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Review (1)
• Consider a file with 6 million records of 200 bytes each. Suppose 

we have to perform 10,000 single-record accesses, and 100 range 
queries of 0.005% of the file. q
• Use hashing (with key-to-address transformation of the form x mod y). 

Suppose the hash table has a load factor of 70% and the bucket size is 
4096 bytes. Moreover, assume that records are stored in the bucket, and 
there is no overflow of buckets.

• Use B+-tree. Suppose each node is 70% full, and the sizes of a node, 
key and address are 4096, 8 and 4 bytes respectively.

• Which of the above two methods is better for the application?
• Under what circumstance will the “loser” outperform the• Under what circumstance will the loser  outperform the 

“winner”?

• Assume that (key,ptr) pairs are stored in leaf nodes. each node = 4096 bytes. 
let order be d => 2d*8 + (2d+1)*4  4096 => d = 170 => each node can store 
at most 340 keys.

• since each node is 70% full, we have each node storing 238 keys (and 239 
pointers).

Review (2) B+-tree

pointers).

• => at leaf level, we have 6,000,000/238 = 25211 nodes
• => at level above leaf, we have 25211/239 = 105 nodes
• => next level is the root.
• => the tree has 3 levels.

• for 10,000 single-record accesses, cost = 10,000*(3+1) = 40,000
• for each range query, we need to traverse 2 leaf nodes, and 22 data nodes g q y, ,

(assuming data are clustered).
• so, the cost for 100 range queries = 100*(3+1+22) = 2600

• total = 42,600
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• We have 6,000,000 records, each 200 bytes, 10,000 single-record 
accesses, 100 range queries, each accessing 0.005% of the file, i.e., 
300 records.

Review (3) Hash method

• bucket size = 4096 bytes = 20 records
• since no overflow, and 70% load factor ==> each bucket contains 14 

records only. there are 6,000,000/14 = 428,572 buckets.

• for 10,000 single-record accesses, cost = 10,000 I/O (i.e., 1 I/O per 
access).

• for each range queries, we need to access the entire file. So, total cost 
= 100*438,572 I/O

• B+-tree = 40,000 + 2,600

H h i d 10 000 + 100*438 572

Review (4)

• Hash index =  10,000 + 100*438,572 

• clearly, the winner is B+-tree. 

• if the range queries cover almost the entire file, or the 
workload has few range queries, then hashing technique will 
winwin.
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External Sort
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“There it was, hidden in alphabetical 
order.”

Rita Holt 

• A classic problem in computer science!

External Sorting

p p

• Data requested in sorted order 
• e.g., find students in increasing cap order

• Sorting is used in many applications
• First step in bulk loading operations.
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• Sorting useful for eliminating duplicate copies in a collection of 
records (How?)

• Sort-merge join algorithm involves sorting.
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What if there are many more runs?
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Multi-way Merge Sort

• Given k sorted files (runs), we can merge them into ( ) g
larger sorted runs, and eventually produce one single 
sorted file.

• To sort a very large file, we can do it in 2 steps
• Generate sorted runs

CS5208 30

• Merge sorted runs (we already know how to do this)
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How to generate sorted runs?

• Read as many records as possible into memory

• Perform in-memory sort

• Write out sorted records as a sorted run

• Repeat the process until all records in the 
unsorted files are read
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Phase 1 Phase 2
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Unsorted 
file

Sorted 
runs Sorted 

file

Multi-way Merge Sort

• To sort a file with N pages using B buffer pages:

Ph  1   B b ff   P d  N / B t d • Phase 1: use B buffer pages. Produce N / B sorted 
runs of B pages each.

• 1 pass (read + write) over the file

• Phase 2: merge B-1 runs each time

•  log B 1 N / B   passes

CS5208 38

 log B-1 N / B   passes
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Cost of Multi-way Merge Sort

• Number of passes: 1 +  log B-1 N / B  

• Cost = 2N * (# of passes)• Cost = 2N  (# of passes)

• E.g., with 5 buffer pages, to sort 108 page file:
• Phase 1 (pass 0): 108 / 5 = 22 sorted runs of 5 pages each (last 

run is only 3 pages) 

• Phase 2:
• Pass 1: 22 / 4 = 6 sorted runs of 20 pages each (last run is only 8 pages)
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• Pass 1: 22 / 4 = 6 sorted runs of 20 pages each (last run is only 8 pages)

• Pass 2:  2 sorted runs, 80 pages and 28 pages

• Pass 3:  Sorted file of 108 pages

Number of Passes of External Sort

          N B=3 B=5 B=9 B=17 B=129 B=257
100 7 4 3 2 1 1100 7 4 3 2 1 1
1,000 10 5 4 3 2 2
10,000 13 7 5 4 2 2
100,000 17 9 6 5 3 3
1,000,000 20 10 7 5 3 3
10 000 000 23 12 8 6 4 3
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10,000,000 23 12 8 6 4 3
100,000,000 26 14 9 7 4 4
1,000,000,000 30 15 10 8 5 4
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Double Buffering
• To reduce wait time for I/O request to 

complete, can prefetch into `shadow block’. 
• Potentially, more passes; in practice, most files 

still sorted in 2-3 passes.

OUTPUT

INPUT 1

INPUT 2

INPUT 1'

CS5208

OUTPUT'

Disk DiskINPUT k

INPUT 2'

INPUT k'

block size
b

B main memory buffers, k-way merge

Internal Sort Algorithm
• Quicksort is a fast way to sort in memory.
• An alternative is replacement selectionAn alternative is replacement selection

Read B blocks into memory
Output: move smallest record, say s, to output buffer
Read in a new record r
if r > s, then GOTO Output

else freeze r
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else freeze r
if all records in memory are frozen, then all records that have 

been output constitute a run; unfreeze all records and start a 
new run

GOTO Output
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Replacement Selection (Example)
• 109, 49, 34, 68, 45, 60, 2, 38, 28, 47, 16, 19, 35, 

59, 98, 78, 76, 40, 35, 86, 10, 27, 61, 92

• suppose each block contains one record and B=5

CS5208 43

Replacement Selection (Example)
• 109, 49, 34, 68, 45, 60, 2, 38, 28, 47, 16, 19, 35, 

59, 98, 78, 76, 40, 35, 86, 10, 27, 61, 92

109   49   34   68   45
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Replacement Selection (Example)
• 109, 49, 34, 68, 45, 60, 2, 38, 28, 47, 16, 19, 35, 

59, 98, 78, 76, 40, 35, 86, 10, 27, 61, 92

109   49   34   68   45 34
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Replacement Selection (Example)
• 109, 49, 34, 68, 45, 60, 2, 38, 28, 47, 16, 19, 35, 

59, 98, 78, 76, 40, 35, 86, 10, 27, 61, 92

109   49   34   68   45
60

34
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Replacement Selection (Example)
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Replacement Selection (Example)
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59, 98, 78, 76, 40, 35, 86, 10, 27, 61, 92

109   49   34   68   45

2
60

34
34   45

CS5208 48



25

Replacement Selection (Example)
• 109, 49, 34, 68, 45, 60, 2, 38, 28, 47, 16, 19, 35, 

59, 98, 78, 76, 40, 35, 86, 10, 27, 61, 92
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Replacement Selection (Example)
• 109, 49, 34, 68, 45, 60, 2, 38, 28, 47, 16, 19, 35, 

59, 98, 78, 76, 40, 35, 86, 10, 27, 61, 92

109   49   34   68   45

2
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38 34   45   49   60
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Replacement Selection (Example)
• 109, 49, 34, 68, 45, 60, 2, 38, 28, 47, 16, 19, 35, 

59, 98, 78, 76, 40, 35, 86, 10, 27, 61, 92

109   49   34   68   45
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38 34   45   49   60
28 34   45   49   60   68
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28 34   45   49   60   68

Replacement Selection (Example)
• 109, 49, 34, 68, 45, 60, 2, 38, 28, 47, 16, 19, 35, 

59, 98, 78, 76, 40, 35, 86, 10, 27, 61, 92

109   49   34   68   45

2
60

34
34   45
34   45   49

38 34   45   49   60
28 34   45   49   60   68
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28 34   45   49   60   68
47 34   45   49   60   68   109
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Replacement Selection (Example)
• 109, 49, 34, 68, 45, 60, 2, 38, 28, 47, 16, 19, 35, 

59, 98, 78, 76, 40, 35, 86, 10, 27, 61, 92

109   49   34   68   45

2
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34
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34   45   49

38 34   45   49   60
28 34   45   49   60   68
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28 34   45   49   60   68
47 34   45   49   60   68   109

16    38   28    47   2 start a new run

Replacement Selection (Cont.)

• Final results:
34 45 49 60 68 109• 34   45   49   60   68   109

• 2   16   19   28   35   38   47   55   76   78   86   98

• 10   27   35   40   61   92

• Would have been 5 runs using Quicksort

CS5208 54
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More on Replacement Selection

• Fact: average length of a run is 2B
W t C• Worst-Case
• What is the min length of a run?
• How does this arise?

• Best-Case
• What is max length of a run?
• How does this arise?
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• How does this arise?

• Quicksort is faster, but longer runs often means 
fewer passes!
• Is replacement selection always better?

Number of Passes of Optimized Sort

N B=1,000 B=5,000 B=10,000
100 1 1 1
1,000 1 1 1
10,000 2 2 1
100,000 3 2 2
1,000,000 3 2 2
10 000 000 4 3 3
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10,000,000 4 3 3
100,000,000 5 3 3
1,000,000,000 5 4 3

 Block size = 32,  initial pass produces runs of size 2B. 
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Sequential vs Random I/Os

• Is minimizing passes optimal? Is merging as many 
runs as possible the best solution?runs as possible the best solution?

• Suppose we have 80 runs, each 80 pages long and 
we have 81 pages of buffer space. 

• We can merge all 80 runs in a single pass
• each page requires a seek to access (Why?)
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• each page requires a seek to access (Why?)

• there are 80 pages per run, so 80 seeks per run

• total cost = 80 runs X 80 seeks = 6,400 seeks

Sequential vs Random I/Os (Cont)
• We can merge all 80 runs in two steps

• 5 sets of 16 runs each
• read 80/16=5 pages of one run • read 80/16=5 pages of one run 
• 16 runs result in sorted run of 1280 pages
• each merge requires 80/5X16 = 256 seeks 
• for 5 sets, we have 5X256 = 1280 seeks

• merge 5 runs of 1280 pages 
• read 80/5=16 pages of one run => 1280/16=80 seeks in total
• 5 runs => 5X80 = 400 seeks
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5 runs => 5X80 = 400 seeks

• total: 1280+400=1680 seeks!!!

• Number of passes increases, but number of seeks decreases!



30

Using B+ Trees for Sorting

• Scenario: Table to be sorted has B+ tree index on 
sorting column(s).

• Idea: Can retrieve records in order by traversing leaf 
pages.

• Is this a good idea?
C  t  id
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• Cases to consider:
• B+ tree is clustered -- Good idea!
• B+ tree is not clustered -- Could be a very bad idea!

Clustered B+ Tree Used for Sorting

• Cost: root to the left-most leaf, Index,
then retrieve all leaf pages 
(<key,record> pair 
organization)

• If <key, rid> pair organization 
is used?  Additional cost of 

t i i  d t  d   h 

(Directs search)
Index

Data Entries
("Sequence set")
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retrieving data records:  each 
page fetched just once.

 Always better than external sorting!

Data Records
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Unclustered B+ Tree Used for Sorting

• each data entry contains <key,rid > of a data 
d   I  l   I/O  d t  d!record.  In general, one I/O per data record!

(Directs search)
Index

Data Entries

CS5208 61

Data Records

("Sequence set")

External Sorting vs. Unclustered Index

N Sorting p=1 p=10 p=100

100 200 100 1,000 10,000
1,000 2,000 1,000 10,000 100,000
10,000 40,000 10,000 100,000 1,000,000
100,000 600,000 100,000 1,000,000 10,000,000
1,000,000 8,000,000 1,000,000 10,000,000 100,000,000
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1,000,000 8,000,000 1,000,000 10,000,000 100,000,000
10,000,000 80,000,000 10,000,000 100,000,000 1,000,000,000

 p: # of records per page
 B=1,000 and block size=32 for sorting
 p=100 is the more realistic value.
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Sorting Records!

• Sorting has become a blood sport!
• Parallel sorting is the name of the game• Parallel sorting is the name of the game ...

• Datamation: Sort 1M records of size 100 bytes
• Typical DBMS: 15 minutes
• World record: 3.5 seconds

• 12-CPU SGI machine, 96 disks, 2GB of RAM

• New benchmarks proposed:
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New benchmarks proposed:
• Minute Sort: How many can you sort in 1 minute?
• Dollar Sort: How many can you sort for $1.00?
• Joule Sort: How many can you sort with 1 Joule?

Summary
• External sorting is important; DBMS may dedicate part of buffer 

pool for sorting!
• External merge sort minimizes disk I/O cost:

• Pass 0: Produces sorted runs of size B (# buffer pages). Subsequent 
passes: merge runs.

• # of runs merged at a time depends on B, and block size.
• Larger block size means less I/O cost per page.
• Larger block size means smaller # runs merged
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• Larger block size means smaller # runs merged.
• In practice, # of runs rarely more than 2 or 3.

• Clustered B+ tree is good for sorting; unclustered tree is 
usually very bad.


