
1

Review (1)
• Consider a file with 6 million records of 200 bytes each. Suppose

we have to perform 10,000 single-record accesses, and 100 range
queries of 0.005% of the file. q
• Use hashing (with key-to-address transformation of the form x mod y).

Suppose the hash table has a load factor of 70% and the bucket size is
4096 bytes. Moreover, assume that records are stored in the bucket, and
there is no overflow of buckets.

• Use B+-tree. Suppose each node is 70% full, and the sizes of a node,
key and address are 4096, 8 and 4 bytes respectively.

• Which of the above two methods is better for the application?
• Under what circumstance will the “loser” outperform the• Under what circumstance will the loser outperform the

“winner”?

• Assume that (key,ptr) pairs are stored in leaf nodes. each node = 4096 bytes.
let order be d => 2d*8 + (2d+1)*4  4096 => d = 170 => each node can store
at most 340 keys.

• since each node is 70% full, we have each node storing 238 keys (and 239
pointers).

Review (2) B+-tree

pointers).

• => at leaf level, we have 6,000,000/238 = 25211 nodes
• => at level above leaf, we have 25211/239 = 105 nodes
• => next level is the root.
• => the tree has 3 levels.

• for 10,000 single-record accesses, cost = 10,000*(3+1) = 40,000
• for each range query, we need to traverse 2 leaf nodes, and 22 data nodes g q y, ,

(assuming data are clustered).
• so, the cost for 100 range queries = 100*(3+1+22) = 2600

• total = 42,600

2

• We have 6,000,000 records, each 200 bytes, 10,000 single-record
accesses, 100 range queries, each accessing 0.005% of the file, i.e.,
300 records.

Review (3) Hash method

• bucket size = 4096 bytes = 20 records
• since no overflow, and 70% load factor ==> each bucket contains 14

records only. there are 6,000,000/14 = 428,572 buckets.

• for 10,000 single-record accesses, cost = 10,000 I/O (i.e., 1 I/O per
access).

• for each range queries, we need to access the entire file. So, total cost
= 100*438,572 I/O

• B+-tree = 40,000 + 2,600

H h i d 10 000 + 100*438 572

Review (4)

• Hash index = 10,000 + 100*438,572

• clearly, the winner is B+-tree.

• if the range queries cover almost the entire file, or the
workload has few range queries, then hashing technique will
winwin.

3

External Sort

CS5208 5

“There it was, hidden in alphabetical
order.”

Rita Holt

• A classic problem in computer science!

External Sorting

p p

• Data requested in sorted order
• e.g., find students in increasing cap order

• Sorting is used in many applications
• First step in bulk loading operations.

CS5208 6

• Sorting useful for eliminating duplicate copies in a collection of
records (How?)

• Sort-merge join algorithm involves sorting.

4

4
3

6

1
2

2
???

Challenge: Sort 1Gb of data with 1Mb of RAM

2

9
4

8
7

5
6

3

3

3
4

4
5

6
6

7

CS5208 7

Main memory buffers

DiskDisk

1

2

8

9

A Simpler Problem: Combine Sorted Files

6 4 3 2

7 49 8

CS5208 8

Main memory buffers

Disk Disk

5

A Simpler Problem: Combine Sorted Files

6 4 3 2

7 49 8 Output Buffer

Input Buffer

CS5208 9

Main memory buffers

Disk Disk

A Simpler Problem: Combine Sorted Files

6 4 3

7 49 8

2

Output Buffer

Input Buffer

CS5208 10

Main memory buffers

Disk Disk

6

A Simpler Problem: Combine Sorted Files

6 4

7 49 8

3 2

Output Buffer

Input Buffer

CS5208 11

Main memory buffers

Disk Disk

A Simpler Problem: Combine Sorted Files

6 4

7 49 8

2
3

Output Buffer

Input Buffer

CS5208 12

Main memory buffers

Disk Disk

7

A Simpler Problem: Combine Sorted Files

7 49 8

2
3

Output Buffer

6 4

Input Buffer

CS5208 13

Main memory buffers

Disk Disk

A Simpler Problem: Combine Sorted Files

7 49 8

2
3

Output Buffer

6

4

Input Buffer

CS5208 14

Main memory buffers

Disk Disk

8

A Simpler Problem: Combine Sorted Files

7 9 8

2
3

Output Buffer

6

4 4

Input Buffer

CS5208 15

Main memory buffers

Disk Disk

A Simpler Problem: Combine Sorted Files

7 9 8

2
3

Output Buffer

6 4
4

Input Buffer

CS5208 16

Main memory buffers

Disk Disk

9

A Simpler Problem: Combine Sorted Files

2
3

Output Buffer

4
4

6
7

8
Input Buffer

CS5208 17

Main memory buffers

Disk Disk

8
9

What if there are many more runs?

6 4 3 2

7 49 8

7 5 4 1

CS5208 18

Main memory buffers

Disk Disk

5 39 5

10

What if there are many more runs?

6 4 3 2

7 49 8

7 5 4 1

4 4 3 27 69 8

CS5208 19

5 39 5

What if there are many more runs?

6 4 3 2

7 49 8

7 5 4 1

4 4 3 27 69 8

5 4 3 15 59 7

CS5208 20

5 39 5

11

What if there are many more runs?

6 4 3 2
1
2
3

7 49 8

7 5 4 1

4 4 3 27 69 8

5 4 3 15 59 7

3
3
4
4
4
5
5
5
6

CS5208 21

5 39 5
7
7
8
9
9

What if there are more memory?

6 4 3 2

7 49 8

7 5 4 1

CS5208 22

Main memory buffers

Disk Disk

5 39 5

12

What if there are more memory?

6 4
3 2

7 49 8

7 5 4 1

5 3

CS5208 23

Main memory buffers

Disk Disk

9 5

What if there are more memory?

6 4
3 2

7 49 8

7 5 4

5 3

1

CS5208 24

Main memory buffers

Disk Disk

9 5

13

What if there are more memory?

6 4
3

7 49 8

7 5 4

5 3

2 1

CS5208 25

Main memory buffers

Disk Disk

9 5

What if there are more memory?

6 4 1
23

7 49 8

7 5 4

5 3

2

CS5208 26

Main memory buffers

Disk Disk

9 5

14

What if there are more memory?

6 4 1
2

3 3
7 49 8

7 5 4

5

2

CS5208 27

Main memory buffers

Disk Disk

9 5

What if there are more memory?

6 4 1
2

7 49 8

7 5 4

5

2

3
3

CS5208 28

Main memory buffers

Disk Disk

9 5

15

What if there are more memory?

1
26 4

7 49 8

7 5 4

5

2

3
3

CS5208 29

Main memory buffers

Disk Disk

9 5

Multi-way Merge Sort

• Given k sorted files (runs), we can merge them into () g
larger sorted runs, and eventually produce one single
sorted file.

• To sort a very large file, we can do it in 2 steps
• Generate sorted runs

CS5208 30

• Merge sorted runs (we already know how to do this)

16

How to generate sorted runs?

• Read as many records as possible into memory

• Perform in-memory sort

• Write out sorted records as a sorted run

• Repeat the process until all records in the
unsorted files are read

CS5208 31

7
2
8

How to generate sorted runs?

3
4
4
6
5
9
5
4
1

CS5208 32

7
3
9
5

Main memory buffers

Disk
Disk

17

How to generate sorted runs?

9
5
4
1

7 2

4 4

8 3

6 5

CS5208 33

7
3
9
5

Main memory buffers

Disk
Disk

How to generate sorted runs?

9
5
4
1

2 3

5 6

4 4

7 8

CS5208 34

7
3
9
5

Main memory buffers

Disk
Disk

18

2
3
4

How to generate sorted runs?

9
5
4
1

4
4
5
6
7
8

CS5208 35

7
3
9
5

Main memory buffers

Disk
Disk

2
3
4

How to generate sorted runs?

4
4
5
6
7
8

1
3
4

CS5208 36

Main memory buffers

Disk
Disk

4
5
5
7
9
9

19

Phase 1 Phase 2

CS5208 37

Unsorted
file

Sorted
runs Sorted

file

Multi-way Merge Sort

• To sort a file with N pages using B buffer pages:

Ph 1 B b ff P d N / B t d • Phase 1: use B buffer pages. Produce N / B sorted
runs of B pages each.

• 1 pass (read + write) over the file

• Phase 2: merge B-1 runs each time

•  log B 1 N / B   passes

CS5208 38

 log B-1 N / B   passes

20

Cost of Multi-way Merge Sort

• Number of passes: 1 +  log B-1 N / B  

• Cost = 2N * (# of passes)• Cost = 2N (# of passes)

• E.g., with 5 buffer pages, to sort 108 page file:
• Phase 1 (pass 0): 108 / 5 = 22 sorted runs of 5 pages each (last

run is only 3 pages)

• Phase 2:
• Pass 1: 22 / 4 = 6 sorted runs of 20 pages each (last run is only 8 pages)

CS5208 39

• Pass 1: 22 / 4 = 6 sorted runs of 20 pages each (last run is only 8 pages)

• Pass 2: 2 sorted runs, 80 pages and 28 pages

• Pass 3: Sorted file of 108 pages

Number of Passes of External Sort

 N B=3 B=5 B=9 B=17 B=129 B=257
100 7 4 3 2 1 1100 7 4 3 2 1 1
1,000 10 5 4 3 2 2
10,000 13 7 5 4 2 2
100,000 17 9 6 5 3 3
1,000,000 20 10 7 5 3 3
10 000 000 23 12 8 6 4 3

CS5208 40

10,000,000 23 12 8 6 4 3
100,000,000 26 14 9 7 4 4
1,000,000,000 30 15 10 8 5 4

21

Double Buffering
• To reduce wait time for I/O request to

complete, can prefetch into `shadow block’.
• Potentially, more passes; in practice, most files

still sorted in 2-3 passes.

OUTPUT

INPUT 1

INPUT 2

INPUT 1'

CS5208

OUTPUT'

Disk DiskINPUT k

INPUT 2'

INPUT k'

block size
b

B main memory buffers, k-way merge

Internal Sort Algorithm
• Quicksort is a fast way to sort in memory.
• An alternative is replacement selectionAn alternative is replacement selection

Read B blocks into memory
Output: move smallest record, say s, to output buffer
Read in a new record r
if r > s, then GOTO Output

else freeze r

CS5208 42

else freeze r
if all records in memory are frozen, then all records that have

been output constitute a run; unfreeze all records and start a
new run

GOTO Output

22

Replacement Selection (Example)
• 109, 49, 34, 68, 45, 60, 2, 38, 28, 47, 16, 19, 35,

59, 98, 78, 76, 40, 35, 86, 10, 27, 61, 92

• suppose each block contains one record and B=5

CS5208 43

Replacement Selection (Example)
• 109, 49, 34, 68, 45, 60, 2, 38, 28, 47, 16, 19, 35,

59, 98, 78, 76, 40, 35, 86, 10, 27, 61, 92

109 49 34 68 45

CS5208 44

23

Replacement Selection (Example)
• 109, 49, 34, 68, 45, 60, 2, 38, 28, 47, 16, 19, 35,

59, 98, 78, 76, 40, 35, 86, 10, 27, 61, 92

109 49 34 68 45 34

CS5208 45

Replacement Selection (Example)
• 109, 49, 34, 68, 45, 60, 2, 38, 28, 47, 16, 19, 35,

59, 98, 78, 76, 40, 35, 86, 10, 27, 61, 92

109 49 34 68 45
60

34

CS5208 46

24

Replacement Selection (Example)
• 109, 49, 34, 68, 45, 60, 2, 38, 28, 47, 16, 19, 35,

59, 98, 78, 76, 40, 35, 86, 10, 27, 61, 92

109 49 34 68 45
60

34
34 45

CS5208 47

Replacement Selection (Example)
• 109, 49, 34, 68, 45, 60, 2, 38, 28, 47, 16, 19, 35,

59, 98, 78, 76, 40, 35, 86, 10, 27, 61, 92

109 49 34 68 45

2
60

34
34 45

CS5208 48

25

Replacement Selection (Example)
• 109, 49, 34, 68, 45, 60, 2, 38, 28, 47, 16, 19, 35,

59, 98, 78, 76, 40, 35, 86, 10, 27, 61, 92

109 49 34 68 45

2
60

34
34 45
34 45 49

CS5208 49

Replacement Selection (Example)
• 109, 49, 34, 68, 45, 60, 2, 38, 28, 47, 16, 19, 35,

59, 98, 78, 76, 40, 35, 86, 10, 27, 61, 92

109 49 34 68 45

2
60

34
34 45
34 45 49

38 34 45 49 60

CS5208 50

26

Replacement Selection (Example)
• 109, 49, 34, 68, 45, 60, 2, 38, 28, 47, 16, 19, 35,

59, 98, 78, 76, 40, 35, 86, 10, 27, 61, 92

109 49 34 68 45

2
60

34
34 45
34 45 49

38 34 45 49 60
28 34 45 49 60 68

CS5208 51

28 34 45 49 60 68

Replacement Selection (Example)
• 109, 49, 34, 68, 45, 60, 2, 38, 28, 47, 16, 19, 35,

59, 98, 78, 76, 40, 35, 86, 10, 27, 61, 92

109 49 34 68 45

2
60

34
34 45
34 45 49

38 34 45 49 60
28 34 45 49 60 68

CS5208 52

28 34 45 49 60 68
47 34 45 49 60 68 109

27

Replacement Selection (Example)
• 109, 49, 34, 68, 45, 60, 2, 38, 28, 47, 16, 19, 35,

59, 98, 78, 76, 40, 35, 86, 10, 27, 61, 92

109 49 34 68 45

2
60

34
34 45
34 45 49

38 34 45 49 60
28 34 45 49 60 68

CS5208 53

28 34 45 49 60 68
47 34 45 49 60 68 109

16 38 28 47 2 start a new run

Replacement Selection (Cont.)

• Final results:
34 45 49 60 68 109• 34 45 49 60 68 109

• 2 16 19 28 35 38 47 55 76 78 86 98

• 10 27 35 40 61 92

• Would have been 5 runs using Quicksort

CS5208 54

28

More on Replacement Selection

• Fact: average length of a run is 2B
W t C• Worst-Case
• What is the min length of a run?
• How does this arise?

• Best-Case
• What is max length of a run?
• How does this arise?

CS5208 55

• How does this arise?

• Quicksort is faster, but longer runs often means
fewer passes!
• Is replacement selection always better?

Number of Passes of Optimized Sort

N B=1,000 B=5,000 B=10,000
100 1 1 1
1,000 1 1 1
10,000 2 2 1
100,000 3 2 2
1,000,000 3 2 2
10 000 000 4 3 3

CS5208 56

10,000,000 4 3 3
100,000,000 5 3 3
1,000,000,000 5 4 3

 Block size = 32, initial pass produces runs of size 2B.

29

Sequential vs Random I/Os

• Is minimizing passes optimal? Is merging as many
runs as possible the best solution?runs as possible the best solution?

• Suppose we have 80 runs, each 80 pages long and
we have 81 pages of buffer space.

• We can merge all 80 runs in a single pass
• each page requires a seek to access (Why?)

CS5208 57

• each page requires a seek to access (Why?)

• there are 80 pages per run, so 80 seeks per run

• total cost = 80 runs X 80 seeks = 6,400 seeks

Sequential vs Random I/Os (Cont)
• We can merge all 80 runs in two steps

• 5 sets of 16 runs each
• read 80/16=5 pages of one run • read 80/16=5 pages of one run
• 16 runs result in sorted run of 1280 pages
• each merge requires 80/5X16 = 256 seeks
• for 5 sets, we have 5X256 = 1280 seeks

• merge 5 runs of 1280 pages
• read 80/5=16 pages of one run => 1280/16=80 seeks in total
• 5 runs => 5X80 = 400 seeks

CS5208 58

5 runs => 5X80 = 400 seeks

• total: 1280+400=1680 seeks!!!

• Number of passes increases, but number of seeks decreases!

30

Using B+ Trees for Sorting

• Scenario: Table to be sorted has B+ tree index on
sorting column(s).

• Idea: Can retrieve records in order by traversing leaf
pages.

• Is this a good idea?
C t id

CS5208 59

• Cases to consider:
• B+ tree is clustered -- Good idea!
• B+ tree is not clustered -- Could be a very bad idea!

Clustered B+ Tree Used for Sorting

• Cost: root to the left-most leaf, Index,
then retrieve all leaf pages
(<key,record> pair
organization)

• If <key, rid> pair organization
is used? Additional cost of

t i i d t d h

(Directs search)
Index

Data Entries
("Sequence set")

CS5208 60

retrieving data records: each
page fetched just once.

 Always better than external sorting!

Data Records

31

Unclustered B+ Tree Used for Sorting

• each data entry contains <key,rid > of a data
d I l I/O d t d!record. In general, one I/O per data record!

(Directs search)
Index

Data Entries

CS5208 61

Data Records

("Sequence set")

External Sorting vs. Unclustered Index

N Sorting p=1 p=10 p=100

100 200 100 1,000 10,000
1,000 2,000 1,000 10,000 100,000
10,000 40,000 10,000 100,000 1,000,000
100,000 600,000 100,000 1,000,000 10,000,000
1,000,000 8,000,000 1,000,000 10,000,000 100,000,000

CS5208 62

1,000,000 8,000,000 1,000,000 10,000,000 100,000,000
10,000,000 80,000,000 10,000,000 100,000,000 1,000,000,000

 p: # of records per page
 B=1,000 and block size=32 for sorting
 p=100 is the more realistic value.

32

Sorting Records!

• Sorting has become a blood sport!
• Parallel sorting is the name of the game• Parallel sorting is the name of the game ...

• Datamation: Sort 1M records of size 100 bytes
• Typical DBMS: 15 minutes
• World record: 3.5 seconds

• 12-CPU SGI machine, 96 disks, 2GB of RAM

• New benchmarks proposed:

CS5208 63

New benchmarks proposed:
• Minute Sort: How many can you sort in 1 minute?
• Dollar Sort: How many can you sort for $1.00?
• Joule Sort: How many can you sort with 1 Joule?

Summary
• External sorting is important; DBMS may dedicate part of buffer

pool for sorting!
• External merge sort minimizes disk I/O cost:

• Pass 0: Produces sorted runs of size B (# buffer pages). Subsequent
passes: merge runs.

• # of runs merged at a time depends on B, and block size.
• Larger block size means less I/O cost per page.
• Larger block size means smaller # runs merged

CS5208 64

• Larger block size means smaller # runs merged.
• In practice, # of runs rarely more than 2 or 3.

• Clustered B+ tree is good for sorting; unclustered tree is
usually very bad.

