
Multidimensional (Spatial)
Indexing

CS5208 – Spatial Indexing 1

Motivation
• Many applications of databases manipulate geographical (2-d)

data. Others involve large number of dimensions

• Examples:
– location of restaurants in a city.
– Map data: zones, county lines, rivers, lakes, etc. (Data has

spatial extent)
– Sales information described by store, day, item, color, size,

etc. Sale = point in multidimensional space.
– Student described by age, zipcode, marital status.

Applications with Multi-Dimensional Data

Types of Queries

Point Query Range Query

NN Query Spatial Join
Query

• Point queries
• Range Query: “find all

McDonald restaurants within a
given region”.

• Nearest Neighbor Query: Find
the nearest McDonald to my
house

• Partial match queries
• Spatial join (“all pairs” queries)

CS5208 – Spatial Indexing 5

Multi-attribute Indexes
• Composite Search Keys: Search on

a combination of fields.
– Equality query: Every field value is

equal to a constant value. E.g. wrt
<sal,age> index:

• age=12 & sal =75
– Range query: Some field value is not

a constant. E.g.:
• age=12 & sal > 10 (use <age, sal>)
• age < 12 & sal = 10 (use <age,sal>

may fetch more records than desired)
• Data entries in index sorted by

search key to support range queries.
– Lexicographic order, or
– Spatial order.

sue 13 75

bob
cal
joe 12

10

20
8011

12

name age sal

<sal, age>

<age, sal> <age>

<sal>

12,20
12,10

11,80

13,75

20,12

10,12

75,13
80,11

11
12
12
13

10
20
75
80

Data records
sorted by name

Data entries in index
sorted by <sal,age>

Data entries
sorted by <sal>

Examples of composite key
indexes using lexicographic order.

CS5208 – Spatial Indexing 6

Bitmap Indexes
• Bitmap indices are a special type of index designed for efficient

querying on multiple keys

• Records in a relation are assumed to be numbered sequentially

• Given a number n it must be easy to retrieve record n
(Particularly easy if records are of fixed size)

• Applicable on attributes that take on a relatively small number of
distinct values
– E.g. gender, country, state, …
– E.g. income-level (income broken up into a small number of levels

such as 0-9999, 10000-19999, 20000-50000, 50000- infinity)

• A bitmap is simply an array of bits

CS5208 – Spatial Indexing
7

Use of Bitmap Indexes: Example
• In its simplest form, a bitmap index on an attribute has a bitmap for

each value of the attribute
– Bitmap has as many bits as records
– In a bitmap for value v, the bit for a record is 1 if the record has the

value v for the attribute, and is 0 otherwise
– Size = nm bits where n is the #records, m is the #distinct values

CS5208 – Spatial Indexing 8

Bitmap Indexes (Cont.)
• Queries are answered using logical (bitwise) operations

– Intersection (and)
– Union (or)
– Complementation (not)

• Each operation takes two bitmaps of the same size and applies the
operation on corresponding bits to get the result bitmap
– Males with income level L1

• 10010 AND 10100 = 10000
• Can then retrieve required tuples
• Counting number of matching tuples is even faster

• Range queries?
– Age IN [30,40] AND Salary IN [10k,20k]

CS5208 – Spatial Indexing 9

Compressed Bitmaps
• If n and m are large, then nm bits may incur high

I/O
• Compress the bitmap – run-length encoding

– A sequence of i 0’s followed by a 1 (run) is
represented by some binary encoding of the integer i

– A number i is represented by (log2i-1) 1-bit (indicates
the number of bits required to represent i) and a
single 0, followed by its binary value

• E.g., 13 = 1101 (binary) is represented as
111 0 1101

• Exceptions: i = 0 is 00; i = 1 is 01
– Every run incurs 2 log2i bits

log13-1 13

CS5208 – Spatial Indexing 10

Compressed Bitmap (Cont.)

• Consider 0000000000000110001
– The encoded sequence is …

• Now consider 000000010000 (i.e., n = 12)
• What is the compressed bitmap?

• Decode 110111

– What about the (missing) 0’s?

CS5208 – Spatial Indexing 11

Operating on Compressed Bitmap

• Need to decode first, then perform the
bitwise operations

• But can be done incrementally
• Suppose we ORed encodings:

0 0 1 1 0 1 1 1 1 1 0 1 1 1
0

0

7

00000001

0OUTPUT:

CS5208 – Spatial Indexing 12

Operating on Compressed Bitmap

• Need to decode first, then perform the
bitwise operations

• But can be done incrementally
• Suppose we ORed encodings:

0 0 1 1 0 1 1 1 1 1 0 1 1 1
0 7

0

7

0000000100000001

0 0 0 0 0 0 0 1OUTPUT:

CS5208 – Spatial Indexing 13

Operating on Compressed Bitmap

• Need to decode first, then perform the
bitwise operations

• But can be done incrementally
• Suppose we ORed encodings:

0 0 1 1 0 1 1 1 1 1 0 1 1 1
0 7

0

7

0000000100000001

0 0 0 0 0 0 0 1 1OUTPUT:

Why spatial index methods (SAMs)?
• B-tree & hash tables

– Guarantee the number of I/O operations is
respectively logarithmic and constant with respect
to the collection’s size

– Index a collection on a key
– Rely on a total order on the key domain, the order

of natural numbers, or the lexicographic order on
strings

• There is no such total order for
multidimensional objects and geometric
objects with spatial extent

• SAMs were designed to try as much as
possible to preserve spatial object proximity

CS5208 – Spatial Indexing 14

Multidimensional Indexing Structures

• Space-Based structures:
– Partition the embedding Space into rectangular cells
– Independent from the distribution of the objects
– Objects are mapped to the cells based on some geometric criterion
– Eg: Grid file, Buddy-tree, KDB-tree

• Data-Based structures:
– Organize by partitioning the set of objects based on spatial

proximity such that each group can fit into a page
– Adapt to the objects’ distribution
– Eg. R-tree, R* tree, R+ tree

• Mapping
– Transform the data into lower dimensional space
– E.g., space filling curve

CS5208 – Spatial Indexing 15

Grid File: A Space-based Approach

• Start with one bucket
for the whole space.

• Select dividers along
each dimension.
Partition space into
cells

• Dividers cut all the
way

CS5208 – Spatial Indexing 16

Grid File

• Each cell corresponds
to 1 disk page.

• Many cells can point
to the same page.

• Cell directory
potentially exponential
in the number of
dimensions

CS5208 – Spatial Indexing 17

Grid File Implementation

• Dynamic structure using a grid directory
– Grid array: a 2 dimensional array with

pointers to buckets (this array can be large,
disk resident) G(0,…, nx-1, 0, …, ny-1)

– Linear scales: Two 1 dimensional arrays that
used to access the grid array (main memory)
X(0, …, nx-1), Y(0, …, ny-1)

CS5208 – Spatial Indexing 18

Example

Linear scale X

Linear scale

Y

Grid Directory

Buckets/Disk Blocks

CS5208 – Spatial Indexing 19

Grid File Search
• Exact Match Search: at most 2 I/Os assuming linear scales fit in

memory.
– First use linear scales to determine the index into the cell directory
– access the cell directory to retrieve the bucket address (may cause 1 I/O if cell

directory does not fit in memory)
– access the appropriate bucket (1 I/O)

• Range Queries:
– use linear scales to determine the index into the cell directory.
– Access the cell directory to retrieve the bucket addresses of buckets to visit.
– Access the buckets.

• Nearest Neighbor Queries:
– Search the bucket corresponding to the cell in which the query point P belongs
– If we find at least one point, we have a candidate Q for the NN
– However, it is possible that there are points in adjacent buckets that are closer

to P than Q is; in this case, we need to search these buckets.

CS5208 – Spatial Indexing 20

Grid File Insertions

• Determine the bucket into which insertion must occur.
• If space in bucket, insert.
• Else, split bucket (alternatively: use overflow buckets?)

– how to choose a good dimension to split?
– ans: create convex regions for buckets.

• If bucket split causes a cell directory to split do so and
adjust linear scales.
– When does the cell directory not split?

• insertion of these new entries potentially requires a
complete reorganization of the cell directory---
expensive!!!

CS5208 – Spatial Indexing 21

Grid File Deletions

• Deletions may decrease the space utilization.
Merge buckets

• We need to decide which cells to merge and
a merging threshold

• Buddy system and neighbor system
– A bucket can merge with only one buddy in each

dimension
– Merge adjacent regions if the result is a rectangle

CS5208 – Spatial Indexing 22

CS5208 – Spatial Indexing 23

R-Trees: A Data-based Approach

• R-trees
• N-dimensional extension of B+-trees

• Height-balanced, all leaf nodes appear at the same level, each
node has between t and M entries

• useful for indexing sets of points, rectangles and other
polygons.

• Basic idea: generalize the notion of a one-dimensional
interval associated with each B+ -tree node to an
N-dimensional interval, that is, an N-dimensional
rectangle.

• Will consider only the two-dimensional case (N = 2)
• generalization for N > 2 is straightforward

CS5208 – Spatial Indexing 24

Note that we only need two points to describe an MBR, we typically use
lower left, and upper right.

MBR = {(L.x,L.y)(U.x,U.y)}

Bounding Rectangle
• Suppose we have a cluster of points in 2-D space...

– We can build a “box” around points. The smallest box (which is
axis parallel) that contains all the points is called a Minimum
Bounding Rectangle (MBR)
• also known as minimum bounding box

CS5208 – Spatial Indexing 25

R-Tree: Clustering by Proximity

20 4 6 8 10

2

4

6

8

10

x axis

y axis

b

c

aE3

a b c d e

E1 E2

E3 E4 E5

Root

E1 E2

E3
E4

f g h

E5

d

e f

g h

i j

k
l

m

l m

E7

i j k

E6

E6 E7

Minimum Bounding Rectangle (MBR)

CS5208 – Spatial Indexing 26

R-Tree

20 4 6 8 10

2

4

6

8

10

x axis

y axis

b

c

aE3

d

e f

g h

i j

k
l

m

E4

E5
E6

E7

a b c d e

E1 E2

E3 E4 E5

Root

E1 E2

E3 E4

f g h

E5

l m

E7

i j k

E6

E6 E7

27

R-Tree

20 4 6 8 10

2

4

6

8

10

x axis

y axis

b

c

a

E1d

e f

g h

i j

k
l

m

E2

a b c d e

E1 E2

E3 E4 E5

Root

E1 E2

E3
E4

f g h

E5

l m

E7

i j k

E6

E6 E7

28

R-Tree

20 4 6 8 10

2

4

6

8

10

x axis

y axis

b

c

a

E1d

e f

g h

i j

k
l

m

E2

a b c d e

E1 E2

E3 E4 E5

Root

E1 E2

E3 E4

f g h

E5

l m

E7

i j k

E6

E6 E7

CS5208 – Spatial Indexing 29

R Trees (Cont.)
A rectangular bounding box (a.k.a. MBR) is

associated with each tree node.
Bounding box of a leaf node is a minimum sized
rectangle that contains all the points associated
with the leaf node.
The bounding box associated with a non-leaf
node contains the bounding box associated with
all its children.
Bounding box of a node serves as its key in its
parent node (if any)
Bounding boxes of children of a node are allowed
to overlap

CS5208 – Spatial Indexing

R-Tree structure
• leaf entry = <object>

– An object may have extent.
• index entry = <MBR, ptr to child node>

– MBR of all objects in the subtree.

• Observation: if range query, Q, does not intersect
an MBR, no object in the sub-tree is inside Q.

QMBR

30

CS5208 – Spatial Indexing

Range query

Start at root.
1. If current node is non-leaf, for each

entry <E, ptr>, if box E overlaps Q,
search subtree identified by ptr.

2. If current node is leaf, for every object in
the leaf page, report if contained in Q.

Can be very inefficient in worst case since multiple
paths may need to be searched but works
acceptably in practice.

31

Range Query: Given a query box Q, find all points enclosed by Q

32

Range Query

20 4 6 8 10

2

4

6

8

10

x axis

y axis

b

c

a

E1d

e f

g h

i j

k
l

m

E2

a b c d e

E1 E2

E3 E4 E5

Root

E1 E2

E3 E4

f g h

E5

l m

E7

i j k

E6

E6 E7

33

Range Query

20 4 6 8 10

2

4

6

8

10

x axis

y axis

b

c

a

E1d

e f

g h

i j

k
l

m

E2

a b c d e

E1 E2

E3 E4 E5

Root

E1 E2

E3 E4

f g h

E5

l m

E7

i j k

E6

E6 E7

CS5208 – Spatial Indexing

Insert object o

• Start at root and go down to “best-fit” leaf L.
– Go to child whose box needs least enlargement to

cover o; resolve ties by going to smallest area child.
• If best-fit leaf L has space, insert entry, adjust

bounding boxes starting from the leaf upwards
• Otherwise, split L into L1 and L2.

– Adjust entry for L in its parent so that the box now
covers (only) L1.

– Add an entry (in the parent node of L) for L2. (This
could cause the parent node to recursively split.)

34

35

E.g. 1: no split, no enlargement

20 4 6 8 10

2

4

6

8

10

x axis

y axis

b

c

a

E1d

e f

g h

i j

k
l

m

E2

a b c d e

E1 E2

E3 E4 E5

Root

E1 E2

E3 E4

f g h

E5

l m

E7

i j k

E6

E6 E7

insert o

o

36

E.g. 2: no split, but enlargement

20 4 6 8 10

2

4

6

8

10

x axis

y axis

b

c

a

E1d

e f

g h

i j

k
l

m

E2

a b c d e

E1 E2

E3 E4 E5

Root

E1 E2

E3 E4

f g h

E5

l m

E7

i j k

E6

E6 E7

insert o

o

37

E.g. 2: no split, but enlargement

20 4 6 8 10

2

4

6

8

10

x axis

y axis

b

c

a

E1d

e f

g h

i j

k
l

m

E’2

a b c d e

E1 E’2

E3 E4 E5

Root

E1 E’2

E3 E4

f g h

E5

l m

E7

i j k

E6

E6 E’7

insert o

o

CS5208 – Spatial Indexing

Insert object o

• Start at root and go down to “best-fit” leaf L.
– Go to child whose box needs least enlargement to

cover o; resolve ties by going to smallest area child.
• If best-fit leaf L has space, insert entry, adjust

bounding boxes starting from the leaf upwards
• Otherwise, split L into L1 and L2.

– Adjust entry for L in its parent so that the box now
covers (only) L1.

– Add an entry (in the parent node of L) for L2. (This
could cause the parent node to recursively split.)

38

39

E.g. 3: split

20 4 6 8 10

2

4

6

8

10

x axis

y axis

b

c

a

E1d

e f

g h

i j

k
l

m

E2

a b c d e

E1 E2

E3 E4 E5

Root

E1 E2

E3 E4

f g h

E5

l m

E7

i j k

E6

E6 E7

insert o

o

40

E.g. 3: split

20 4 6 8 10

2

4

6

8

10

x axis

y axis

b

c

a

E1d

e f

g h

i j

k
l

m

E2

a b c d e

E1 E2

E3 E4 E5

Root

E1 E2

E3 E4

f g h

E5

l m

E7

i o j

E6

E6 E7

k

o

E’6

CS5208 – Spatial Indexing

Splitting a Node During Insertion
• The entries in node L plus the newly inserted

entry must be distributed between L1 and L2.
• Goal is to reduce likelihood of both L1 and L2

being searched on subsequent queries.
• Idea: Redistribute so as to minimize area of L1

plus area of L2.

Exhaustive algorithm is too slow;
quadratic and linear heuristics are
described in the paper.

41

CS5208 – Spatial Indexing 42

Quadratic Split
• Quadratic split divides the entries in a node into two new nodes

as follows
1. Find pair of entries with “maximum separation”

• that is, the pair such that the bounding box of the two
would have the maximum wasted space (area of
bounding box – sum of areas of two entries)

2. Place these entries in two new nodes
3. Repeatedly find an entry and assign it to one of the nodes

• Calculate d1 = the area increase required in the MBR of one node to
include the entry. Calculate d2 analogously for the other node

• Choose the entry with the maximum difference between d1 and d2
• Add It to the node whose MBR will have to be enlarged least to

accommodate It. Resolve ties by adding the entry to the node with the
smallest area, then to the one with the fewer entries, then to either

4. Stop when half the entries have been added to one node
• Then assign remaining entries to the other node

Node Splitting RNode Splitting R--treestrees

CS5208 – Spatial Indexing 43

Node Splitting RNode Splitting R--treestrees

CS5208 – Spatial Indexing 44

CS5208 – Spatial Indexing 45

Deleting in R-Trees

• Deletion of an entry in an R-tree done
much like a B+-tree deletion.
– In case of underfull node, borrow entries from

a sibling if possible, else merging sibling
nodes

– Alternative approach removes all entries from
the underfull node, deletes the node, then
reinserts all entries

NN search: Best-First Algorithm

• Global order
– Use only MINDIST
– Maintain distance to all entries in a common Priority

Queue
– Repeat

• Inspect the next MBR in the list
• Add the children to the list and reorder

– Until all remaining MBRs can be pruned

CS5208 – Spatial Indexing 46

MINDIST
• MINDIST(P, R) is the minimum distance between a point

P and a rectangle R
• If the point is inside R, then MINDIST=0
• If P is outside of R, MINDIST is the distance of P to the

closest point of R (one point of the perimeter)

ri = li if pi < li
= ui if pi > ui
= pi otherwise

p
p

p

R

l

u

MINDIST = 0

∑
=

−=
d

i
ii rpRPMINDIST

1

2)(),(

l=(l1, l2, …, ld)

u=(u1, u2, …, ud)

),(),(, oPRPMINDISTRo ≤∈∀
CS5208 – Spatial Indexing 47

Nearest Neighbor Search (NN) with R-Trees

E

20 4 6 8 10

2

4

6

8

10

x axis

y axis

b

E f

query point

omitted

1 E2e

d

c

a

h

g

E3

E5

E6

E4

E7

8

search
region

contents

E9
i

E 11 E 22Visit Root

E 137

follow E1 E 22
E 54 E 55 E 83 E 96

E 83

Action Heap

follow E2 E 28
E 54 E 55 E 83 E 96

follow E8

Report h and terminate

E 179
E 137E 54 E 55 E 83 E 96

E 179

Result
{empty}
{empty}
{empty}
{(h, 2)}

a
5

b
13

c
18

d
13

e
13

f
10

h
2

g
13

E1
1

E2
2

E3
8

E4
5

E5
5

E6
9

E7
13

E8
2

Root

E9
17

i
10

E1
E2

E4 E5
E8

i 10E 54 E 55 E 83 E 96
E 137

g
13

CS5208 – Spatial Indexing 48

The NN Search Algorithm

Initialize PQ (priority queue)
InesrtQueue(PQ, Root)
While not IsEmpty(PQ)

R= Dequeue(PQ)
If R is an object

Report R and exit (done!)
If R is a leaf page node

For each O in R, compute the Actual-Dists, InsertQueue(PQ, O)
If R is an index node

For each MBR C, compute MINDIST, insert into PQ

CS5208 – Spatial Indexing 49

K-NN search

• Keep the sorted buffer of at most k current nearest
neighbors

• Pruning is done using the k-th distance

CS5208 – Spatial Indexing 50

Space Filling Curves: Mapping Based Methods

• Assumption: att. values can be
represented with some fixed # of bits

• Space domain on each dimension: 2k

values
• Linearize the domain
• Each point can be represented by a single

dimensional value

CS5208 – Spatial Indexing 51

Z-ordering

00 01 10 11
00

01

10

11

CS5208 – Spatial Indexing 52

Z-ordering
• The z-value is obtained by interleaving the bits

CS5208 – Spatial Indexing 53

Z-ordering
• z-values can be indexed using B+-trees

– All commercial systems support B+-tree (no
coding/debugging, concurrency and recovery support,
etc)

CS5208 – Spatial Indexing 54

• Point queries: e.g., find city at (0,3)
• Find z-value; search B-tree

Z-ordering

CS5208 – Spatial Indexing 55

• Range queries?
• Compute ranges of z-values; use B-tree

Z-ordering

CS5208 – Spatial Indexing 56

Z-ordering
• Range queries?
• Compute ranges of z-values; use B-tree
• To reduce # of qualifying of ranges: Augment the query
• What’s the overhead?

CS5208 – Spatial Indexing 57

• Range queries - how to break a query into ranges?
• Recursively, quadtree-style; decompose only

non-full quadrants

Z-ordering

CS5208 – Spatial Indexing 58

• k-nn queries, e.g., 1-nn:
• Traverse B-tree; find nn wrt z-values and …

Z-ordering

ask a range query.

CS5208 – Spatial Indexing 59

Summary

• Many applications operate on multi-
dimensional data

• Advanced techniques are required
• Paradigm

– Space-partitioning
– Data-partitioning
– Mapping

CS5208 – Spatial Indexing 60

