Query Optimization in Relational Database Systems

It is safer to accept any chance that offers itself, and extemporize a procedure to fit it, than to get a good plan matured, and wait for a chance of using it.

Thomas Hardy (1874) in *Far from the Madding Crowd*

Review: Case where index is useful
Query Optimization

Since each relational op returns a relation, ops can be composed!

Queries that require multiple ops to be composed may be composed in different ways - thus optimization is necessary for good performance, e.g. A ▷◁ B ▷◁ C ▷◁ D can be evaluated as follows:

- (((A ▷◁ B) ▷◁ C) ▷◁ D)
- ((A ▷◁ B) ▷◁ (C ▷◁ D))
- ((B ▷◁ A) ▷◁ (D ▷◁ C))
- ...

Each strategy can be represented as a query evaluation plan (QEP) - Tree of R.A. ops, with choice of algo for each op.

Goal of optimization: To find the “best” plan that compute the same answer (to avoid “bad” plans)
More on Motivating Examples

Sailors \((\textit{sid}: \text{integer}, \textit{sname}: \text{string}, \textit{rating}: \text{integer}, \textit{age}: \text{real})\)
Reserves \((\textit{sid}: \text{integer}, \textit{bid}: \text{integer}, \textit{day}: \text{dates}, \textit{rname}: \text{string})\)

- Reserves:
 - Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.
- Sailors:
 - Each tuple is 50 bytes long, 80 tuples per page, 500 pages.

Example

\[
\text{SELECT } S.\text{sname} \\
\text{FROM } \text{Reserves } R, \text{Sailors } S \\
\text{WHERE } R.\text{sid}=S.\text{sid} \text{ AND } \\
R.\text{bid}=100 \text{ AND } S.\text{rating}>5
\]
SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid=S.sid AND
 R.bid=100 AND S.rating>5

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid=S.sid AND
 R.bid=100 AND S.rating>5

CS5208: Query Optimization
SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid=S.sid AND
R.bid=100 AND S.rating>5

Example

<table>
<thead>
<tr>
<th>sid</th>
<th>name</th>
<th>rating</th>
<th>age</th>
<th>bid</th>
<th>day</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
<td>100</td>
<td>10/11/96</td>
<td>lubber</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sid</th>
<th>bid</th>
<th>day</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>100</td>
<td>10/11/96</td>
<td>lubber</td>
</tr>
</tbody>
</table>

CS5208: Query Optimization

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid=S.sid AND
R.bid=100 AND S.rating>5

Example (Cont)

Query Evaluation Plan:

- Cost?

<table>
<thead>
<tr>
<th>sid</th>
<th>bid</th>
<th>day</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>100</td>
<td>10/11/96</td>
<td>lubber</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sid</th>
<th>bid</th>
<th>day</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>100</td>
<td>10/11/96</td>
<td>lubber</td>
</tr>
</tbody>
</table>

CS5208: Query Optimization
Example (Cont)

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid=S.sid AND R.bid=100 AND S.rating>5

- Cost: 500+500*1000 I/Os
- Memory?

Query Evaluation Plan:

\[\begin{align*}
\text{Cost: } & 500 + 500 \times 1000 \\
\end{align*}\]
Example (Cont)

```
SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid=S.sid AND
      R.bid=100 AND S.rating>5
```

- **Cost:** 500+500*1000 I/Os
- **Memory:** 3

Query Evaluation Plan:

```
\[ \forall_{\text{name}} \quad \text{On-the-fly} \]
\[ \sigma_{\text{bid}=100 \land \text{rating} > 5} \quad \text{On-the-fly} \]
\[ \bowtie_{\text{sid}=\text{sid}} \quad \text{(Page Nested Loops)} \]
```

Alternative Plans 1 (No Indexes)

- **Main difference:** push selections down
- **Assume 5 buffers, T1 = 10 pages (100 boats, uniform distribution), T2 = 250 pages (10 ratings, uniform distribution)**
Alternative Plans 1 (No Indexes)

- Main difference: push selections down
- With 5 buffers, cost of plan:
 - Scan Reserves (1000) + write temp T1 (10 pages, if we have 100 boats, uniform distribution).
 - Scan Sailors (500) + write temp T2 (250 pages, if we have 10 ratings).
 - Sort T1 (2*2*10), sort T2 (2*4*250), merge (10+250)
- Total: 4060 page I/Os.

Alternative Plans 2 (With Indexes)

- Clustered index on bid of Reserves
 - 100,000/100 = 1000 tuples on 1000/100 = 10 pages
- Hash index on sid. Join column sid is a key for Sailors.
- INL with pipelining (outer is not materialized)
 - Project out unnecessary fields from outer doesn’t help.
- At most one matching tuple, unclustered index on sid OK.
- Did not push “rating>5” before the join. Why?
Alternative Plans 2 (With Indexes)

- Clumped index on bid of Reserves
 - $100,000/100 = 1000$ tuples on $1000/100 = 10$ pages
- Hash index on sid. Join column sid is a key for Sailors.
 - INL with pipelining (outer is not materialized)
 - Project out unnecessary fields from outer doesn't help.
- At most one matching tuple, unclumped index on sid OK.
 - Decision not to push rating>5 before the join is based on availability of sid index on Sailors.
- Cost?

```
\( \sigma_{\text{bid}=100} \) Sailors
(Use hash index; do not write result to temp)
\( \ni \) with pipelining
\( \sigma_{\text{sid} = \text{sid}} \) (INL
\( \sigma \) rating > 5 (On-the-fly)
\( \pi \) name (On-the-fly)

Reserves
```

Cost: Selection of Reserves tuples (10 I/Os); for each, must get matching Sailors tuple (1000*2.2); total 2210 I/Os.
Plan Execution under the Iterator Model

consumer

Open()

C

A

B

Plan Execution under the Iterator Model

consumer

Open()

Open()

C

Open()

Open()

A

B
Plan Execution under the Iterator Model

consumer

GetNext()

GetNext()

A

B

C

Plan Execution under the Iterator Model

consumer

GetNext()

GetNext()

GetNext()

A

B

C
Plan Execution under the Iterator Model

GetNext()

GetNext()

GetNext()

A

B

C

t

consumer

Plan Execution under the Iterator Model

GetNext()

GetNext()

GetNext()

A

B

C

t

consumer
Plan Execution under the Iterator Model

consumer

GetNext()

GetNext()

C

A

GetNext()

B

GetNext()

GetNext()

Plan Execution under the Iterator Model

consumer

GetNext()

GetNext()

C

A

GetNext()

B

GetNext()
Plan Execution under the Iterator Model

CS5208: Query Optimization

Plan Execution under the Iterator Model

CS5208: Query Optimization
Plan Execution under the Iterator Model

CS5208: Query Optimization

31

Plan Execution under the Iterator Model

CS5208: Query Optimization

32
Overview of Query Optimization

SQL query → parse → parse tree → convert → logical query plan → apply laws → “improved” l.q.p → estimate result sizes → l.q.p. + sizes → consider physical plans → {P1,P2,…..} → estimate costs → pick best → {P1,C1≥…} → execute → Pi → answer

Example: SQL query

SELECT sname
FROM Sailors
WHERE sid IN (SELECT sid
FROM Reserves
WHERE rname LIKE 'Tan%')
;

(Find names of sailors whose reservation is made by someone whose name begins with “Tan”)
Example: Parse Tree

```
<Query>
   <SFW>
      SELECT <SelList> FROM <FromList> WHERE <Condition>
      <Attribute> <RelName> <Tuple> IN <Query>
      sname Sailors <Attribute>(<Query>)
      sid <SFW>
   SELECT <SelList> FROM <FromList> WHERE <Condition>
      <Attribute> <RelName> <Attribute> LIKE <Pattern>
      sid Reserves rname 'Tan%'  
```

Example: Logical Query Plan

\[\Pi \text{name} \]
\[\sigma_{\text{sid}=\text{sid}} \]
\[\times \]
\[\Pi \text{sid} \]
\[\sigma_{\text{rname LIKE 'Tan%'}} \]
\[\text{Reserves} \]
Example: Improved Logical Query Plan

\[\Pi \text{sname} \]
\[\sigma \text{name LIKE 'TAN%' } \]
\[\Pi \text{sid} \]

Question: Push project to Sailors?

Example: Estimate Result Sizes

\[\Pi \text{sid} \]
\[\sigma \text{name LIKE 'TAN%' } \]
\[\Pi \text{sname} \]

Need expected size

Sailors

Reserves
Example: One Physical Plan

- **Hash join**
 - Parameters: join order, memory size, project attributes, ...
 - **SEQ scan**
 - **index scan**
 - Sailors
 - Reserves

Example: Estimate costs

- **L.Q.P**
 - P1
 - P2
 -
 - Pn
 - C1
 - C2
 -
 - Cn
 - Pick best!
Relational Algebra Equivalences

• Allow us to choose different join orders and to `push' selections and projections ahead of joins.

• Rules on joins, cross products and union

\[R \bowtie S = S \bowtie R \]
\[(R \bowtie S) \bowtie T = R \bowtie (S \bowtie T) \]

\[R \times S = S \times R \]
\[(R \times S) \times T = R \times (S \times T) \]
Relational Algebra Equivalences

- Allow us to choose different join orders and to `push' selections and projections ahead of joins.
- Rules on joins, cross products and union
 \[R \bowtie S = S \bowtie R \]
 \[(R \bowtie S) \bowtie T = R \bowtie (S \bowtie T) \]
 \[R \times S = S \times R \]
 \[(R \times S) \times T = R \times (S \times T) \]
 \[R \cup S = S \cup R \]
 \[R \cup (S \cup T) = (R \cup S) \cup T \]

Rules: Selects

\[\sigma_{p_1 \land p_2}(R) = \]
\[\sigma_{p_1 v p_2}(R) = \]
Rules: Selects

\[\sigma_{p_1 \land p_2}(R) = \sigma_{p_1} [\sigma_{p_2}(R)] \]

\[\sigma_{p_1 \lor p_2}(R) = [\sigma_{p_1}(R)] \cup [\sigma_{p_2}(R)] \]

Rules: Project

Let: \(X = \) set of attributes
\(Y = \) set of attributes
\(XY = X \cup Y \)

\[\pi_{xy}(R) = \pi_x [\pi_y(R)] \]
Rules: Project

Let: X = set of attributes

$Y = \text{set of attributes}$

$XY = X \cup Y$

$\pi_{xy}(R) = \pi_x[\pi_y(R)]$
Let P = predicate with only R attribs
Q = predicate with only S attribs
M = predicate with only R,S attribs

$$\sigma_p (R \bowtie S) = \sigma_q (R \bowtie S) =$$

Rules: $\sigma + \bowtie$ combined

Let P = predicate with only R attribs
Q = predicate with only S attribs
M = predicate with only R,S attribs

$$\sigma_p (R \bowtie S) = \left[\sigma_p (R)\right] \bowtie S$$
$$\sigma_q (R \bowtie S) = R \bowtie \left[\sigma_q (S)\right]$$
\(R = \{a,a,b,b,b,c\} \)
\(S = \{b,b,c,c,d\} \)
\(\text{RUS} = ? \)

- **Option 1** \(\text{SUM} \)
 \(\text{RUS} = \{a,a,b,b,b,b,b,c,c,c,d\} \)

- **Option 2** \(\text{MAX} \)
 \(\text{RUS} = \{a,a,b,b,b,c,c,d\} \)

\(\text{"SUM" is implemented} \)

- Use "SUM" option for bag unions
- Some rules cannot be used for bags
 - e.g. \(A \cap_s (B \cup_s C) = (A \cap_s B) \cup_s (A \cap_s C) \)

Let \(A, B \) and \(C \) be \(\{x\} \)
\(B \cup_B C = \{x, x\} \quad A \cap_B (B \cup_B C) = \{x\} \)
\(A \cap_B B = \{x\} \quad A \cap_B C = \{x\} \)
\((A \cap_B B) \cup_B (A \cap_B C) = \{x, x\} \)
Review

- Consider the join $R \text{ JOIN}(R.a=S.b) S$, given the following information about the relations to be joined. The cost metric is the number of page I/Os, and the cost of writing out the result should be ignored.
 - R contains 10,000 tuples and has 10 tuples per page.
 - S contains 20,000 tuples and has 10 tuples per page.
 - $S.b$ is the primary key for S.
 - Both relations are stored as simple heap files.
 - 102 buffer pages are available (inclusive of input/output buffers).
- What is the cost of joining R and S using a block nested-loops join algorithm? What is the minimum number of buffer pages required for this cost to remain unchanged?
- What is the cost of joining R and S using a sort-merge join algorithm? What is the minimum number of buffer pages required for this cost to remain unchanged?

Block Nested Loops Join.
- Using R as the outer relation, and 1 page for input and output buffer.
 - cost = $10,000/10 + (10,000/10)/100*20,000/10 = 21,000$
 - minimum number of buffer page $= 102$ (no change)

Sort-merge Join
- Each relation needs 2 passes to sort
 - Cost to sort $R = 2*2*10,000/10$; cost to sort $S = 2*2*20,000/10$
 - Cost = $4000+8000+1000+2000 = 15,000$
 - min buffer required is the same as that required to sort the larger relation, which is S. So, min buffer = 46
Query Optimizer

- Find the “best” plan (more often avoids the bad plan)
- Comprises the following
 - Plan space
 - huge number of alternative, semantically equivalent plans
 - computationally expensive to examine all
 - Conventional wisdom: avoid bad plans
 - need to include plans that have low cost
 - Cost model
 - facilitate comparisons of alternative plans
 - has to be “accurate”
 - Enumeration algorithm (Search space)
 - search strategy (optimization algorithm) that searches through the plan space
 - has to be efficient (low optimization overhead)

Plan Space

- Left-deep trees: right child has to be a base table
- Right-deep trees: left child has to be a base table
- Deep trees: one of the two children is a base table
- Bushy tree: unrestricted
Cost Models

- Typically, a combination of CPU and I/O costs
- Objective is to be able to rank plans
 - exact value is not necessary
- Relies on
 - statistics on relations and indexes
 - formulas to estimate CPU and I/O cost
 - formulas to estimate selectivities of operators and intermediate results

Cost Estimation

- For each plan considered, must estimate cost:
 - Must estimate cost of each operation in plan tree.
 - Depends on input cardinalities.
 - We've already discussed how to estimate the cost of operations (sequential scan, index scan, joins, etc.)
 - Must estimate size of result for each operation in tree!
 - Use information about the input relations.
 - For selections and joins, assuming independence of predicates can simplify size estimation but is error prone.
Statistics and Catalogs

- Need information about the relations and indexes involved.
- Catalogs typically contain at least:
 - # tuples of R (T(R)), # bytes in each R tuple (S(R))
 - # blocks to hold all R tuples (B(R))
 - # distinct values in R for attribute A (V(R,A))
 - NPages for each index.
 - Index height, low/high key values (Low/High) for each tree index.
- Catalogs updated periodically.
 - Updating whenever data changes is too expensive; lots of approximation anyway, so slight inconsistency ok.

Example

<table>
<thead>
<tr>
<th>R</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>cat</td>
<td>1</td>
<td>10</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>cat</td>
<td>1</td>
<td>20</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>dog</td>
<td>1</td>
<td>30</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>dog</td>
<td>1</td>
<td>40</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>bat</td>
<td>1</td>
<td>50</td>
<td>d</td>
<td></td>
</tr>
</tbody>
</table>

A: 20 byte string
B: 4 byte integer
C: 8 byte string
D: 5 byte string

T(R) = 5 S(R) = 37
V(R,A) = 3 V(R,C) = 5
V(R,B) = 1 V(R,D) = 4
Size estimate for $W = \sigma_{Z=\text{val}} (R)$

<table>
<thead>
<tr>
<th>R</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>V(R,A)=3</th>
<th>V(R,B)=1</th>
<th>V(R,C)=5</th>
<th>V(R,D)=4</th>
</tr>
</thead>
<tbody>
<tr>
<td>cat</td>
<td>1</td>
<td>10</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cat</td>
<td>1</td>
<td>20</td>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dog</td>
<td>1</td>
<td>30</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dog</td>
<td>1</td>
<td>40</td>
<td>c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bat</td>
<td>1</td>
<td>50</td>
<td>d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T(W) = \frac{T(R)}{V(R,Z)}

Assumption:
- Values in select expression $Z = \text{val}$ are *uniformly distributed* over possible $V(R,Z)$ values
- Alternative assumption: use $\text{DOM}(R,Z)$

What about $W = \sigma_{Z \geq \text{val}} (R)$?

Solution: Estimate values in range

- Min=1
- Max=20
- V(R,Z)=10
- W = $\sigma_{z \geq 15} (R)$

\[f (\text{fraction of range}) = \frac{20-15+1}{20-1+1} = \frac{6}{20} \]

\[T(W) = f \times T(R) \]

Alternative: \(\frac{\text{Max}(Z)-\text{value}}{\text{Max}(Z)-\text{Min}(Z)} \)
$W = R1 \bowtie R2$

<table>
<thead>
<tr>
<th>R</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>S</th>
<th>A</th>
<th>D</th>
</tr>
</thead>
</table>

Assumption:
$V(R1,A) \leq V(R2,A) \Rightarrow$ Every A value in R1 is in R2
$V(R2,A) \leq V(R1,A) \Rightarrow$ Every A value in R2 is in R1

“containment of value sets”

Computing $T(W)$ when $V(R1,A) \leq V(R2,A)$

<table>
<thead>
<tr>
<th>R1</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>R2</th>
<th>A</th>
<th>D</th>
</tr>
</thead>
</table>

Take 1 tuple

1 tuple matches with $\frac{T(R2)}{V(R2,A)}$ tuples

so $T(W) = \frac{T(R2)}{V(R2,A)} T(R1)$

$V(R2,A) \leq V(R1,A) \Rightarrow T(W) = \frac{T(R2) T(R1)}{V(R1,A)}$
For complex expressions, need intermediate T,S,V results.

E.g. \(W = [\sigma_{A=a} (R1)] \bowtie R2 \)

\[
\begin{align*}
\text{Treat as relation } U \\
T(U) &= T(R1)/V(R1,A) \\
S(U) &= S(R1)
\end{align*}
\]

Also need \(V(U, \ast) !! \)

Example

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>V(R1,A)</th>
<th>V(R1,B)</th>
<th>V(R1,C)</th>
<th>V(R1,D)</th>
<th>U = \sigma_{A=a} (R1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cat</td>
<td>1</td>
<td>10</td>
<td>10</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>\sigma_{A=a} (R1)</td>
</tr>
<tr>
<td>cat</td>
<td>1</td>
<td>20</td>
<td>20</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>\sigma_{A=a} (R1)</td>
</tr>
<tr>
<td>dog</td>
<td>1</td>
<td>30</td>
<td>10</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>\sigma_{A=a} (R1)</td>
</tr>
<tr>
<td>dog</td>
<td>1</td>
<td>40</td>
<td>30</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>\sigma_{A=a} (R1)</td>
</tr>
<tr>
<td>bat</td>
<td>1</td>
<td>50</td>
<td>10</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>\sigma_{A=a} (R1)</td>
</tr>
</tbody>
</table>
Example

\[
\begin{array}{cccc}
A & B & C & D \\
cat & 1 & 10 & 10 \\
cat & 1 & 20 & 20 \\
dog & 1 & 30 & 10 \\
dog & 1 & 40 & 30 \\
bat & 1 & 50 & 10 \\
\end{array}
\]

\[
V(R1,A) = 3 \\
V(R1,B) = 1 \\
V(R1,C) = 5 \\
V(R1,D) = 3 \\
U = \sigma_{A=a} (R1)
\]

\[
V(U,A) = 1 \\
V(U,B) = ?
\]

Example

\[
\begin{array}{cccc}
A & B & C & D \\
cat & 1 & 10 & 10 \\
cat & 1 & 20 & 20 \\
dog & 1 & 30 & 10 \\
dog & 1 & 40 & 30 \\
bat & 1 & 50 & 10 \\
\end{array}
\]

\[
V(R1,A) = 3 \\
V(R1,B) = 1 \\
V(R1,C) = 5 \\
V(R1,D) = 3 \\
U = \sigma_{A=a} (R1)
\]

\[
V(U,A) = 1 \\
V(U,B) = 1 \ (= V(R,B)) \\
V(U,C) =
\]
Example

<table>
<thead>
<tr>
<th>R1</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>cat</td>
<td>1</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>cat</td>
<td>1</td>
<td>20</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>dog</td>
<td>1</td>
<td>30</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>dog</td>
<td>1</td>
<td>40</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>bat</td>
<td>1</td>
<td>50</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

V(R1,A)=3
V(R1,B)=1
V(R1,C)=5
V(R1,D)=3

U = \sigma_{A=a} (R1)

V(U,A) = 1
V(U,B) = 1
V(U,C) = \frac{T(R1)}{V(R1,A)}

V(D,U) ... somewhere in between V(U,B) and V(U,C)

For Joins

U = R1(A,B) \bowtie R2(A,C)

V(U,A) = \min \{ V(R1, A), V(R2, A) \}
V(U,B) = V(R1, B)
V(U,C) = V(R2, C)

(Assumption: Preservation of value sets)
Example

\[Z = R1(A,B) \bowtie R2(B,C) \bowtie R3(C,D) \]

\[
\begin{array}{llll}
R1 & T(R1) = 1000 & V(R1,A) = 50 & V(R1,B) = 100 \\
R2 & T(R2) = 2000 & V(R2,B) = 200 & V(R2,C) = 300 \\
R3 & T(R3) = 3000 & V(R3,C) = 90 & V(R3,D) = 500 \\
\end{array}
\]

Partial Result: \(U = R1 \bowtie R2 \)

\[
\begin{array}{llll}
T(U) = 1000 \times 2000 \over 200 & V(U,A) = 50 \\
& V(U,B) = 100 \\
& V(U,C) = 300 \\
\end{array}
\]

\[Z = U \bowtie R3 \]

\[
\begin{array}{llll}
T(Z) = 1000 \times 2000 \times 3000 \over 200 \times 300 & V(Z,A) = 50 \\
& V(Z,B) = 100 \\
& V(Z,C) = 90 \\
& V(Z,D) = 500 \\
\end{array}
\]
Estimating Size of Plan

• Since a plan may contain multiple operators, need to propagate statistical information to those operators.

• Errors
 • source include uniformity assumption, and inability to capture correlation
 • propagated to other operators at the higher level of the plan tree

• During runtime, may need to sample the actual intermediate results
 • dynamic query optimization

Statistical Summaries of Data

• More detailed information are sometimes stored e.g., histograms of the values in some field
 • a histogram divides the values on a column into k buckets
 • k is predetermined or computed based on space allocation.
 • several choices for “bucketization” of values
 • If a table has n records, an equi-depth histograms divides the set of values on a column into k ranges such that each range has the same number of records, i.e., n/k.
 • Equi-width histograms.
 • Frequently occurring values may be placed in singleton buckets.
 • histograms on single column do not provide information on the correlations among columns
 • 2-dimensional histograms can be used but too many buckets!
Search Algorithms

- **Exhaustive**
 - enumerate each possible plan, and pick the best
- **Greedy Techniques**
 - smallest relation next
 - smallest result next
 - typically polynomial time complexity
- **Randomized/Transformation Techniques**
- **System R approach**
 - Dynamic Programming with Pruning
Multi-Join Queries

- Focus on multi-join queries first
 - Join is the most expensive operations
 - Selections and projections can be pushed down as early as possible
- Query
 - a query graph whose nodes are relations and edges represent a join condition between the two nodes

Greedy Algorithm (Example)

- Smallest relation next
 - Suppose $R_i < R_k$ for $i < k$

```
R_1
  R_2
    R_3
  R_4
    R_5
```

All plans must begin with R_1

```
R_2
  R_3
    R_4
      R_5
```

All plans beginning with R_2-R_5 have been pruned!
Greedy Algorithm (Example)

- Smallest relation next
 - What if $R1 < R5 < R3 < R2 < R4$???

```
R5
  |   |
  |   |
R4

R2

R1
```

Randomized Techniques

- Employ randomized/transformation techniques for query optimization
- **State space** -- space of plans, **State** -- plan
- Each state has a **cost** associated with it
 - determined by some cost model
- A **move** is a perturbation applied to a state to get to another state
 - a move set is the set of moves available to go from one state to another
 - any one move is chosen from this move set randomly
 - each move set has a probability associated to indicate the probability of selecting the move
More on Randomized Techniques

• Two states are neighboring states if one move suffices to go from one state to the other
• A local minimum in the state space is a state such that its cost is lower than that of all neighboring states
• A global minimum is a state which has the lowest cost among all local minima
 • at most one global minimum
• A move that takes one state to another state with a lower cost is called a downward move; otherwise it is an upward move
 • in a local/global minimum, all moves are upward moves

Randomized Algorithm (Example)
Local Optimization

\[S = \text{initialize()} \]
\[\text{minS} = S \]

repeat {
 repeat {
 \(\text{newS} = \text{move}(S) \)
 if (\(\text{cost(newS)} < \text{cost(S)} \))
 \(S = \text{newS} \)
 } until ("local minimum reached")
 if (\(\text{cost(S)} < \text{cost(minS)} \))
 \(\text{minS} = S \)
 \(\text{newStart(S);} \)
} until ("stopping condition satisfied")

return (\(\text{minS} \));

By doing so repeatedly, a local minimum can be reached.

Run: sequence of moves to a local minimum from the start state.

Issues on Local Optimization

- How is the start state obtained?
 - The state in which we start a run.
 - The start state of the first run is the initial state.
 - All start states should be different.
 - Should be obtained quickly
 - random
 - greedy heuristics
 - making a number of moves from the local minimum, except that this time each move is accepted irrespective of whether it increases or decreases the cost

- How is the local minimum detected?
- How is the stopping criterion detected?
Issues on Local Optimization (Cont)

• How is the local minimum detected?
 • Not practical to examine all neighbors to verify that one has reached a local minimum.
 • Based on random sampling
 • examine a sufficiently large number of neighbors
 • if any one is lower, we move to that state, and repeat the process
 • if no tested neighbor is of lower cost, the current state can be considered a local minimum
 • the number of neighbors to examine can be specified as a parameter, and is called the sequence length.

Issues in Local Optimization (Cont)

• How is the stopping criterion detected?
 • Determines the number of times that the outer loop is executed.
 • Can be fixed and is given by sizeFactor*N, where sizeFactor is a parameter, N is the number of relations.
Transformation Rules

- Restricted to left-deep trees
 - all possible permutations of the N relations
- let S be the current state, \(S = (… i … j … k …) \)
- swap
 - select two relations, say i and j at random. Check if interchanging them results in a valid permutation. If so, the move consists of swapping i and j to get the new state \(\text{new}S = (… j … i … k …) \)
- 3Cycle
 - select three relations, say i and j and k at random. The move consists of cycling i, j and k: i is moved to the position of j, j is moved to the position of k and k is moved to the position of i. Check if resulting permutation is valid. If so, the move consists of swapping i and j to get the new state \(\text{new}S = (… k … i … j …) \)
- Other methods (e.g., join methods)? Bushy trees?

Comparison between Exhaustive, Greedy and Randomized Algorithms

- Plan quality
- Optimization overhead
Dynamic Programming (Left-Deep Trees)

- The algorithm proceeds by considering increasingly larger subsets of the set of all relations.
- Plans for a set of cardinality \(i \) are constructed as extensions of the best plan for a set of cardinality \(i-1 \).
- Search space can be pruned based on the principle of optimality:
 - if two plans differ only in a subplan, then the plan with the better subplan is also the better plan.

Dynamic Programming (Cont)

```
{{}}
{{1}}, {{2}}, {{3}}, {{4}}
{1, 2} {{1, 3}}, {{1, 4}}, {2, 3} {{2, 4}}, {3, 4}
{1, 2, 3} {{1, 2, 4}}, {2, 3, 4} {{1, 3, 4}}, {1, 3, 4}
{1, 2, 3, 4}
```
Dynamic Programming (Left-Deep Trees)

- `accessPlan(R)` produces the best plan for relation `R`
- `joinPlan(p1, R)` extends the join plan `p1` into another plan `p2` in which the result of `p1` is joined with `R` in the best possible way
- Optimal plans for subsets are stored in `optplan()` array and are reused rather than recomputed

Dynamic Programming (Cont)

```
for i = 1 to N
    optPlan({ Ri }) = accessPlan(Ri)
for i = 2 to N {
    forall S subset of { R1, R2, ... Rn } such that |S| = i {
        bestPlan = dummy plan with infinite cost
        forall Rj, Sj such that S = { Rj } U Sj {
            p = joinPlan(optPlan(Sj), Rj)
            if cost(p) < cost(bestPlan)
                bestPlan = p
        }
        optPlan(S) = bestPlan
    }

P_\text{opt} = \text{optPlan}\{ R1, R2, ... Rn \}
```
Dynamic Programming Example

Consider the join of 4 relations, R, S, T and U
Each table has 1000 tuples
Assume intermediate result size (tuples) as cost metrics

<table>
<thead>
<tr>
<th>Relation</th>
<th>Size</th>
<th>Cost</th>
<th>BestPlan</th>
</tr>
</thead>
<tbody>
<tr>
<td>R(a,b)</td>
<td>1,000</td>
<td>0</td>
<td>R</td>
</tr>
<tr>
<td>S(b,c)</td>
<td>1,000</td>
<td>0</td>
<td>S</td>
</tr>
<tr>
<td>T(c,d)</td>
<td>1,000</td>
<td>0</td>
<td>T</td>
</tr>
<tr>
<td>U(d,a)</td>
<td>1,000</td>
<td>0</td>
<td>U</td>
</tr>
</tbody>
</table>

Example (Cont)
Example (Cont)

<table>
<thead>
<tr>
<th></th>
<th>{R,S}</th>
<th>{R,T}</th>
<th>{R,U}</th>
<th>{S,T}</th>
<th>{S,U}</th>
<th>{T,U}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>5,000</td>
<td>1M</td>
<td>10,000</td>
<td>2,000</td>
<td>1M</td>
<td>1,000</td>
</tr>
<tr>
<td>Cost</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BestPlan</td>
<td>R×S</td>
<td>R×T</td>
<td>R×U</td>
<td>S×T</td>
<td>S×U</td>
<td>T×U</td>
</tr>
</tbody>
</table>

What about S×R since its cost is also 0??

Example (Cont)

<table>
<thead>
<tr>
<th></th>
<th>{R,S,T}</th>
<th>{R,S,U}</th>
<th>{R,T,U}</th>
<th>{S,T,U}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>10,000</td>
<td>50,000</td>
<td>10,000</td>
<td>2,000</td>
</tr>
<tr>
<td>Cost</td>
<td>2,000</td>
<td>5,000</td>
<td>1,000</td>
<td>1,000</td>
</tr>
<tr>
<td>BestPlan</td>
<td>(S×T)×R</td>
<td>(R×S)×U</td>
<td>(T×U)×R</td>
<td>(T×U)×S</td>
</tr>
</tbody>
</table>

CS5208: Query Optimization
Example (Cont)

<table>
<thead>
<tr>
<th>Grouping</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>((S \bowtie T) \bowtie (R) \bowtie U))</td>
<td>12,000</td>
</tr>
<tr>
<td>((R \bowtie S) \bowtie (U) \bowtie (T))</td>
<td>55,000</td>
</tr>
<tr>
<td>((T \bowtie U) \bowtie (R) \bowtie (S))</td>
<td>11,000</td>
</tr>
<tr>
<td>((T \bowtie U) \bowtie (S) \bowtie (R))</td>
<td>3,000</td>
</tr>
<tr>
<td>((T \bowtie U) \bowtie (R \bowtie S))</td>
<td>6,000</td>
</tr>
<tr>
<td>((R \bowtie T) \bowtie (S \bowtie U))</td>
<td>2M</td>
</tr>
<tr>
<td>((S \bowtie T) \bowtie (R \bowtie U))</td>
<td>12,000</td>
</tr>
</tbody>
</table>

Example (Cont)

<table>
<thead>
<tr>
<th>Grouping</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>((S \bowtie T) \bowtie (R) \bowtie U))</td>
<td>12,000</td>
</tr>
<tr>
<td>((R \bowtie S) \bowtie (U) \bowtie (T))</td>
<td>55,000</td>
</tr>
<tr>
<td>((T \bowtie U) \bowtie (R) \bowtie (S))</td>
<td>11,000</td>
</tr>
<tr>
<td>((T \bowtie U) \bowtie (S) \bowtie (R))</td>
<td>3,000</td>
</tr>
<tr>
<td>((T \bowtie U) \bowtie (R \bowtie S))</td>
<td>6,000</td>
</tr>
<tr>
<td>((R \bowtie T) \bowtie (S \bowtie U))</td>
<td>2M</td>
</tr>
<tr>
<td>((S \bowtie T) \bowtie (R \bowtie U))</td>
<td>12,000</td>
</tr>
</tbody>
</table>
Dynamic Programming (Cont)

- Time & Space complexity
 - For k relations, for left-deep trees, $2^k - 1$ entries!
 - For bushy trees, $O(3^k)$
- DP may maintain multiple plans per subset of relations
 - Interesting orders
- Is DP optimal?

Summary

- Query optimization is NP-hard.
- Instead of finding the best, the objective is largely to avoid the bad plans
- Many different optimization strategies have been proposed
 - greedy heuristics are fast but may generate plans that are far from optimal
 - dynamic programming is effective at the expense of high optimization overhead