
1

Review

• Consider the following sequence of lock requests:
l1(B); l2(A); l3(C); l1(C); l2(B); l3(A)l1(B); l2(A); l3(C); l1(C); l2(B); l3(A)

• Assume that upon start, transactions T1, T2, T3

were assigned timestamps 10, 20, 30, respectively.
What is the order in which transactions commit in a
wait-die scheme?

• What is the order in which transactions commit in a
wound-wait scheme?

CS5208 – Crash Recovery 1

Review

l1(B); l2(A); l3(C); l1(C); l2(B); l3(A)

• wait-die scheme
T3, T1, T2

d it h• wound-wait scheme
T1, T2, T3

CS5208 – Crash Recovery 2

2

Review
• Four transactions T1, T2, T3, T4 used 2PL for concurrency control. Since

2PL ensures conflict-serializability, the schedule (say S) of actions of the
four transactions has to be conflict equivalent to some serial schedule. We
do not have access to the entire schedule S but only a part of it, which
looks as follows:

S = :::; u4(A); l1(B); :::; u1(B); l3(A); l2(B); :::; u3(A); l2(A); :::

•

• Which of the following schedules are possible serial schedules that are g p
conflict-equivalent to S.

(a) T1, T3, T2, T4

(b) T1, T4, T3, T2

(c) T4, T1, T3, T2

CS5208 – Crash Recovery 3

(Correct)

Log-Based Recovery Schemes

If you are going to be in the logging

business, one of the things that you

CS5208 – Crash Recovery 4

, g y

have to do is to learn about heavy

equipment.

Robert VanNatta,

Logging History of
Columbia County

3

Integrity or consistency constraints
• Predicates data must satisfy, e.g.

• x is key of relation R• x is key of relation R
• x  y holds in R
• Domain(x) = {Red, Blue, Green}
• no employee should make more than twice the average

salary

• Definitions

CS5208 – Crash Recovery 5

• Consistent state: satisfies all constraints
• Consistent DB: DB in consistent state

DB cannot always be consistent!

Observation:

CS5208 – Crash Recovery 6

4

DB cannot always be consistent!

Observation:

Example: Transfer 100 from a2 to a10

.. ..

Example: Transfer 100 from a2 to a10

a2  a2 - 100
a10  a10 + 100

CS5208 – Crash Recovery 7

500
..

1000

400
..

1000

a2

a10

DB cannot always be consistent!

Observation:

Example: Transfer 100 from a2 to a10

..

Example: Transfer 100 from a2 to a10

a2  a2 - 100
a10  a10 + 100

CS5208 – Crash Recovery 8

500
..

1000

400
..

1000

400
..

1100

a2

a10

5

Transaction: collection of actions that
preserve consistencypreserve consistency

Consistent DB Consistent DB’T

If T starts with consistent state + T executes in

CS5208 – Crash Recovery 9

If T starts with consistent state T executes in
isolation (and absence of errors)

 T leaves consistent state

Reasons for crashes

• Transaction failures
• Logical errors deadlocksLogical errors, deadlocks

• System crash
• Power failures, operating system bugs etc

• Disk failure
• Head crashes

CS5208 – Crash Recovery 10

• Head crashes
• STABLE STORAGE: Data never lost. Can

approximate by using RAID and maintaining
geographically distant copies of the data

6

• Atomicity – All actions in a transaction are carried out, or
none are, i.e., no incomplete transactions

• Consistency – Each transaction preserves DB consistency

Review: The ACID properties

Consistency Each transaction preserves DB consistency
• User’s responsibility, e.g., Funds transfer between bank accounts

• Isolation – A transaction isolated or protected from the
effects of other transactions

• Durability – When a transaction commits, its effects persist

CS5208 – Crash Recovery 11

• Atomicity – All actions in a transaction are carried out, or
none are, i.e., no incomplete transactions

• Consistency – Each transaction preserves DB consistency

Review: The ACID properties

Consistency Each transaction preserves DB consistency
• User’s responsibility, e.g., Funds transfer between bank accounts

• Isolation – A transaction isolated or protected from the
effects of other transactions

• Durability – When a transaction commits, its effects persist

CS5208 – Crash Recovery 12

• Question: which ones do the Recovery Manager
help with?

Atomicity & Durability

7

Actions of Transaction:

• Read• Read
• Write
• Commit
• Abort

CS5208 – Crash Recovery 13

Key problem: Unfinished transaction

Example Transfer fund from A to BExample Transfer fund from A to B

T1: A  A - 100

B  B + 100

CS5208 – Crash Recovery 14

8

T1: Read (A);
A  A-100
Write (A);
R d (B)Read (B);
B  B+100
Write (B);

A 800

CS5208 – Crash Recovery 15

A: 800
B: 800 A: 800

B: 800

memory disk

T1: Read (A);
A  A-100
Write (A);
R d (B)Read (B);
B  B+100
Write (B);

A 800 700

CS5208 – Crash Recovery 16

A: 800
B: 800 A: 800

B: 800

memory disk

700

9

T1: Read (A);
A  A-100
Write (A);
R d (B)Read (B);
B  B+100
Write (B);

A 800 700

Updated A value is written to disk.
This may be triggered “ANYTIME”
by explicit command or DBMS or OS.

CS5208 – Crash Recovery 17

A: 800
B: 800 A: 800

B: 800

memory disk

700
700

T1: Read (A);
A  A-100
Write (A);
R d (B)Read (B);
B  B+100
Write (B);

A 800 700

CS5208 – Crash Recovery 18

A: 800
B: 800 A: 800

B: 800

memory disk

700
900

700

10

T1: Read (A);
A  A-100
Write (A);
R d (B)Read (B);
B  B+100
Write (B);

A 800 700

failure!

CS5208 – Crash Recovery 19

A: 800
B: 800 A: 800

B: 800

memory disk

700
900

700

T1: Read (A);
A  A-100
Write (A);
R d (B)

Need atomicity: execute all
actions of a transaction or
none at all

Read (B);
B  B+100
Write (B);

A 800 700

failure!

CS5208 – Crash Recovery 20

A: 800
B: 800 A: 800

B: 800

memory disk

700
900

700

11

T1: Read (A); A  A-100
Write (A);

One Solution: Undo logging
(Immediate modification)

Write (A);
Read (B); B  B+100
Write (B);

A 800 A 800

CS5208 – Crash Recovery 21

A:800
B:800

A:800
B:800

memory disk Log (Stable)

T1: Read (A); A  A-100
Write (A);

One Solution: Undo logging
(Immediate modification)

Write (A);
Read (B); B  B+100
Write (B);

A 800 A 800

<T1, start>

CS5208 – Crash Recovery 22

A:800
B:800

A:800
B:800

memory disk log

12

T1: Read (A); A  A-100
Write (A);

One Solution: Undo logging
(Immediate modification)

Write (A);
Read (B); B  B+100
Write (B);

A 800 A 800700

<T1, start>

CS5208 – Crash Recovery 23

A:800
B:800

A:800
B:800

memory disk log

700
900

T1: Read (A); A  A-100
Write (A);

One Solution: Undo logging
(Immediate modification)

Write (A);
Read (B); B  B+100
Write (B);

A 800 A 800700

<T1, start>
<T1, A, 800>

CS5208 – Crash Recovery 24

A:800
B:800

A:800
B:800

memory disk log

700
900

13

T1: Read (A); A  A-100
Write (A);

One Solution: Undo logging
(Immediate modification)

Write (A);
Read (B); B  B+100
Write (B);

A 800 A 800700

<T1, start>
<T1, A, 800>

700

CS5208 – Crash Recovery 25

A:800
B:800

A:800
B:800

memory disk log

700
900

700

T1: Read (A); A  A-100
Write (A);

One Solution: Undo logging
(Immediate modification)

Write (A);
Read (B); B  B+100
Write (B);

A 800 A 800700

<T1, start>
<T1, A, 800>

700 T1 B 800

CS5208 – Crash Recovery 26

A:800
B:800

A:800
B:800

memory disk log

700
900

700 <T1, B, 800>

14

T1: Read (A); A  A-100
Write (A);

One Solution: Undo logging
(Immediate modification)

Write (A);
Read (B); B  B+100
Write (B);

A 800 A 800700

<T1, start>
<T1, A, 800>

700 T1 B 800

CS5208 – Crash Recovery 27

A:800
B:800

A:800
B:800

memory disk log

700
900

700 <T1, B, 800>
900

T1: Read (A); A  A-100
Write (A);

One Solution: Undo logging
(Immediate modification)

Write (A);
Read (B); B  B+100
Write (B);

A 800 A 800700

<T1, start>
<T1, A, 800>

00 T1 B 800

CS5208 – Crash Recovery 28

A:800
B:800

A:800
B:800

memory disk log

700
900 <T1, commit>

700 <T1, B, 800>
900

15

Complication
• Log is first written in memory

memory

DB

Log

A: 800 700
B: 800 900
Log:

T t t

A: 800
B: 800

CS5208 – Crash Recovery 29

<T1,start>
<T1, A, 800>
<T1, B, 800>

Complication
• Log is first written in memory

memory

DB

Log

A: 800 700
B: 800 900
Log:

T t t

A: 800
B: 800

700
BAD STATE

1
Failure occurs after

CS5208 – Crash Recovery 30

<T1,start>
<T1, A, 800>
<T1, B, 800>

partial updates on
disk but before log
is written to disk

16

Complication
• Log is first written in memory

memory

DB

Log

A: 800 700
B: 800 900
Log:

T t t

A: 800
B: 800

700
BAD STATE

1
Failure occurs after

CS5208 – Crash Recovery 31

<T1,start>
<T1, A, 800>
<T1, B, 800>

partial updates on
disk but before log
is written to disk

This means log record for A must be on log disk
before A can be updated on data disk (DB)

Complication
• Log is first written in memory

• Updates are not written to disk on every actionUpdates are not written to disk on every action
memory

DB

Log

A: 800 700
B: 800 900
Log:

T t t

A: 800
B: 800

CS5208 – Crash Recovery 32

<T1,start>
<T1, A, 800>
<T1, B, 800>

<T1, B, 800>
<T1, commit>

17

Complication
• Log is first written in memory

• Updates are not written to disk on every actionUpdates are not written to disk on every action
memory

DB

Log

A: 800 700
B: 800 900
Log:

T t t

A: 800
B: 800

700
BAD STATE

2
All logs are on
disk (including

CS5208 – Crash Recovery 33

<T1,start>
<T1, A, 800>
<T1, B, 800>
<T1,commit>

<T1, B, 800>
<T1, commit>

disk (including
commit log) but
only partial updates
on disk.

Complication
• Log is first written in memory

• Updates are not written to disk on every actionUpdates are not written to disk on every action
memory

DB

Log

A: 800 700
B: 800 900
Log:

T t t

A: 800
B: 800

700
BAD STATE

2
All logs are on
disk (including

CS5208 – Crash Recovery 34

<T1,start>
<T1, A, 800>
<T1, B, 800>

<T1, B, 800>
<T1, commit>

disk (including
commit log) but
only partial updates
on disk.

Before commit log is written to Log, all updates
must be on disk (DB)

18

Undo logging rules

(1) For every action generate undo log record
(containing old value)

(2) Before x is modified on disk, log records
pertaining to x must be on disk (write ahead
logging: WAL)

CS5208 – Crash Recovery 35

(3) Before commit is flushed to log, all writes of
transaction must be reflected on disk

Undo Logging
T1: Read (A); A A-100

Write (A);
Read (B); B  B+100
Write (B);

A: 800 700
B: 800 900
Log: A: 800

Write (B);

CS5208 – Crash Recovery 36

Log:
<T1,start>
<T1, A, 800>
<T1, B, 800>

B: 800

log

19

Undo Logging
T1: Read (A); A A-100

Write (A);
Read (B); B  B+100
Write (B);

A: 800 700
B: 800 900
Log: A: 800

Write (B);

<T1, Start>
<T1, A, 800>

CS5208 – Crash Recovery 37

Log:
<T1,start>
<T1, A, 800>
<T1, B, 800>

B: 800

log

<T1, B, 800>

Undo Logging
T1: Read (A); A A-100

Write (A);
Read (B); B  B+100
Write (B);

A: 800 700
B: 800 900
Log: A: 800

Write (B);

700

<T1, Start>
<T1, A, 800>

CS5208 – Crash Recovery 38

Log:
<T1,start>
<T1, A, 800>
<T1, B, 800>

B: 800

log

<T1, B, 800>

20

Undo Logging
T1: Read (A); A A-100

Write (A);
Read (B); B  B+100
Write (B);

A: 800 700
B: 800 900
Log: A: 800

Write (B);

<T1, Start>
<T1, A, 800>700

CS5208 – Crash Recovery 39

Log:
<T1,start>
<T1, A, 800>
<T1, B, 800>

B: 800

log

<T1, B, 800>900

Undo Logging
T1: Read (A); A A-100

Write (A);
Read (B); B  B+100
Write (B);

A: 800 700
B: 800 900
Log:

T t t
A: 800

Write (B);

<T1, Start>
<T1, A, 800>700

CS5208 – Crash Recovery 40

<T1,start>
<T1, A, 800>
<T1, B, 800>
<T1, commit>

B: 800

log

<T1, B, 800>
<T1, Commit>

900

21

Recovery rules: Undo logging

(1) Let S = set of transactions with <Ti, start> in log,
b i i (i b) d i lbut no <Ti, commit> (or <Ti, abort>) record in log

(2) For each <Ti, X, v> in log,

in reverse order (latest  earliest) do:

- if Ti  S then - X  v

CS5208 – Crash Recovery 41

- Update disk

(3) For each Ti  S do

- write <Ti, abort> to log

What if failure during recovery?What if failure during recovery?

No problem! Undo is idempotent

CS5208 – Crash Recovery 42

22

Redo logging (deferred modification)

• In UNDO logging, we remember the “old”
valuesvalues.

• How about remembering the “new” (updated)
values instead?

• What does this mean?

CS5208 – Crash Recovery 43

Redo logging (deferred modification)

• In UNDO logging, we remember the “old”
valuevalue.

• How about remembering the “new” (updated)
values instead?

• What does this mean?
• NO updates must be written to disk until a

CS5208 – Crash Recovery 44

NO updates must be written to disk until a
transaction commits! So?

23

Redo logging (deferred modification)

• In UNDO logging, we remember the “old”
valuevalue.

• How about remembering the “new” (updated)
values instead?

• What does this mean?
• NO updates must be written to disk until a

CS5208 – Crash Recovery 45

NO updates must be written to disk until a
transaction commits!

• All updates have to be buffered in memory!

Redo logging (deferred modification)

T1: Read(A); A  A-100; write (A);

Read(B); B  B+100; write (B);

A: 800
B: 800

A: 800

CS5208 – Crash Recovery 46

B: 800 B: 800

memory DB LOG

24

Redo logging (deferred modification)

T1: Read(A); A  A-100; write (A);

Read(B); B  B+100; write (B);

A: 800
B: 800

A: 800700
900

CS5208 – Crash Recovery 47

B: 800 B: 800

memory DB LOG

900

Redo logging (deferred modification)

T1: Read(A); A  A-100; write (A);

Read(B); B  B+100; write (B);

A: 800
B: 800

A: 800700
900

<T1, start>
<T1, A, 700>
<T1, B, 900>

CS5208 – Crash Recovery 48

B: 800 B: 800

memory DB LOG

900 <T1, commit>

25

Redo logging (deferred modification)

T1: Read(A); A  A-100; write (A);

Read(B); B  B+100; write (B);

A: 800
B: 800

A: 800700
900

<T1, start>
<T1, A, 700>
<T1, B, 900>

output
700

CS5208 – Crash Recovery 49

B: 800 B: 800

memory DB LOG

900 <T1, commit>

Redo logging rules

(1) For every action, generate redo log record () y , g g
(containing new value)

(2) Before X is modified on disk (DB), all log
records for transaction that modified X
(including commit) must be on disk

CS5208 – Crash Recovery 50

26

(1) Let S = set of transactions with
<Ti it> i l

Recovery rules: Redo logging

<Ti, commit> in log

(2) For each <Ti, X, v> in log, in forward

order (earliest  latest) do:

- if Ti  S then X  v

CS5208 – Crash Recovery 51

Update X on disk

Recovery is very, very SLOW !
Redo log:

First T1 wrote A,B Last

Record Committed a year ago Record

...

Crash

CS5208 – Crash Recovery 52

y g

(1 year ago) --> STILL, Need to redo after crash!!
Crash

What about UNDO scheme?

27

Solution: Checkpoint (simple version)
Periodically:
(1) D t t t ti(1) Do not accept new transactions
(2) Wait until all transactions finish
(3) Flush all log records to disk (log)
(4) Flush all buffers to disk (DB)
(5) W it “ h k i t” d di k (l)

CS5208 – Crash Recovery 53

(5) Write “checkpoint” record on disk (log)
(6) Resume transaction processing

Example: what to do at recovery?

Redo log (disk):

<
T1

,A
,1

6>

<
T1

,c
om

m
it>

Ch
ec

kp
oi

nt

<
T2

,B
,1

7>

<
T2

,c
om

m
it>

<
T3

,C
,2

1>

Crash
...

CS5208 – Crash Recovery 54

No need to examine log records before the most recent Checkpoint

28

Key drawbacks:

• Undo logging: increase the number of disk I/Os

• Redo logging: need to keep all modified
blocks in memory
until commit

CS5208 – Crash Recovery 55

Solution: undo/redo logging!
Update  <Ti, Xid, New X val, Old X val>
page Xpage X

Rules:
1) Page X can be flushed before or after Ti commit
2) Log record flushed before corresponding updated page (WAL)
3) Flush at commit (log only)

CS5208 – Crash Recovery 56

This is adopted in IBM DB2 – known as the

Aries Recovery Manager

29

Non-quiesce checkpoint
(for Undo/Redo logging)

L Start-ckpt endO
G

for
undo dirty buffer

Start ckpt
active TR:
Ti,T2,...

end
ckpt

.........

...

CS5208 – Crash Recovery 57

pool pages
flushed

Examples: what to do at recovery time?

no T1 commit

L
O
G

T1,-
a ... Ckpt

T1
... Ckpt

end ... T1-
b...

CS5208 – Crash Recovery 58

 Undo T1 (undo a,b)

30

Example

L
O
G ... T1

a T1

b T1

c ... T1

cmt ...ckpt-
end

ckpt-s
T1

 Redo T1: (redo b c)

CS5208 – Crash Recovery 59

 Redo T1: (redo b,c)

Recovery process:
• Backwards pass (end of log  latest checkpoint start)

• construct set S of committed transactions

• undo actions of transactions not in S

• Undo transactions that are in checkpoint active list

• Forward pass (latest checkpoint start  end of log)

• redo actions of S transactions

CS5208 – Crash Recovery 60

backward pass

forward pass
start

check-
point

31

Undo/Redo Log (Example)
<START S>
<S, A, 60, 61>
<COMMIT S>
<START T><START T>
<T, A, 61, 62>
<START U>
<U, B, 20, 21>
<T, C, 30, 31>
<START V>
<U, D, 40, 41>
<V, F, 70, 71>
<COMMIT U>

Suppose we begin a nonquiescent checkpoint
immediately after <T, A, 61, 62>, where could the
<END CKPT> record be potentially written in the log?

CS5208 – Crash Recovery 61

<COMMIT U>
<T, E, 50, 51>
<COMMIT T>
<V, B, 21, 22>
<COMMIT V>

Undo/Redo Log (Example)
<START S>
<S, A, 60, 61>
<COMMIT S>
<START T><START T>
<T, A, 61, 62>
<START U>
<U, B, 20, 21>
<T, C, 30, 31>
<START V>
<U, D, 40, 41>
<V, F, 70, 71>
<COMMIT U>

Suppose we begin a nonquiescent checkpoint
immediately after <T, A, 61, 62>, where could the
<END CKPT> record be potentially written in the log?

ANYWHERE after <T, A, 61, 62> since the writing
of dirty blocks can be performed independent of

h t ti th t ti f i i

CS5208 – Crash Recovery 62

<COMMIT U>
<T, E, 50, 51>
<COMMIT T>
<V, B, 21, 22>
<COMMIT V>

whatever actions the transactions are performing in
the interim

32

Undo/Redo Log (Example)
<START S>
<S, A, 60, 61>
<COMMIT S>
<START T>

Suppose we begin a nonquiescent checkpoint
immediately after <T, A, 61, 62>. Suppose further
th i h t ibl i t ft<START T>

<T, A, 61, 62>
<START U>
<U, B, 20, 21>
<T, C, 30, 31>
<START V>
<U, D, 40, 41>
<V, F, 70, 71>
<COMMIT U>

there is a crash at any possible point after
<T, A, 61, 62>, how far back in the log we must look
to find all possible incomplete transactions if
• <END CKPT> was written prior to the crash
• <END CKPT> was not written

CS5208 – Crash Recovery 63

<COMMIT U>
<T, E, 50, 51>
<COMMIT T>
<V, B, 21, 22>
<COMMIT V>

Undo/Redo Log (Example)
<START S>
<S, A, 60, 61>
<COMMIT S>
<START T>

The only active transaction when the checkpoint began
was T.<START T>

<T, A, 61, 62>
<START U>
<U, B, 20, 21>
<T, C, 30, 31>
<START V>
<U, D, 40, 41>
<V, F, 70, 71>
<COMMIT U>

was T.
• <END CKPT> was written prior to the crash

• We need only go back as far as the start of T.

Start CKPT

End CKPT

CS5208 – Crash Recovery 64

<COMMIT U>
<T, E, 50, 51>
<COMMIT T>
<V, B, 21, 22>
<COMMIT V>

Crash

33

Undo/Redo Log (Example)
<START S>
<S, A, 60, 61>
<COMMIT S>
<START T>

The only active transaction when the checkpoint began
was T.<START T>

<T, A, 61, 62>
<START U>
<U, B, 20, 21>
<T, C, 30, 31>
<START V>
<U, D, 40, 41>
<V, F, 70, 71>
<COMMIT U>

was T.
• <END CKPT> was written prior to the crash

• We need only go back as far as the start of T.
• <END CKPT> was not written

• Any transaction that was active when the
previous checkpoint ended may have written some

but not all of its data to disk.
S t th i h k i t

CS5208 – Crash Recovery 65

<COMMIT U>
<T, E, 50, 51>
<COMMIT T>
<V, B, 21, 22>
<COMMIT V>

• So, go to the previous checkpoint
• In this case, the only other transaction that could
qualify is S, so we must look back to the beginning
of S, i.e., to the beginning of the log in this simple
example.

Summary

• Consistency of data
• One source of• One source of

problems: failures
• Logging
• Redundancy

• Another source of
problems: data
sharing

CS5208 – Crash Recovery 66

sharing
• Concurrency Control

