
1

Review (1)
• Consider a file with 6 million records of 200 bytes each. Suppose

we have to perform 10,000 single-record accesses, and 100 range
queries of 0.005% of the file.
• Use hashing (with key-to-address transformation of the form x mod y).

Suppose the hash table has a load factor of 70% and the bucket size is
4096 bytes. Moreover, assume that records are stored in the bucket, and
there is no overflow of buckets.

• Use B+-tree. Suppose each node is 70% full, and the sizes of a node,
key and address are 4096, 8 and 4 bytes respectively.

• Which of the above two methods is better for the application?
• Under what circumstance will the “loser” outperform the

“winner”?

• Assume that (key,ptr) pairs are stored in leaf nodes. each node = 4096 bytes.
let order be d => 2d*8 + (2d+1)*4 4096 => d = 170 => each node can store
at most 340 keys.

• since each node is 70% full, we have each node storing 238 keys (and 239
pointers).

• => at leaf level, we have 6,000,000/238 = 25211 nodes
• => at level above leaf, we have 25211/239 = 105 nodes
• => next level is the root.

Review (2) B+-tree

e eve s e oo .
• => the tree has 3 levels.

• for 10,000 single-record accesses, cost = 10,000*(3+1) = 40,000
• for each range query, we need to traverse 2 leaf nodes, and 22 data nodes

(assuming data are clustered).
• so, the cost for 100 range queries = 100*(3+1+22) = 2600

• total = 42,600

• We have 6,000,000 records, each 200 bytes, 10,000 single-record
accesses, 100 range queries, each accessing 0.005% of the file, i.e.,
300 records.

• bucket size = 4096 bytes = 20 records
• since no overflow, and 70% load factor ==> each bucket contains 14

records only. there are 6,000,000/14 = 428,572 buckets.

Review (3) Hash method

• for 10,000 single-record accesses, cost = 10,000 I/O (i.e., 1 I/O per
access).

• for each range queries, we need to access the entire file. So, total cost
= 100*438,572 I/O

• B+-tree = 40,000 + 2,600

• Hash index = 10,000 + 100*438,572

• clearly, the winner is B+-tree.

Review (4)

• if the range queries cover almost the entire file, or the
workload has few range queries, then hashing technique will
win.

External Sort

CS5208 5

External Sort

“There it was, hidden in alphabetical
order.”

Rita Holt

• A classic problem in computer science!

• Data requested in sorted order
• e.g., find students in increasing cap order

External Sorting

CS5208 6

• Sorting is used in many applications
• First step in bulk loading operations.

• Sorting useful for eliminating duplicate copies in a collection of
records (How?)

• Sort-merge join algorithm involves sorting.

2

4
3

6
2

9
4

8

1
2

2
3

3
4

4

???

Challenge: Sort 1Gb of data with 1Mb of RAM

CS5208 7

Main memory buffers

DiskDisk

7

5
6

3
1

2

5

6
6

7
8

9

A Simpler Problem: Combine Sorted Files

6 4 3 2

CS5208 8

Main memory buffers

Disk Disk

7 49 8

A Simpler Problem: Combine Sorted Files

6 4 3 2

CS5208 9

Main memory buffers

Disk Disk

7 49 8 Output Buffer

Input Buffer

A Simpler Problem: Combine Sorted Files

6 4 3

2

CS5208 10

Main memory buffers

Disk Disk

7 49 8

2

Output Buffer

Input Buffer

A Simpler Problem: Combine Sorted Files

6 4

3 2

CS5208 11

Main memory buffers

Disk Disk

7 49 8

3 2

Output Buffer

Input Buffer

A Simpler Problem: Combine Sorted Files

6 4

2
3

CS5208 12

Main memory buffers

Disk Disk

7 49 8 Output Buffer

Input Buffer

3

A Simpler Problem: Combine Sorted Files

2
3

6 4

CS5208 13

Main memory buffers

Disk Disk

7 49 8 Output Buffer

Input Buffer

A Simpler Problem: Combine Sorted Files

2
3

6

4

CS5208 14

Main memory buffers

Disk Disk

7 49 8 Output Buffer

4

Input Buffer

A Simpler Problem: Combine Sorted Files

2
3

6

4 4

CS5208 15

Main memory buffers

Disk Disk

7 9 8 Output Buffer

4 4

Input Buffer

A Simpler Problem: Combine Sorted Files

2
3

6 4
4

CS5208 16

Main memory buffers

Disk Disk

7 9 8 Output Buffer

Input Buffer

A Simpler Problem: Combine Sorted Files

2
3

4
4

CS5208 17

Main memory buffers

Disk Disk

Output Buffer 6
7

8
9

Input Buffer

What if there are many more runs?

6 4 3 2

7 49 8

CS5208 18

Main memory buffers

Disk Disk

7 5 4 1

5 39 5

4

What if there are many more runs?

6 4 3 2

7 49 8

4 4 3 27 69 8

CS5208 19

7 5 4 1

5 39 5

What if there are many more runs?

6 4 3 2

7 49 8

4 4 3 27 69 8

CS5208 20

7 5 4 1

5 39 5

5 4 3 15 59 7

What if there are many more runs?

6 4 3 2

7 49 8

4 4 3 27 69 8

1
2
3
3
4
4
4

CS5208 21

7 5 4 1

5 39 5

5 4 3 15 59 7

4
5
5
5
6
7
7
8
9
9

What if there are more memory?

6 4 3 2

7 49 8

CS5208 22

Main memory buffers

Disk Disk

7 5 4 1

5 39 5

What if there are more memory?

6 4
3 2

7 49 8

CS5208 23

Main memory buffers

Disk Disk

7 5

9 5

4 1

5 3

What if there are more memory?

6 4
3 2

7 49 8

1

CS5208 24

Main memory buffers

Disk Disk

7 5

9 5

4

5 3

1

5

What if there are more memory?

6 4
3

7 49 8

2 1

CS5208 25

Main memory buffers

Disk Disk

7 5

9 5

4

5 3

2 1

What if there are more memory?

6 4
3

7 49 8

1
2

CS5208 26

Main memory buffers

Disk Disk

7 5

9 5

4

5 3

What if there are more memory?

6 4

3 3
7 49 8

1
2

CS5208 27

Main memory buffers

Disk Disk

7 5

9 5

4

5

What if there are more memory?

6 4

7 49 8

1
2

3
3

CS5208 28

Main memory buffers

Disk Disk

7 5

9 5

4

5

What if there are more memory?

6 4

7 49 8

1
2

3
3

CS5208 29

Main memory buffers

Disk Disk

7 5

9 5

4

5

Multi-way Merge Sort

• Given k sorted files (runs), we can merge them into
larger sorted runs, and eventually produce one single
sorted file.

CS5208 30

• To sort a very large file, we can do it in 2 steps
• Generate sorted runs

• Merge sorted runs (we already know how to do this)

6

How to generate sorted runs?

• Read as many records as possible into memory

• Perform in-memory sort

• Write out sorted records as a sorted run

CS5208 31

• Repeat the process until all records in the
unsorted files are read

7
2
8
3
4
4
6
5

How to generate sorted runs?

CS5208 32

5
9
5
4
1
7
3
9
5

Main memory buffers

Disk
Disk

7 2 8 3

How to generate sorted runs?

CS5208 33

9
5
4
1
7
3
9
5

Main memory buffers

Disk
Disk

4 4 6 5

2 3 4 4

How to generate sorted runs?

CS5208 34

9
5
4
1
7
3
9
5

Main memory buffers

Disk
Disk

5 6 7 8

2
3
4
4
5
6
7

How to generate sorted runs?

CS5208 35

9
5
4
1
7
3
9
5

Main memory buffers

Disk
Disk

7
8

2
3
4
4
5
6
7

How to generate sorted runs?

CS5208 36

Main memory buffers

Disk
Disk

7
8

1
3
4
5
5
7
9
9

7

Phase 1 Phase 2

CS5208 37

Unsorted
file

Sorted
runs Sorted

file

Multi-way Merge Sort

• To sort a file with N pages using B buffer pages:

• Phase 1: use B buffer pages. Produce N / B sorted
runs of B pages each.

• 1 pass (read + write) over the file

CS5208 38

• 1 pass (read + write) over the file

• Phase 2: merge B-1 runs each time

• log B-1 N / B passes

Cost of Multi-way Merge Sort

• Number of passes: 1 + log B-1 N / B

• Cost = 2N * (# of passes)

• E.g., with 5 buffer pages, to sort 108 page file:
• Phase 1 (pass 0): 108 / 5 = 22 sorted runs of 5 pages each (last

CS5208 39

(p) p g (
run is only 3 pages)

• Phase 2:
• Pass 1: 22 / 4 = 6 sorted runs of 20 pages each (last run is only 8 pages)

• Pass 2: 2 sorted runs, 80 pages and 28 pages

• Pass 3: Sorted file of 108 pages

Number of Passes of External Sort

 N B=3 B=5 B=9 B=17 B=129 B=257
100 7 4 3 2 1 1
1,000 10 5 4 3 2 2
10,000 13 7 5 4 2 2

CS5208 40

100,000 17 9 6 5 3 3
1,000,000 20 10 7 5 3 3
10,000,000 23 12 8 6 4 3
100,000,000 26 14 9 7 4 4
1,000,000,000 30 15 10 8 5 4

Double Buffering
• To reduce wait time for I/O request to

complete, can prefetch into `shadow block’.
• Potentially, more passes; in practice, most files

still sorted in 2-3 passes.

CS5208

OUTPUT

OUTPUT'

Disk Disk

INPUT 1

INPUT k

INPUT 2

INPUT 1'

INPUT 2'

INPUT k'

block size
b

B main memory buffers, k-way merge

Internal Sort Algorithm
• Quicksort is a fast way to sort in memory.
• An alternative is replacement selection

Read B blocks into memory
Output: move smallest record, say s, to output buffer

CS5208 42

Read in a new record r
if r > s, then GOTO Output

else freeze r
if all records in memory are frozen, then all records that have

been output constitute a run; unfreeze all records and start a
new run

GOTO Output

8

Replacement Selection (Example)
• 109, 49, 34, 68, 45, 60, 2, 38, 28, 47, 16, 19, 35,

59, 98, 78, 76, 40, 35, 86, 10, 27, 61, 92

• suppose each block contains one record and B=5

CS5208 43

Replacement Selection (Example)
• 109, 49, 34, 68, 45, 60, 2, 38, 28, 47, 16, 19, 35,

59, 98, 78, 76, 40, 35, 86, 10, 27, 61, 92

109 49 34 68 45

CS5208 44

Replacement Selection (Example)
• 109, 49, 34, 68, 45, 60, 2, 38, 28, 47, 16, 19, 35,

59, 98, 78, 76, 40, 35, 86, 10, 27, 61, 92

109 49 34 68 45 34

CS5208 45

Replacement Selection (Example)
• 109, 49, 34, 68, 45, 60, 2, 38, 28, 47, 16, 19, 35,

59, 98, 78, 76, 40, 35, 86, 10, 27, 61, 92

109 49 34 68 45
60

34

CS5208 46

Replacement Selection (Example)
• 109, 49, 34, 68, 45, 60, 2, 38, 28, 47, 16, 19, 35,

59, 98, 78, 76, 40, 35, 86, 10, 27, 61, 92

109 49 34 68 45
60

34
34 45

CS5208 47

Replacement Selection (Example)
• 109, 49, 34, 68, 45, 60, 2, 38, 28, 47, 16, 19, 35,

59, 98, 78, 76, 40, 35, 86, 10, 27, 61, 92

109 49 34 68 45
60

34
34 45

CS5208 48

2

9

Replacement Selection (Example)
• 109, 49, 34, 68, 45, 60, 2, 38, 28, 47, 16, 19, 35,

59, 98, 78, 76, 40, 35, 86, 10, 27, 61, 92

109 49 34 68 45
60

34
34 45

CS5208 49

2 34 45 49

Replacement Selection (Example)
• 109, 49, 34, 68, 45, 60, 2, 38, 28, 47, 16, 19, 35,

59, 98, 78, 76, 40, 35, 86, 10, 27, 61, 92

109 49 34 68 45
60

34
34 45

CS5208 50

2 34 45 49
38 34 45 49 60

Replacement Selection (Example)
• 109, 49, 34, 68, 45, 60, 2, 38, 28, 47, 16, 19, 35,

59, 98, 78, 76, 40, 35, 86, 10, 27, 61, 92

109 49 34 68 45
60

34
34 45

CS5208 51

2 34 45 49
38 34 45 49 60

28 34 45 49 60 68

Replacement Selection (Example)
• 109, 49, 34, 68, 45, 60, 2, 38, 28, 47, 16, 19, 35,

59, 98, 78, 76, 40, 35, 86, 10, 27, 61, 92

109 49 34 68 45
60

34
34 45

CS5208 52

2 34 45 49
38 34 45 49 60

28 34 45 49 60 68
47 34 45 49 60 68 109

Replacement Selection (Example)
• 109, 49, 34, 68, 45, 60, 2, 38, 28, 47, 16, 19, 35,

59, 98, 78, 76, 40, 35, 86, 10, 27, 61, 92

109 49 34 68 45
60

34
34 45

CS5208 53

2 34 45 49
38 34 45 49 60

28 34 45 49 60 68
47 34 45 49 60 68 109

16 38 28 47 2 start a new run

Replacement Selection (Cont.)

• Final results:
• 34 45 49 60 68 109

• 2 16 19 28 35 38 47 55 76 78 86 98

• 10 27 35 40 61 92

CS5208 54

• 10 27 35 40 61 92

• Would have been 5 runs using Quicksort

10

More on Replacement Selection

• Fact: average length of a run is 2B
• Worst-Case

• What is the min length of a run?
• How does this arise?

CS5208 55

• Best-Case
• What is max length of a run?
• How does this arise?

• Quicksort is faster, but longer runs often means
fewer passes!
• Is replacement selection always better?

Number of Passes of Optimized Sort

N B=1,000 B=5,000 B=10,000
100 1 1 1
1,000 1 1 1
10,000 2 2 1

CS5208 56

10,000 2 2 1
100,000 3 2 2
1,000,000 3 2 2
10,000,000 4 3 3
100,000,000 5 3 3
1,000,000,000 5 4 3

 Block size = 32, initial pass produces runs of size 2B.

Sequential vs Random I/Os

• Is minimizing passes optimal? Is merging as many
runs as possible the best solution?

• Suppose we have 80 runs, each 80 pages long and
we have 81 pages of buffer space

CS5208 57

we have 81 pages of buffer space.

• We can merge all 80 runs in a single pass
• each page requires a seek to access (Why?)

• there are 80 pages per run, so 80 seeks per run

• total cost = 80 runs X 80 seeks = 6,400 seeks

Sequential vs Random I/Os (Cont)
• We can merge all 80 runs in two steps

• 5 sets of 16 runs each
• read 80/16=5 pages of one run
• 16 runs result in sorted run of 1280 pages
• each merge requires 80/5X16 = 256 seeks
• for 5 sets we have 5X256 = 1280 seeks

CS5208 58

for 5 sets, we have 5X256 1280 seeks

• merge 5 runs of 1280 pages
• read 80/5=16 pages of one run => 1280/16=80 seeks in total
• 5 runs => 5X80 = 400 seeks

• total: 1280+400=1680 seeks!!!

• Number of passes increases, but number of seeks decreases!

Using B+ Trees for Sorting

• Scenario: Table to be sorted has B+ tree index on
sorting column(s).

• Idea: Can retrieve records in order by traversing leaf

CS5208 59

pages.
• Is this a good idea?
• Cases to consider:

• B+ tree is clustered -- Good idea!
• B+ tree is not clustered -- Could be a very bad idea!

Clustered B+ Tree Used for Sorting

• Cost: root to the left-most leaf,
then retrieve all leaf pages
(<key,record> pair
organization)

(Directs search)
Index

Data Entries

CS5208 60

organization)

• If <key, rid> pair organization
is used? Additional cost of
retrieving data records: each
page fetched just once.

 Always better than external sorting!

Data Records

Data Entries
("Sequence set")

11

Unclustered B+ Tree Used for Sorting

• each data entry contains <key,rid > of a data
record. In general, one I/O per data record!

Index

CS5208 61

(Directs search)

Data Records

Data Entries
("Sequence set")

External Sorting vs. Unclustered Index

N Sorting p=1 p=10 p=100

100 200 100 1,000 10,000
1,000 2,000 1,000 10,000 100,000
10 000 40 000 10 000 100 000 1 000 000

CS5208 62

10,000 40,000 10,000 100,000 1,000,000
100,000 600,000 100,000 1,000,000 10,000,000
1,000,000 8,000,000 1,000,000 10,000,000 100,000,000
10,000,000 80,000,000 10,000,000 100,000,000 1,000,000,000

 p: # of records per page
 B=1,000 and block size=32 for sorting
 p=100 is the more realistic value.

Sorting Records!

• Sorting has become a blood sport!
• Parallel sorting is the name of the game ...

• Datamation: Sort 1M records of size 100 bytes
• Typical DBMS: 15 minutes

CS5208 63

• World record: 3.5 seconds
• 12-CPU SGI machine, 96 disks, 2GB of RAM

• New benchmarks proposed:
• Minute Sort: How many can you sort in 1 minute?
• Dollar Sort: How many can you sort for $1.00?
• Joule Sort: How many can you sort with 1 Joule?

Summary
• External sorting is important; DBMS may dedicate part of buffer

pool for sorting!
• External merge sort minimizes disk I/O cost:

• Pass 0: Produces sorted runs of size B (# buffer pages). Subsequent
passes: merge runs.

CS5208 64

passes e ge u s
• # of runs merged at a time depends on B, and block size.
• Larger block size means less I/O cost per page.
• Larger block size means smaller # runs merged.
• In practice, # of runs rarely more than 2 or 3.

• Clustered B+ tree is good for sorting; unclustered tree is
usually very bad.

