc.

. . .

. . .

R & S
Hash table for block of R

(k < B-1 pages)

Input buffer for S Output buffer

. . .

Join Result

Examples of Block Nested Loops

• Cost:  Scan of outer +  #outer blocks * scan of inner
• #outer blocks ?
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Examples of Block Nested Loops

• Cost:  Scan of outer +  #outer blocks * scan of inner
• #outer blocks = no. of pages in outer relation / block size
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Examples of Block Nested Loops

• Cost:  Scan of outer +  #outer blocks * scan of inner
• #outer blocks = no. of pages in outer relation / block size

• With R as outer, block size of 100 pages:
• Cost of scanning R is 1000 I/Os;  a total of 10 blocks.
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g ;
• Per block of R, we scan S; 10*500 I/Os.
• If block size for just 90 pages of R, scan S 12 times.

Examples of Block Nested Loops

• Cost:  Scan of outer +  #outer blocks * scan of inner
• #outer blocks = no. of pages in outer relation / block size

• With R as outer, block size of 100 pages:
• Cost of scanning R is 1000 I/Os;  a total of 10 blocks.
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g ;
• Per block of R, we scan S; 10*500 I/Os.
• If block size for just 90 pages of R, scan S 12 times.

• With 100-page block of S as outer?

Examples of Block Nested Loops

• Cost:  Scan of outer +  #outer blocks * scan of inner
• #outer blocks = no. of pages in outer relation / block size

• With R as outer, block size of 100 pages:
• Cost of scanning R is 1000 I/Os;  a total of 10 blocks.
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g ;
• Per block of R, we scan S; 10*500 I/Os.
• If block size for just 90 pages of R, scan S 12 times.

• With 100-page block of S as outer:
• Cost of scanning S is 500 I/Os; a total of 5 blocks.
• Per block of S, we scan R;   5*1000 I/Os.

Sort-Merge Join
• Sort R and S on the join column, then scan them to do a ``merge’’ (on 

join col.), and output result tuples.
• Advance scan of R until current R-tuple >= current S tuple, then advance scan 

of S until current S-tuple >= current R tuple; do this until current R tuple = 
current S tuple.

At this point  all R t ples ith same al e in Ri (c rrent R gro p) and all S 

CS5208 23

• At this point, all R tuples with same value in Ri (current R group) and all S 
tuples with same value in Sj (current S group) match;  output <r, s> for all pairs 
of such tuples.

• Then resume scanning R and S.

• R is scanned once; each S group is scanned once per matching R tuple.  
(Multiple scans of an S group are likely to find needed pages in buffer.)

Example of Sort-Merge Join

sid sname rating age
22 dustin 7 45.0
28 yuppy 9 35.0
31 lubber 8 55.5

sid bid day rname

28 103 12/4/96 guppy
28 103 11/3/96 yuppy
31 101 10/10/96 dustin
31 102 10/12/96 lubber
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• Cost?

44 guppy 5 35.0
58 rusty 10 35.0

31 101 10/11/96 lubber
58 103 11/12/96 dustin
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Example of Sort-Merge Join

sid sname rating age
22 dustin 7 45.0
28 yuppy 9 35.0
31 lubber 8 55.5

sid bid day rname

28 103 12/4/96 guppy
28 103 11/3/96 yuppy
31 101 10/10/96 dustin
31 102 10/12/96 lubber
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• Cost:  2M*K1+ 2N*K2+ (M+N)

• K1 and K2 are the number of passes to sort R and S respectively

• The cost of scanning, M+N, could be M*N (very unlikely!)

44 guppy 5 35.0
58 rusty 10 35.0

31 101 10/11/96 lubber
58 103 11/12/96 dustin

Example of Sort-Merge Join

sid sname rating age
22 dustin 7 45.0
28 yuppy 9 35.0
31 lubber 8 55.5

sid bid day rname

28 103 12/4/96 guppy
28 103 11/3/96 yuppy
31 101 10/10/96 dustin
31 102 10/12/96 lubber
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• Cost:  2M*K1+ 2N*K2+ (M+N) 
• K1 and K2 are the number of passes to sort R and S respectively
• The cost of scanning, M+N, could be M*N (very unlikely!)

• With 35, 100 or 300 buffer pages, both R and S can be sorted in 2 passes; 
total join cost: 7500. 

44 guppy 5 35.0
58 rusty 10 35.0

31 101 10/11/96 lubber
58 103 11/12/96 dustin

(BNL cost:  2500 to 15000 I/Os)

GRACE Hash-Join

X X X
X X X 
X X X

X X X

S

0

0            1           2          3

bucketID = X mod 4
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X X X
X X X

X X X  
X X X
X X X

X X X
X X X
X X X

R

1

2

3

GRACE Hash-Join

• Operates in two phases:
• Partition phase

• Partition relation R using hash fn h.
• Partition relation S using hash fn h.
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Partition relation S using hash fn h.
• R tuples in partition i will only match S tuples in partition i. 

• Join phase
• Read in a partition of R
• Hash it using h2 (<> h!)
• Scan matching partition of S, search for matches.

Partitioning Phase

Original 
Relation OUTPUT

1

Partitions

1
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B main memory buffers DiskDisk

2INPUT

hash
function

h
B-1

1

2

B-1

. . .

Joining Phase

Partitions
of R & S

Hash table for partition
Ri (k < B-1 pages)

Join Result

hash
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Input buffer
for Si

B main memory buffersDisk

Output 
buffer

Disk

hash
fn
h2

h2
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Cost of Hash-Join

• In partitioning phase, read+write both relns
• 2(M+N). 

• In matching phase, read both relns
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• M+N I/Os.

• In our running example, this is a total of 4500 I/Os.

Observations on Hash-Join

• #partitions k  B-1 (why?), and B-2  size of largest partition to be 
held in memory.  Assuming uniformly sized partitions, and 
maximizing k, we get:
• k= B-1,  and M/(B-1)  B-2,  i.e.,  B must be   M

• If we build an in-memory hash table to speed up the matching of 
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• If we build an in-memory hash table to speed up the matching of 
tuples, a little more memory is needed.

• If the hash function does not partition uniformly, one or more R 
partitions may not fit in memory.  Can apply hash-join technique 
recursively to do the join of this R-partition with corresponding S-
partition.

• What if B <  M ?

Index Nested Loops Join

• If there is an index on the join column of one relation (say S)  can make it the inner and 

foreach tuple r in R do
search index of S on sid using Ssearch-key = r.sid
for each matching key 

retrieve s; add <r, s> to result
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• If there is an index on the join column of one relation (say S), can make it the inner and 
exploit the index.

• Cost:  M + ( (M*pR) * cost of finding matching S tuples) 

• For each R tuple, cost of probing S index is about 1.2 for hash index, 2-4 for B+ tree.  
Cost of then finding S tuples (assuming leaf data entries are pointers) depends on 
clustering.

• Clustered index:  1 I/O (typical), unclustered: upto 1 I/O per matching S tuple.

Schema for Examples

• Reserves (R):

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)
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• pR tuples per page, M pages. pR = 100. M = 1000.

• Sailors (S):
• pS tuples per page, N pages. pS = 80. N = 500.

• Cost metric:  # of I/Os (pages)
• We will ignore output costs in the following discussion. 

Examples of Index Nested Loops

• Hash-index on sid of S (as inner):
• Scan R:  1000 page I/Os, 100*1000 tuples.

• For each R tuple:  1.2 I/Os to get data entry in index, plus 1 I/O to get 
(the exactly one) matching S tuple.  Total:  220,000 I/Os.

CS5208 35

( y ) g p ,

• Hash-index on sid of R (as inner)?

Examples of Index Nested Loops

• Hash-index on sid of S (as inner):
• Scan R:  1000 page I/Os, 100*1000 tuples.
• For each R tuple:  1.2 I/Os to get data entry in index, plus 1 I/O to get 

(the exactly one) matching S tuple.  Total:  220,000 I/Os.

• Hash-index on sid of R (as inner):
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Hash index on sid of R (as inner):
• Scan S:  500 page I/Os, 80*500 tuples.
• For each S tuple:  1.2 I/Os to find index page with data entries, plus cost 

of retrieving matching R tuples.  
• Assuming uniform distribution, 2.5 reservations per sailor (100,000 / 

40,000).  Cost of retrieving them  is 1 or 2.5 I/Os depending on whether 
the index is clustered.
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General Join Conditions

• Equalities over several attributes (e.g.,  R.sid=S.sid 
AND R.rname=S.sname): 
• Join on one predicate, and treat the rest as selections;
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• For Index NL, build index on <sid, sname> (if S is inner);  use 
existing indexes on sid or sname.

• For Sort-Merge and Hash Join, sort/partition on combination of the 
two join columns

• Inequality join (R.sid < S.sid)?

Relational Operations
• We will consider how to implement:

• Selection ()    Selects a subset of rows from relation.

• Projection (   )   Deletes unwanted columns from relation.

• Join (     )  Allows us to combine two relations.
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• Set-difference (  - )  Tuples in reln. 1, but not in reln. 2.

• Union (  U )  Tuples in reln. 1 and in reln. 2.

• Aggregation (SUM, MIN, etc.) and GROUP BY

Since each op returns a relation, ops can be composed!  
Queries that require multiple ops to be composed may be composed in 
different ways - thus optimization is necessary for good performance

Simple Selections

• Of the form: R.attr op value (R)

• selectivity = Size of result / R
• With no index, unsorted:  Must essentially scan the whole 

SELECT *
FROM Reserves R
WHERE R.rname < ‘C%’
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y
relation; cost is M (#pages in R). 

• Sorted?

• With an index on selection attribute:  Use index to find qualifying 
data entries, then retrieve corresponding data records.  (Hash 
index useful only for equality selections.)

Using an Index for Selections

• Cost depends on #qualifying tuples, and clustering.
• Cost of finding qualifying data entries (typically small) plus 

cost of retrieving records (could be large w/o clustering).

• In example  assuming uniform distribution of names  about 
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• In example, assuming uniform distribution of names, about 
10% of tuples qualify (100 pages, 10000 tuples).  

• Clustered index?

• Unclustered index?

Using an Index for Selections

• Cost depends on #qualifying tuples, and clustering.
• Cost of finding qualifying data entries (typically small) plus 

cost of retrieving records (could be large w/o clustering).

• In example  assuming uniform distribution of names  about 
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• In example, assuming uniform distribution of names, about 
10% of tuples qualify (100 pages, 10000 tuples).  

• Clustered index: ~ 100 I/Os

• Unclustered: upto 10000 I/Os!

Two Approaches to General 
Selections

• First approach: Find the most selective access path, retrieve 
tuples using it, and apply any remaining terms that don’t 
match the index:
• Most selective access path: An index or file scan that we estimate 

ill i  th  f t  I/O
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will require the fewest page I/Os.
• Terms that match this index reduce the number of tuples retrieved; 

other terms are used to discard some retrieved tuples, but do not 
affect number of tuples/pages fetched.

• Consider day<8/9/94 AND bid=5 AND sid=3. A B+ tree index on  
day can be used; then, bid=5 and sid=3 must be checked for each 
retrieved tuple.  Similarly, a hash index on <bid, sid> could be used; 
day<8/9/94 must then be checked. 
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Intersection of Rids

• Second approach (if we have 2 or more matching indexes 
(assuming leaf data entries are pointers):
• Get sets of rids of data records using each matching index.

Then intersect these sets of rids (we’ll discuss intersection soon!)
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• Then intersect these sets of rids (we’ll discuss intersection soon!)

• Retrieve the records and apply any remaining terms.

• Consider day<8/9/94 AND bid=5 AND sid=3. If we have a B+ tree 
index on day and an index on sid, we can retrieve rids of records 
satisfying day<8/9/94 using the first, rids of recs satisfying sid=3 
using the second, intersect, retrieve records and check bid=5. 

The Projection Operation
(Duplicate Elimination)

• An approach based on sorting:
• Modify Pass 0 of external sort to eliminate unwanted fields. Thus, runs are 

produced, but tuples in runs are smaller than input tuples.  (Size ratio 
depends on # and size of fields that are dropped.)

M dif  i   t  li i t  d li t   Th  b  f lt 

SELECT DISTINCT
R.sid, R.bid

FROM Reserves R
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• Modify merging passes to eliminate duplicates.  Thus, number of result 
tuples smaller than input.  (Difference depends on # of duplicates.)

• Cost:  In Pass 0, read original relation (size M), write out same number of 
smaller tuples.  In merging passes, fewer tuples written out in each pass.  

• Hash-based scheme?

Set Operations

• Intersection and cross-product special cases of join.

• Union (Distinct) and Difference similar.

• Sorting based approach to union:
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• Sort both relations (on combination of all attributes).

• Scan sorted relations and merge them.

• Hash based approach to union?

Set Operations

• Intersection and cross-product special cases of join.

• Union (Distinct) and Difference similar.

• Sorting based approach to union:
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• Sort both relations (on combination of all attributes).

• Scan sorted relations and merge them.

• Hash based approach to union:
• Partition R and S using hash function h.

• For each S-partition, build in-memory hash table (using h2), scan 
corr. R-partition and add tuples to table while discarding duplicates.

Aggregate Operations (AVG, MIN, etc.)
• Without grouping:

• In general, requires scanning the relation.

• Given index whose search key includes all attributes in the SELECT or WHERE 
clauses, can do index-only scan.  

SELECT AVG(SALARY)
FROM EMPLOYEE

SELECT DEPT, AVG(SALARY)
FROM EMPLOYEE
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• With grouping:
• Sort on group-by attributes, then scan relation and compute aggregate for each 

group. 

• Similar approach based on hashing on group-by attributes.

• Given tree index whose search key includes all attributes in SELECT, WHERE and 
GROUP BY clauses, can do index-only scan;  if group-by attributes form prefix of 
search key, can retrieve data entries/tuples in group-by order.

FROM EMPLOYEE
GROUP BY DEPT

Iterators for Implementation of 
Operators

• Most operators can be implemented as an iterator

• An iterator allows a consumer of the result of the operator to get 
the result one tuple at a time

O t t th f tti t l b t d t t t l It
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• Open – starts the process of getting tuples, but does not get a tuple. It 
initializes any data structures needed.

• GetNext – returns the next tuple in the result and adjusts the data 
structures as necessary to allow subsequent tuples to be obtained. It may 
calls GetNext one or more times on its arguments. It also signals whether 
a tuple was produced or there were no more tuples to be produced. 

• Close – ends the iteration after all tuples have been obtained.
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Iterators

Open();

While condition is true do {

GetNext();
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GetNext();

perform other operations

}

Close();

More on Iterators

• Why iterators?
• Do not need to materialize (i.e., store on disk) intermediate results
• Many operators are active at once, and tuples flow from one operator 

to the next, thus reducing the need to store intermediate results

• In some cases (e.g., sort), almost all the work would need to be 
d b th O f ti hi h i t t t t
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done by the Open function, which is tantamount to 
materialization

• We shall regard Open, GetNext, Close as overloaded names of 
methods. 
• Assume that for each physical operator, there is a class whose objects 

are the relations that can be produced by this operator. If R is a 
member of such a class, then we use R.Open(), R.GetNext, and 
R.Close() to apply the functions of the iterator for R.

An iterator for table-scan operator
Open(R) {

b := first block of R;
t := first tuple of block b;
Found := TRUE;

}

GetNext(R) {
If (t is past the last tuple on b) 

b := next block
If (there is no next block)

Found := FALSE;
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Close(R) {
}

RETURN;
Else

t := first tuple in b;
oldt := t;
t := next tuple of b 
RETURN oldt; 

}

An iterator for tuple-based nested-loops join 
operator (assumes R and S are non-empty)
Open(R,S) {

R.Open();

S.Open();

s := S.GetNext();

}

GetNext(R,S) {
REPEAT

r := R.GetNext();
If (NOT Found) {

R.Close();
s := S GetNext();
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}

Close(R,S) {

R.Close();

S.Close();

}

s := S.GetNext();
IF (NOT Found)

Return;
R.Open();
r := R.GetNext();

}
UNTIL (r and s join);
Return the join of r and s;

}

Summary

• A virtue of relational DBMSs: queries are composed of a few 
basic operators; the implementation of these operators can 
be carefully tuned (and it is important to do this!).

• Many alternative implementation techniques for each 
operator; no universally superior technique for most 
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operator; no universally superior technique for most 
operators.  

• Must consider available alternatives for each operation in a 
query and choose best one based on system statistics, etc.  
This is part of the broader task of optimizing a query 
composed of several ops. 


