
1

Query Optimization in 
Relational Database Systems

It is safer to accept any chance

CS5208: Query Optimization 1

It is safer to accept any chance
that offers itself, and extemporize 
a procedure to fit it, than to get a 
good plan matured, and wait
for a chance of using it.

Thomas Hardy (1874)
in Far from the Madding Crowd

Review: Case where index is useful

CS5208: Query Optimization 2

Query Optimization
• Since each relational op returns a relation, ops can be 

composed!  
• Queries that require multiple ops to be composed may 

be composed in different ways - thus optimization is 
necessary for good performance e g  A     B     C     D can 

CS5208: Query Optimization 3

necessary for good performance, e.g. A     B     C     D can 
be evaluated as follows:
• (((A      B)       C)       D)
• ((A       B)       (C       D))
• ((B       A)       (D       C))
• … 

Query Optimization
• Each strategy can be represented as a query 

evaluation plan (QEP) - Tree of R.A. ops, with choice 
of algo for each op.

DNL

SM HJ

CS5208: Query Optimization 4

• Goal of optimization: To find the “best” plan that 
compute the same answer (to avoid “bad” plans)

A B

C

D

A B C D

NL

NL

HJ INL

More on Motivating Examples

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

CS5208: Query Optimization 5

• Reserves:
• Each tuple is 40 bytes long,  100 tuples per page, 1000 pages.

• Sailors:
• Each tuple is 50 bytes long,  80 tuples per page, 500 pages. 

Example
SELECT  S.sname
FROM  Reserves R, Sailors S
WHERE  R.sid=S.sid AND 

R.bid=100 AND S.rating>5

sname

sname

sname

ti > 5

CS5208: Query Optimization

Sailors Reserves

sid=sid

bid=100 rating > 5

Reserves Sailors

sid=sid

bid=100 rating > 5

Reserves

Sailors

sid=sid

bid=100 

rating > 5



2

Example
SELECT  S.sname
FROM  Reserves R, Sailors S
WHERE  R.sid=S.sid AND 

R.bid=100 AND S.rating>5

sname

sid sname rating age bid day rname 

sname 

lubber 

 

CS5208: Query Optimization

Sailors Reserves

sid=sid

bid=100 rating > 5

sid sname rating age 
22 dustin 7 45.0 
28 yuppy 9 35.0 
31 lubber 8 55.5 
44 guppy 5 35.0 
58 rusty 10 35.0 

 

 

sid bid day rname 

31 100 10/11/96 lubber 
58 103 11/12/96 dustin 

 

 

sid sname rating age bid day rname

31 lubber 8 55.5 100 10/11/96 lubber 

58 rusty 10 35.0 103 11/12/96 dustin 
 

31 lubber 8 55.5 100 10/11/96 lubber 

 

Example
SELECT  S.sname
FROM  Reserves R, Sailors S
WHERE  R.sid=S.sid AND 

R.bid=100 AND S.rating>5

sname

rating > 5

sname 

lubber 

 
sid sname rating age bid day rname 

31 lubber 8 55.5 100 10/11/96 lubber

CS5208: Query Optimization

Reserves

Sailors

sid=sid

bid=100 

rating  5

sid sname rating age 
22 dustin 7 45.0 
28 yuppy 9 35.0 
31 lubber 8 55.5 
44 guppy 5 35.0 
58 rusty 10 35.0 

 

 

sid bid day rname 

31 100 10/11/96 lubber 
58 103 11/12/96 dustin 

 

 

sid sname rating age bid day rname 

31 lubber 8 55.5 100 10/11/96 lubber 

 

sid bid day rname 

31 100 10/11/96 lubber 
 

 

31 lubber 8 55.5 100 10/11/96 lubber

 

Example
SELECT  S.sname
FROM  Reserves R, Sailors S
WHERE  R.sid=S.sid AND 

R.bid=100 AND S.rating>5

snamesid sname rating age bid day rname 

31 lubber 8 55.5 100 10/11/96 lubber

sname 

lubber 

 

CS5208: Query Optimization

Reserves Sailors

sid=sid

bid=100 rating > 5

sid sname rating age 
22 dustin 7 45.0 
28 yuppy 9 35.0 
31 lubber 8 55.5 
44 guppy 5 35.0 
58 rusty 10 35.0 

 

 

sid bid day rname 

31 100 10/11/96 lubber 
58 103 11/12/96 dustin 

 

 

31 lubber 8 55.5 100 10/11/96 lubber 

 
sid bid day rname 

31 100 10/11/96 lubber 
 

 

sid sname rating age 
22 dustin 7 45.0 
28 yuppy 9 35.0 
31 lubber 8 55.5 
58 rusty 10 35.0 

 

 

Example (Cont)
SELECT  S.sname
FROM  Reserves R, Sailors S
WHERE  R.sid=S.sid AND 

R.bid=100 AND S.rating>5

sname
(On-the-fly)

Query Evaluation Plan:
• Cost?

CS5208: Query Optimization 10

Sailors Reserves

sid=sid

bid=100 rating > 5

(Page Nested Loops)

(On-the-fly)

Example (Cont)
SELECT  S.sname
FROM  Reserves R, Sailors S
WHERE  R.sid=S.sid AND 

R.bid=100 AND S.rating>5

sname
(On-the-fly)

Query Evaluation Plan:
• Cost:  500+500*1000 I/Os

CS5208: Query Optimization 11

Sailors Reserves

sid=sid

bid=100 rating > 5

(Page Nested Loops)

(On-the-fly)

Example (Cont)
SELECT  S.sname
FROM  Reserves R, Sailors S
WHERE  R.sid=S.sid AND 

R.bid=100 AND S.rating>5

sname
(On-the-fly)

Query Evaluation Plan:
• Cost:  500+500*1000 I/Os

• Memory?

CS5208: Query Optimization 12

Sailors Reserves

sid=sid

bid=100 rating > 5

(Page Nested Loops)

(On-the-fly)



3

Example (Cont)
SELECT  S.sname
FROM  Reserves R, Sailors S
WHERE  R.sid=S.sid AND 

R.bid=100 AND S.rating>5

sname
(On-the-fly)

Query Evaluation Plan:
• Cost:  500+500*1000 I/Os

• Memory: 3

CS5208: Query Optimization 13

Sailors Reserves

sid=sid

bid=100 rating > 5

(Page Nested Loops)

(On-the-fly)

Alternative Plans 1 (No Indexes)
• Main difference:  push selections down

• Assume 5 buffers, T1 = 10 pages (100 boats, 
uniform distribution), T2 = 250 pages (10 ratings, 
uniform distribution) sname

(On-the-fly)

CS5208: Query Optimization 14

Reserves Sailors

sid=sid

bid=100 rating > 5

(Sort-Merge)

(T1) (T2)

Alternative Plans 1 (No Indexes)
• Main difference:  push selections down

• With 5 buffers, cost of plan:
• Scan Reserves (1000) + write temp T1 (10 pages, 

if we have 100 boats, uniform distribution).

S  S il  (500) + it  t  T2 (250  if 

sname
(On-the-fly)

CS5208: Query Optimization 15

• Scan Sailors (500) + write temp T2 (250 pages, if 
we have 10 ratings).

• Sort T1 (2*2*10), sort T2 (2*4*250), merge 
(10+250)

• Total:  4060 page I/Os.

Reserves Sailors

sid=sid

bid=100 rating > 5

(Sort-Merge)

(T1) (T2)

Alternative Plans 2 (With Indexes)
• Clustered index on bid of Reserves 

• 100,000/100 = 1000 tuples on 1000/100 = 10 pages

• Hash index on sid. Join column sid is a key for Sailors.
• INL with pipelining (outer is not materialized) 

• Project out unnecessary fields from outer doesn’t help.

sname(On-the-fly)

ti 5 (On the fly)

CS5208: Query Optimization 16

Reserves

Sailors

sid=sid

bid=100 

rating > 5

(Use hash
index; do
not write
result to 
temp)

(INL
with pipelining )

(On-the-fly)

• At most one matching tuple, unclustered 
index on sid OK.

• Did not push “rating>5” before the join. Why?

Alternative Plans 2 (With Indexes)
• Clustered index on bid of Reserves 

• 100,000/100 = 1000 tuples on 1000/100 = 10 pages

• Hash index on sid. Join column sid is a key for Sailors.
• INL with pipelining (outer is not materialized) 

• Project out unnecessary fields from outer doesn’t help.

sname(On-the-fly)

ti 5 (On the fly)

CS5208: Query Optimization 17

Reserves

Sailors

sid=sid

bid=100 

rating > 5

(Use hash
index; do
not write
result to 
temp)

(INL
with pipelining )

(On-the-fly)

• At most one matching tuple, unclustered 
index on sid OK.

• Decision not to push rating>5 before the join is 
based on availability of sid index on Sailors.

• Cost?

Alternative Plans 2 (With Indexes)
• Clustered index on bid of Reserves 

• 100,000/100 = 1000 tuples on 1000/100 = 10 pages

• Hash index on sid. Join column sid is a key for Sailors.
• INL with pipelining (outer is not materialized) 

• Project out unnecessary fields from outer doesn’t help.

sname(On-the-fly)

ti 5 (On the fly)

CS5208: Query Optimization 18

Reserves

Sailors

sid=sid

bid=100 

rating > 5

(Use hash
index; do
not write
result to 
temp)

(INL
with pipelining )

(On-the-fly)

• At most one matching tuple, unclustered 
index on sid OK.

• Decision not to push rating>5 before the join is 
based on availability of sid index on Sailors.

• Cost:  Selection of Reserves tuples (10 I/Os); for 
each, must get matching Sailors tuple (1000*2.2); 
total 2210 I/Os.



4

Open()

consumer

Plan Execution under the Iterator Model

CS5208: Query Optimization 19

A B

C

Open()

consumer

Plan Execution under the Iterator Model

Open() Open()

CS5208: Query Optimization 20

A B

C

p ()

Open() Open()

GetNext()

consumer

Plan Execution under the Iterator Model

GetNext()

CS5208: Query Optimization 21

A B

C

GetNext()

consumer

Plan Execution under the Iterator Model

GetNext()

CS5208: Query Optimization 22

A B

C

GetNext()

GetNext()

consumer

Plan Execution under the Iterator Model

GetNext()

CS5208: Query Optimization 23

A B

C

GetNext()

t

GetNext()

consumer

Plan Execution under the Iterator Model

GetNext()

CS5208: Query Optimization 24

A B

C

GetNext()

t

GetNext()



5

GetNext()

consumer

Plan Execution under the Iterator Model

GetNext()

CS5208: Query Optimization 25

A B

C

GetNext()

t

GetNext()

GetNext()

consumer

Plan Execution under the Iterator Model

GetNext()

CS5208: Query Optimization 26

A B

C

GetNext()

t

GetNext()

GetNext()

consumer

Plan Execution under the Iterator Model

GetNext()

CS5208: Query Optimization 27

A B

C

GetNext()

t

GetNext()

GetNext()

consumer

Plan Execution under the Iterator Model

GetNext()

CS5208: Query Optimization 28

A B

C

GetNext()

t

GetNext()

GetNext()

consumer

Plan Execution under the Iterator Model

GetNext()

CS5208: Query Optimization 29

A B

C

GetNext()

t

GetNext()

GetNext()

consumer

Plan Execution under the Iterator Model

GetNext()

CS5208: Query Optimization 30

A B

C

GetNext()

t

GetNext()



6

GetNext()

consumer

Plan Execution under the Iterator Model

GetNext()

answer

CS5208: Query Optimization 31

A B

C

GetNext()

t

GetNext()

GetNext()

consumer

Plan Execution under the Iterator Model

GetNext()

answer

CS5208: Query Optimization 32

A B

C

GetNext()

t

GetNext()

parse

convert answer

SQL query

parse tree

logical query plan

Overview of Query Optimization

CS5208: Query Optimization 33

apply laws

estimate result sizes

consider physical plans estimate costs

pick best

execute

{P1,P2,…..}

{P1,C1>...}

Pi

logical query plan

“improved” l.q.p

l.q.p. +sizes

Example:   SQL query

SELECT sname
FROM Sailors
WHERE sid IN (

SELECT id

CS5208: Query Optimization 34

SELECT sid
FROM Reserves
WHERE rname LIKE ‘Tan%’

);

(Find names of sailors whose reservation is made by 
someone whose name begins with “Tan”)

Example:   Parse Tree
<Query>

<SFW>

SELECT   <SelList>    FROM    <FromList>     WHERE     <Condition>

<Attribute>              <RelName>                 <Tuple>  IN  <Query>

CS5208: Query Optimization 35

sname                       Sailors               <Attribute>      (  <Query>  )

sid               <SFW>

SELECT      <SelList>    FROM     <FromList>     WHERE     <Condition>

<Attribute>           <RelName>         <Attribute>  LIKE  <Pattern>

sid                       Reserves               rname                  ‘Tan%’

Example: Logical Query Plan

sname

sid=sid



CS5208: Query Optimization 36

Sailors       sid             

rname LIKE ‘Tan%’

Reserves



7

Example:   Improved Logical Query Plan

sname

sid=sid

Question:
Push project to

CS5208: Query Optimization 37

Sailors       sid            

rname LIKE ‘TAN%’

Reserves

Sailors?

Example:    Estimate Result Sizes

Need expected size

CS5208: Query Optimization 38





Sailors

Reserves

Example:    One Physical Plan

Parameters: join order,
memory size, project attributes,...

Hash join

CS5208: Query Optimization 39

SEQ scan index scan Parameters:
Select Condition,...

Sailors  Reserves

Example: Estimate costs

L.Q.P

P1 P2 Pn

CS5208: Query Optimization 40

P1 P2 …. Pn

C1 C2 …. Cn

Pick best!

Relational Algebra Equivalences

• Allow us to choose different join orders and to `push’ selections 
and projections ahead of joins.

• Rules on joins, cross products and union
R S = S R

CS5208: Query Optimization 41

(R S) T  = R (S T) 

Relational Algebra Equivalences

• Allow us to choose different join orders and to `push’ selections 
and projections ahead of joins.

• Rules on joins, cross products and union
R S = S R

CS5208: Query Optimization 42

R x S = S x R

(R x S) x T = R x (S x T)

(R S) T  = R (S T) 



8

Relational Algebra Equivalences

• Allow us to choose different join orders and to `push’ selections 
and projections ahead of joins.

• Rules on joins, cross products and union
R S = S R

CS5208: Query Optimization 43

R x S = S x R

(R x S) x T = R x (S x T)

R U S = S U R

R U (S U T) = (R U S) U T

(R S) T  = R (S T) 

Rules: Selects

p1p2(R) =



CS5208: Query Optimization 44

p1vp2(R) =

Rules: Selects

p1p2(R) =


p1 [ p2 (R)]

[ ( )] [ ( )]

CS5208: Query Optimization 45

p1vp2(R) = [ p1 (R)] U  [ p2 (R)]

Rules: Project
Let: X = set of attributes

Y = set of attributes

XY = X U Y

CS5208: Query Optimization 46

xy (R) = x [y (R)] 

Rules: Project
Let: X = set of attributes

Y = set of attributes

XY = X U Y

CS5208: Query Optimization 47

xy (R) = x [y (R)] 

Rules: Project
Let: X = set of attributes

Y = set of attributes

XY = X U Y

CS5208: Query Optimization 48

xy (R) = 

x (R) = 

x [y (R)] 

x [y (R)] if y contains x   



9

Let P = predicate with only R attribs

Q = predicate with only S attribs

M = predicate with only R S attribs

Rules: combined

CS5208: Query Optimization 49

M  predicate with only R,S attribs

p (R      S) =

q (R      S) =

Let P = predicate with only R attribs

Q = predicate with only S attribs

M = predicate with only R S attribs

Rules: combined

CS5208: Query Optimization 50

M  predicate with only R,S attribs

p (R      S) = p(R)]     S
q (R      S) = R q(S)] 

Bags vs. Sets
R = {a,a,b,b,b,c}
S = {b,b,c,c,d}
RUS = ?

CS5208: Query Optimization 51

• Option 1 SUM

RUS = {a,a,b,b,b,b,b,c,c,c,d}

• Option 2 MAX

RUS = {a,a,b,b,b,c,c,d}

“SUM” is implemented

• Use “SUM” option for bag unions

• Some rules cannot be used for bags
• e.g. A  s (B s C) = (A s B) s (A s C)

CS5208: Query Optimization 52

Let A, B and C be {x}

B B C = {x, x}     A B (B B C) = {x}

A B B = {x}        A B C = {x} 

(A B B) B (A B C) = {x, x}

Review 
• Consider the join R JOIN(R.a=S.b) S, given the following information about the 

relations to be joined. The cost metric is the number of page I/Os, and the cost of 
writing out the result should be ignored.

• R contains 10,000 tuples and has 10 tuples per page. 

• S contains 20,000 tuples and has 10 tuples per page. 

• S.b is the primary key for S.

• Both relations are stored as simple heap files.

• 102 buffer pages are available (inclusive of input/output buffers).

• What is the cost of joining R and S using a block nested-loops join algorithm? 
What is the minimum number of buffer pages required for this cost to remain 
unchanged?

• What is the cost of joining R and S using a sort-merge join algorithm? What is 
the minimum number of buffer pages required for this cost to remain unchanged?

CS5208: Query Optimization 53

Review

• Block Nested Loops Join.

• Using R as the outer relation, and 1 page for input and output buffer.

• cost = 10,000/10 + (10,000/10)/100*20,000/10 = 21,000

• minimum number of buffer page s= 102 (no change)

• Sort-merge Join

• Each relation needs 2 passes to sort

• Cost to sort R = 2*2*10,000/10; cost to sort S = 2*2*20,000/10

• Cost = 4000+8000+1000+2000 = 15,000

• min buffer required is the same as that required to sort the larger relation, 
which is S. So, min buffer = 46

CS5208: Query Optimization 54



10

Query Optimizer
• Find the “best” plan (more often avoids the bad plan)
• Comprises the following

• Plan space 
• huge number of alternative, semantically equivalent plans
• computationally expensive to examine all
• Conventional wisdom: avoid bad plans

• need to include plans that have low cost

CS5208: Query Optimization 55

• need to include plans that have low cost
• Cost model

• facilitate comparisons of alternative plans
• has to be “accurate”

• Enumeration algorithm (Search space)
• search strategy (optimization algorithm) that searches through the plan 

space
• has to be efficient (low optimization overhead)

Plan Space

• Left-deep trees: right child has to be a base table
• Right-deep trees: left child has to be a base table
• Deep trees: one of the two children is a base table
• Bushy tree: unrestricted

CS5208: Query Optimization 56

Bushy tree: unrestricted

BA

C

D

BA

C

D

C DBA

Bushy tree Left-deep tree Deep tree

Cost Models

• Typically, a combination of CPU and I/O costs 
• Objective is to be able to rank plans

• exact value is not necessary

CS5208: Query Optimization 57

• Relies on
• statistics on relations and indexes
• formulas to estimate CPU and I/O cost
• formulas to estimate selectivities of operators and intermediate 

results

Cost Estimation

• For each plan considered, must estimate cost:
• Must estimate cost of each operation in plan tree.

• Depends on input cardinalities.

CS5208: Query Optimization 58

• We’ve already discussed how to estimate the cost of operations 
(sequential scan, index scan, joins, etc.)

• Must estimate size of result for each operation in tree!
• Use information about the input relations.

• For selections and joins, assuming independence of predicates can 
simplify size estimation but is error prone.

Statistics and Catalogs
• Need information about the relations and indexes involved.  

Catalogs typically contain at least:
• # tuples of R (T(R)), #bytes in each R tuple (S(R))
• # blocks to hold all R tuples (B(R))
• # distinct values in R for attribute A (V(R A)) 

CS5208: Query Optimization 59

• # distinct values in R for attribute A (V(R,A)) 
• NPages for each index.
• Index height, low/high key values (Low/High) for each tree index.

• Catalogs updated periodically.
• Updating whenever data changes is too expensive; lots of 

approximation anyway, so slight inconsistency ok.

R A: 20 byte string

B: 4 byte integer

C: 8 byte string

A B C D
cat 1 10 a
cat 1 20 b
dog 1 30 a

Example

CS5208: Query Optimization 60

D: 5 byte string
g

dog 1 40 c
bat 1 50 d

T(R) = 5     S(R) = 37

V(R,A) = 3 V(R,C) = 5

V(R,B) = 1 V(R,D) = 4



11

R V(R,A)=3       T(W) =

V(R,B)=1

V(R,C)=5

A B C D
cat 1 10 a
cat 1 20 b
dog 1 30 a

T(R)
V(R,Z)

Size estimate  for W = Z=val (R)

S(W) = S(R)

CS5208: Query Optimization 61

V(R,D)=4
g

dog 1 40 c
bat 1 50 d

( ) ( )

Assumption:
Values in select expression Z = val are  uniformly 
distributed over possible V(R,Z) values

Alternative assumption: use DOM(R,Z)

What about W = z  val (R)?

Solution:   Estimate values in range

R Z
Min=1      V(R,Z)=10

W=  (R)

CS5208: Query Optimization 62

W= z  15 (R)

Max=20

f (fraction of range) =                        =               T(W) = f  T(R)

Alternative: (Max(Z)-value)/(Max(Z)-Min(Z))

20-15+1
20-1+1

6
20

W = R1      R2

R      A      B        C          S A D

Assumption:

CS5208: Query Optimization 63

p

V(R1,A)   V(R2,A)   Every A value in R1 is in R2

V(R2,A)   V(R1,A)   Every A value in R2 is in R1

“containment of value sets”

R1    A       B     C     R2 A D

Computing T(W) when V(R1,A)  V(R2,A)

Take 
1 tuple Match

CS5208: Query Optimization 64

1 tuple matches with               tuples

so T(W) =                  T(R1)

V(R2,A)   V(R1,A)      T(W)  =

T(R2)
V(R2,A)

T(R2) T(R1)
V(R1,A)

T(R2)
V(R2,A)

For complex expressions, need
intermediate T,S,V results.

E.g.  W = [A=a (R1) ]       R2

Treat as relation U

CS5208: Query Optimization 65

Treat as relation U

T(U) = T(R1)/V(R1,A)      S(U) = S(R1)

Also need V (U, *) !! 

R1 V(R1,A)=3

V(R1,B)=1

V(R1,C)=5

V(R1 D)=3

A B C D
cat 1 10 10
cat 1 20 20
dog 1 30 10

Example

CS5208: Query Optimization 66

V(R1,D) 3

U = A=a (R1)

dog 1 30 10
dog 1 40 30
bat 1 50 10

V(U,A) = ?



12

R1 V(R1,A)=3

V(R1,B)=1

V(R1,C)=5

V(R1 D)=3

A B C D
cat 1 10 10
cat 1 20 20
dog 1 30 10

Example

CS5208: Query Optimization 67

V(R1,D) 3

U = A=a (R1)

dog 1 30 10
dog 1 40 30
bat 1 50 10

V(U,A) = 1     V(U, B) = ?

R1 V(R1,A)=3

V(R1,B)=1

V(R1,C)=5

V(R1 D)=3

A B C D
cat 1 10 10
cat 1 20 20
dog 1 30 10

Example

CS5208: Query Optimization 68

V(R1,D) 3

U = A=a (R1)

dog 1 30 10
dog 1 40 30
bat 1 50 10

V(U,A) = 1     V(U, B) = 1 (= V(R,B))    V(U,C) =

R1 V(R1,A)=3

V(R1,B)=1

V(R1,C)=5

V(R1 D)=3

A B C D
cat 1 10 10
cat 1 20 20
dog 1 30 10

Example

CS5208: Query Optimization 69

V(R1,D) 3

U = A=a (R1)

dog 1 30 10
dog 1 40 30
bat 1 50 10

V(U,A) = 1     V(U, B) = 1     V(U,C) =

V(D,U) … somewhere in between V(U,B) and V(U,C)

T(R1)
V(R1,A)

For Joins    U = R1(A,B)      R2(A,C)

V(U,A) = min { V(R1, A), V(R2, A) }

V(U,B) = V(R1, B)

V(U C) = V(R2 C)

CS5208: Query Optimization 70

V(U,C)  V(R2, C)

(Assumption: Preservation of value sets)

Z = R1(A,B)      R2(B,C)        R3(C,D)

Example

CS5208: Query Optimization 71

T(R1) = 1000  V(R1,A)=50   V(R1,B)=100

T(R2) = 2000  V(R2,B)=200 V(R2,C)=300

T(R3) = 3000  V(R3,C)=90   V(R3,D)=500

R1

R2

R3

T(U) = 10002000         V(U,A) = 50

200 V(U,B) = 100

V(U,C) = 300

Partial Result:   U = R1       R2

CS5208: Query Optimization 72

Z = U      R3
T(Z) = 100020003000 V(Z,A) = 50

200300 V(Z,B) = 100

V(Z,C) = 90

V(Z,D) = 500



13

Estimating Size of Plan
• Since a plan may contain multiple operators, need to 

propagate statistical information to those operators.

• Errors
• source include uniformity assumption, and inability to capture 

CS5208: Query Optimization 73

correlation

• propagated to other operators at the higher level of the plan tree

• During runtime, may need to sample the actual 
intermediate results
• dynamic query optimization

Statistical Summaries of Data
• More detailed information are sometimes stored e.g., histograms of the values in 

some field
• a histogram divides the values on a column into k buckets

• k  is predetermined or computed based on space allocation.
• several choices for “bucketization’’ of values

• If a table has n records, an equi-depth histograms divides the set of values on 
a column into k ranges such that each range has the same number of records, 

CS5208: Query Optimization 74

g g ,
i.e., n/k.

• Equi-width histograms.
• Frequently occurring values may be placed in singleton buckets. 

• histograms on single column do not provide information on the correlations 
among columns

• 2-dimensional histograms can be used but too many buckets!

Histograms

CS5208: Query Optimization 75

Search Algorithms

• Exhaustive
• enumerate each possible plan, and pick the best

• Greedy Techniques
• smallest relation next

CS5208: Query Optimization 76

• smallest result next

• typically polynomial time complexity

• Randomized/Transformation Techniques

• System R approach
• Dynamic Programming with Pruning

Multi-Join Queries
• Focus on multi-join queries first

• Join is the most expensive operations

• Selections and projections can be pushed down as early as 
possible

CS5208: Query Optimization 77

p

• Query
• a query graph whose nodes are relations and edges represent a 

join condition between the two nodes

Greedy Algorithm (Example)
• Smallest relation next

• Suppose Ri < Rk for i < k
R1

All plans must begin with R1

CS5208: Query Optimization 78

R2

R3 R4 R5
All plans beginning with R2-R5 have been pruned!

R1

R2

R3

R4R5



14

Greedy Algorithm (Example)
• Smallest relation next

• What if R1 < R5 < R3 < R2 < R4???

CS5208: Query Optimization 79

R1

R2

R3

R4R5

Randomized Techniques
• Employ randomized/transformation techniques for query 

optimization
• State space -- space of plans,  State -- plan
• Each state has a cost associated with it

• determined by some cost model

CS5208: Query Optimization 80

• determined by some cost model

• A move is a perturbation applied to a state to get to another state
• a move set is the set of moves available to go from one state to another
• any one move is chosen from this move set randomly
• each move set has a probability associated to indicate the probability of 

selecting the move

More on Randomized Techniques

• Two states are neighboring states if one move suffices to go from 
one state to the other

• A local minimum in the state space is a state such that its cost is 
lower than that of all neighboring states

CS5208: Query Optimization 81

lower than that of all neighboring states
• A global minimum is a state which has the lowest cost among all 

local minima
• at most one global minimum

• A move that takes one state to another state with a lower cost is 
called a downward move; otherwise it is an upward move
• in a local/global minimum, all moves are upward moves

Randomized Algorithm (Example)

R3

R4

R3

R4

CS5208: Query Optimization 82

R1 R2 R2 R1

R2 R1

R3

R4

R1 R2

R3

R4

Local Optimization
S = initialize()
minS = S
repeat {

repeat {
newS = move(S)
if (cost(newS) < cost(S))

A move is accepted if 
the adjacent state being 
moved to has a lower 
cost

By doing so repeatedly,
a local minimum can 

CS5208: Query Optimization 83

if (cost(newS) < cost(S))
S = newS

} until (“local minimum reached”)
if (cost(S) < cost(minS))

minS = S
newStart(S);

} until (“stopping condition satisfied”)
return (minS);

a local minimum can 
be reached

Run: sequence of 
moves to a local 
minimum from the
start state 

Issues on Local Optimization
• How is the start state obtained?

• The state in which we start a run.

• The start state of the first run is the initial state.

• All start states should be different.

• Should be obtained quickly
• random

CS5208: Query Optimization 84

random
• greedy heuristics

• making a number of moves from the local minimum, except that this time each move 
is accepted irrespective of whether it increases or decreases the cost

• How is the local minimum detected?
• How is the stopping criterion detected?



15

Issues on Local Optimization (Cont)

• How is the local minimum detected?
• Not practical to examine all neighbors to verify that one has 

reached a local minimum.

CS5208: Query Optimization 85

• Based on random sampling
• examine a sufficiently large number of neighbors

• if any one is lower, we move to that state, and repeat the process

• if no tested neighbor is of lower cost, the current state can be 
considered a local minimum

• the number of neighbors to examine can be specified as a parameter, 
and is called the sequence length.

Issues in Local Optimization (Cont)

• How is the stopping criterion detected?
• Determines the number of times that the outer loop is 

executed.

CS5208: Query Optimization 86

• Can be fixed and is given by sizeFactor*N, where 
sizeFactor is a parameter, N is the number of relations.

Transformation Rules
• Restricted to left-deep trees

• all possible permutations of the N relations
• let S be the current state, S = (… i … j … k …)
• swap 

• select two relations, say i and j at random. Check if interchanging them 
results in a valid permutation. If so, the move consists of swapping i and j to 
get the new state newS = ( … j … i … k … ) 

CS5208: Query Optimization 87

• 3Cycle
• select three relations, say i and j and k at random. The move consists of 

cycling i, j and k: i is moved to the position of j, j is moved to the position of k 
and k is moved to the position of i. Check if resulting permutation is valid. If 
so, the move consists of swapping i and j to get the new state newS = ( … 
k … i … j … )

• Other methods (e.g., join methods)? Bushy trees?

Comparison between Exhaustive, 
Greedy and Randomized Algorithms

• Plan quality

• Optimization overhead

CS5208: Query Optimization 88

Dynamic Programming (Left-Deep Trees)

• The algorithm proceeds by considering increasingly larger 
subsets of the set of all relations. 

• Plans for a set of cardinality i are constructed as 
t i  f th  b t l  f   t f di lit  i 1

CS5208: Query Optimization 89

extensions of the best plan for a set of cardinality i-1

• Search space can be pruned based on the principal of 
optimality

• if two plans differ only in a subplan, then the plan with the better 
subplan is also the better plan

Dynamic Programming (Cont)

{}

{1}                  {2}                {3}               {4}

CS5208: Query Optimization 90

{1 2}       {1  3}        {1   4}        {2  3}        {2  4}      {3   4}

{1  2  3}         {1   2   4}           {2   3   4}           {1   3  4}

{1   2   3    4}



16

Dynamic Programming (Left-Deep Trees)

• accessPlan(R) produces the best plan for relation R

• joinPlan(p1,R) extends the join plan p1 into another 
plan p2 in which the result of p1 is joined with R in the 

CS5208: Query Optimization 91

p p p j
best possible way

• Optimal plans for subsets are stored in optplan() array 
and are reused rather than recomputed

Dynamic Programming (Cont)
for i = 1 to N 

optPlan({Ri}) = accessPlan(Ri)
for i = 2 to N {

forall S subset of {R1, R2, … Rn} such that |S|=i {
bestPlan = dummy plan with infinite cost
forall Rj, Sj such that S = {Rj} U Sj {

  j i Pl ( tPl (Sj)  Rj)

CS5208: Query Optimization 92

p = joinPlan(optPlan(Sj), Rj)
if cost(p) < cost(bestPlan)

bestPlan = p
} 
optPlan(S) = bestPlan

}
}
Popt = optPlan{R1, R2, … Rn} 

Dynamic Programming Example

R(a b) S(b c) T(c d) U(d a)

Consider the join of 4 relations, R, S, T and U
Each table has 1000 tuples
Assume intermediate result size (tuples) as cost metrics

CS5208: Query Optimization 93

R(a,b) S(b,c) T(c,d) U(d,a)
V(R,a)=100 V(U,a)=50

V(R,b)=200 V(S,b)=100

V(S,c)=500 V(T,c)=20

V(T,d)=50 V(U,d)=1000

Example (Cont)

{R} {S} {T} {U}
Size 1,000 1,000 1,000 1,000

Cost 0 0 0 0

CS5208: Query Optimization 94

Cost 0 0 0 0

BestPlan R S T U

Example (Cont)

{R,S}  {R,T}  {R,U}  {S,T}  {S,U} {T,U}
Size 5,000 1M           10,000      2,000      1M         1,000

C

CS5208: Query Optimization 95

Cost 0 0 0               0 0             0

BestPlan R     S       R     T       R     U      S      T    S      U    T     U

What about S       R since its cost is also 0??

Example (Cont)

{R,S,T} {R,S,U} {R,T,U} {S,T,U}
Size 10,000 50,000 10,000 2,000

C

CS5208: Query Optimization 96

Cost 2,000 5,000 1,000 1,000

BestPlan (S     T)     R (T     U)     R
(R     S)     U (T      U)     S



17

Example (Cont)

Grouping Cost
((S      T)      R)      U) 12,000
((R S) U) T) 55 000

CS5208: Query Optimization 97

((R      S)     U)      T) 55,000
((T      U)     R)      S) 11,000
((T      U)     S)      R) 3,000
(T      U)      (R     S) 6,000
(R      T)      (S      U) 2M
(S       T)      (R      U) 12,000

Example (Cont)

Grouping Cost
((S      T)      R)      U) 12,000
((R S) U) T) 55 000

CS5208: Query Optimization 98

((R      S)     U)      T) 55,000
((T      U)     R)      S) 11,000
((T      U)     S)      R) 3,000
(T      U)      (R     S) 6,000
(R      T)      (S      U) 2M
(S       T)      (R      U) 12,000

• Time & Space complexity
• For k relations, for left-deep trees, 2k – 1 entries!

• For bushy trees, O(3k)

• DP may maintain multiple plans per subset of

Dynamic Programming (Cont)

CS5208: Query Optimization 99

• DP may maintain multiple plans per subset of 
relations
• Interesting orders

• Is DP optimal?

Summary

• Query optimization is NP-hard.

• Instead of finding the best, the objective is largely to 
avoid the bad plans

• Many different optimization strategies have been 

CS5208: Query Optimization 100

y p g
proposed
• greedy heuristics are fast but may generate plans that are 

far from optimal

• dynamic programming is effective at the expense of high 
optimization overhead


