On Saying“Enough Alr eady!” in SQL

MichaelJ. Carg

DonaldKossmanh

IBM AlmadenResearciCenter
SanJoseCA 95120
carey@almaden.ibm.corkpssmann@dbmi.uni-passau.de

Abstract

In this paper we studya simpleSQL extensionthat enablesquery
writers to explicitly limit the cadinality of a query result. We

examineits impacton thequeryoptimizationandrun-timeexecution
component®f a relational DBMS, presentingtwo approathes—a
Conservativeappmoacd and an Aggressiveapproac—to exploiting

cardinality limits in relational queryplans. Resultsobtainedfrom

an empirical study conductedusing DB2 demonsiate the benefits
of the SQL extensionand illustrate the tradeofs betweenour two

approadesto implementingt.

1 Intr oduction

TheSQL-92querylanguagencludessupporfor awiderange
of relationalqueryoperationsincludingselectionprojection,
mary flavors of joins, unions,sorting,aggreation,grouping,
andsubquerieMS93). In addition,SQL continuego evolve,
with extensionssuch as the object featuresof SQL3 and
the control constructsof SQL/PSM.Surprisingly despiteits
impressie query power, SQL providesno way to specifya
limit onaquerysresultcardinality—sahereis nodeclaratve
way for a SQL querywriter to say“enoughalready!” As a
result,applicationprogramghatwishto poseaqueryandthen
processat mostsomenumber(N) of its resulttuplesmustdo
S0, using a cursor by submittingthe entire query and then
fetchingonly its first N results.

There are two relational databasesystemtrendsthat, in
our view, will soonproducea strong needfor declaratve
supportfor querycardinalitylimits. Onetrendis their current
evolution into object-relationaldatabasesystems[Sto9§
and their use for managing multimedia data types such
as text and images. Multimedia predicatesoften involve
approximatematching(i.e., matchingwith a goodness-of-
match measure),as in “show me the ten imagesin the
databas#hatlook themostlik e thisexample”[Fag96 CG94.
This is a clear casewhere ranked results and cardinality
limits are needed. Another trend is the increasinguse of
relationaldatabasei decision-suppornddatawarehousing
environments.Rankingandcardinalitylimits arecommonly
neededby businessanalysts[KS95], asin “show me last

*CurrentaddressUniversity of Passau94030PassauGermary

weeksgrossrentalincomefrom thetenmostpopularvideos”

In this paper we extend SQL with explicit supportfor
limiting the cardinality of a queryresultto a userspecified
numberof tuples.While a cursorbasedapproachs sufficient
to limit the resultsize at the applicationlevel, in mostcases
it fails to limit the work done by the databaseengine—
leadingto potentiallylong responsdimes, large amountsof
wastedwork, and a correspondingeductionin the amount
of processingcapacitythat the databaseengine can make
available for other concurrentqueries. After suggesting
this simple SQL extension,we shav how to incorporatethe
knowledgeit providesinto the queryoptimizerand runtime
gueryexecutionsubsystenof a typical relationalDBMS. In
addition, we presentexperimentsusing an actualrelational
DBMS (DB2) thatquantifythe potentialperformanceyains.

Theremaindeof this papelis organizedasfollows: Section
2 presentsghe SQL extensionand providesseveral examples
to illustrateits usefulnessSection3 discusseshe querypro-
cessingimplicationsof the extension,proposingtwo imple-
mentationstratgies—aconsenrative stratgly andan aggres-
sive stratgy—for exploiting querycardinalityspecifications.
Sectiord outlinesour approacho evaluatingtheperformance
of thedifferentstratgies,which involvesrunningbenchmark
gueriesagainstsyntheticdatabaseandSections appliesthis
approachio DB2. Section6 discusseselatedwork, including
the“optimize for earlyresults"featurefoundin currentcom-
mercialqueryoptimizers.Section7 present®ur conclusions
andplansfor futurework.

2 Extending SQL

The specificationof a cardinality limit for a query can
be supportedby extending the syntax of SQLs SELECT
statemen{C*+95, CG94. In this paper we will do so by
addingaSTOP AFTER clauseasanoptionalsufix, i.e.:

SELECT ... FROM... VWHERE ...
GROUP BY ... HAVING...

ORDER BY é{sort specification |ist)
STOP AFTER (val ue expressi on)

An SQL <val ue expression> is ary expressionthat
evaluatesto an atomic value; it may be a constant, a
computationof somesort, or even a subquery]MS93]. In
a STOP AFTER clause,the expressionmust evaluateto an
integer value that specifiesthe maximum numberof result
tuplesdesired. In addition, the <val ue expr essi on>
mustbeuncorrelatedwith theremaindef thequeryin order
to ensurghatthe query's semanticarewell-defined.

The semanticof a STOP AFTER query are straightfor
ward to explain operationally: after doing everything else
specifiedby the query retain only the first N result tuples
(whereN is theintegerthat<val ue expressi on> eval-
uatesto). In caseswheretheresultof the queryis totally or-
deredby theinclusionof anORDER BY clause pnly thefirst
N tuplesin this orderingarereturnedo thequery'suseror ap-
plicationprogram.Iln casesvherethe particularN-tupleresult
setis not completelydefined,dueto duplicatevaluesfor the
ORDER BY attribute(s),the choiceof which of the candidate
setsof N tupleswill bereturneds left unspecifiedIf thereis
a STOP AFTER clausebut no ORDER BY clausethenany
N tuplesthat satisfythe restof the queryis consideredo be
avalid result. Finally, if therearefewerthanN tuplesin the
result,thenthe STOP AFTER clausehasno effect. These
STOP AFTERsemanticyield thesameresultsasthe cursor
basedapproactusedby applicationgoday

In addition, we proposeto eliminate some of SQLs
restrictionsconcerningORDER BY clausesFirst, we suggest
eliminating SQLs restrictionof requiringa query’s ORDER
BY column(s)to alsoappeaiin its SELECT list.! Secondwe

suggesallowing ORDER BY clausego appeatn subqueries,

as they becomemeaningfulin subquerieghat also have a
STOP AFTER clause. Both of theseextensionsaretrivial,
and their usefulnessfor STOP AFTER queriesshould be
apparentrom thefollowing examples.

2.1 Example SELECT Queries

To illustrate the usefulnessof having the STOP AFTER
clauseaswell asillustratingits generality let us considera
few examplequerieshatit enables.

Example 1. Spatial Data Consideran object-relational
travel database. Supposethe locations of various travel-

relatedobjectsarekepttrack of usingl ocat i on attributes,
which are of a userdefinedPoi nt datatype, and suppose
thatthe Poi nt type hasa distancefunctionthatreturnsthe

distancebetweertwo points. We canthenfind thefive hotels
closesto the O’'Hareairportasfollows:

SELECT h. nane, h. address,
FROM Hotel s h, Airports a
VWHERE a. nanme = "O Hare"
ORDER BY di stance(h. | ocati on,
STOP AFTER 5;

h. phone

a.location)

Example 2: Decision-SupportData Now considera busi-
nessdatabaseontainingproductsalesdata. We canfind the
top 10% of the softwareproductsin termsof grosssalesrev-
enuesasfollows:

SELECT p. name, s. %ross
FROM Products P, al es s
WHERE p.type = "Software"
AND p. prod_.num = s. prod_num
CRDER BY s. gross DESC
STOP AFTER (SELECT count (*) / 10

FROM Pr oduct s P

WHERE p.type = "Software")

!In fact,somecommerciabystemsalreadysupportthis extension.

2.2 What About Updates?

Extendingthe SQL SELECT statementvith aSTOP AFTER
clause also makes it possible, without modifying SQLs
I NSERT, UPDATE, or DELETE statementsto expressa
variety of interestingupdatesaswell. This is shovn by the
following exampleinvolving a databasef informationabout
basebalplayers.

Example 3: An Update We cangive a50% pay cutto the
threeworstbattersasfollows:

UPDATE Pl ayers
SET sal ar

5 * salary
WHERE i d

0.

YN (SELECT p.id
FROM Pl ayers p
CORDER BY

batti ng_avg
STOP AFTEE&

2.3 Implications

Clearly, it is nothardto extendSQL to allow usergo specifya

limit ontheresultsizeof aquery andanumberof interesting
gueriesand updateshecomeexpressible. The advantageof

extendingSQL is thatit providesinformationthatthe DBMS

can exploit during query optimizationand execution. The

challenge,addressedn the next section,is to find waysto

exploit this information—waysthat are effective, yet require
asfew optimizerandruntimesystemchangesspossible.

3 ProcessingSTOP AFTER Queries

Oneapproachtio handlingapplicationsvhereaSTOP AFTER
clauseis neededs to do so with little or no changeto the
databasengine.This canbe doneexternally asis generally
donetoday or it canbe doneby addinga very thin additional
qgueryprocessindayer to the engine. This layer could strip
off the STOP AFTER clauseandexecuteit (if necessary)o
computethedesiredstoppingcardinality;it couldthensubmit
the remainderof the queryto the engine,fetch resultsusing
the systems cursorinterfaceuntil the desirednumberof tu-
pleshave beenreturnedio the user andthenclosethe cursor
As we will seelater, hawever, both the “external” and “thin
layer” approachesniss opportunitiesfor major performance
improvementghat canbe obtainedby makinguseof the de-
siredcardinalitylimits in the databasengine.

In this section,we presenta betteralternatve—extending
the relational databaseengine to understandand process
STOP AFTER queries. We will first describea new query
operator called Stop this operatorencapsulatethe STOP
AFTER functionalitysothatotheroperatorssuchasSortand
Join,neednot be changedandcanbe usedin STOP AFTER
gueriegjust asin other SQL queries.Then,we will describe
two extremeheuristicso placeStopoperatorsn queryplans:
Conserative and Aggressie. At the endof the section,we
will describenow Stopoperatorsaandthesetwo heuristicscan
be integratedinto an existing dynamic-programmindpased
optimizer Throughoutthe section,we will focuson STOP
AFTER query processingn the presenceof an ORDER BY
clausebecauseave expectthis to be the mostcommoncase

in practice; STOP AFTER querieswithout an ORDER BY
clausecanbe processedh a very similar way. Furthermore,
we will focuson STOP AFTER querieswith only onequery
block; we will explore techniquesto processquerieswith
more than one query block (e.g., queriesagainstviews or
querieswith subqueriesin futurework.

3.1 The Stop Operator

TheStopoperatoiis anew logicalqueryoperatorjt produces,
in order, thetop or bottomN tuplesof its input stream.The
Stop operatorrequiresthree parameterdo be provided at
queryinitialization time. Thefirst is N, the desirednumber
of resulttuples.Theseconds a Sort Dir ective, whichwill be
oneof threevalues:des¢ asg or none If the sortdirective
is desc(asq, the Stop operatorsortsits input streamand
returnsthe top (bottom) N tuplesin descendindascending)
order If the sortdirective is none the Stopoperatorsimply
returnghefirst N tuplesfromitsinputstreamthenoneoption
is chosenby the optimizer when the Stop operators input
streamis known to alreadybe appropriatelysorted.The third
parameteto Stopis a Sort Expression If the sortdirective
is descor asg the Stopoperatorsortsits input accordingto
this sortexpressionwhichis usuallyidenticalto theordering
expressiorfrom the ORDER BY clauseof thequery

Like otherlogical operatorqe.g.,Join), the Stop operator
canhave morethanone physicaloperatorthat is capableof
implementingt in a queryplan. Clearly, theimplementation
of the Stop operatorshouldat leastbe dependenbn its sort
directive. Accordingly, we definetwo differentphysicalStop
operatordiere:Scan-Stopfor whenthesortdirectiveis none
andSort-Stopfor whenthe sortdirective is descor asc We
now discussa possibleimplementatioranda costmodel(for
theoptimizersuse)for eachone.

3.1.1 Scan-Stop

The Scan-Stoperatoris extremelysimple. Scan-Stops a
pipelinedoperatorthat simply requestsaindthenpasse®ach
of thefirst NV tuplesof its input streamon to its consumer
(i.e., to the operatorabove it in the query plan), after which
it closesdown its input streamandreturnsan end-of-stream
indicatorto its consumer As a result, the costof the Scan-
Stopoperatoiitself is negligible, andthe total costof a query
subplanrootedat a Scan-Stopperatoris dominatedby the
costrequiredto producethefirst N tuplesof its input stream.
In a state-of-the-artelational DBMS, the query optimizers
cost model provides estimatedor the total cardinality of a
plan’s output (ALL), the costto producethe first tuple of a
plan’s output(cost, (1)), andthe costto produceALL output
tuples(cost,(ALL)). Givenestimatedor thesequantitiesfor
the subplanthatgenerateshe input streamfor the Scan-Stop
operatoytheoptimizercanestimatehecost,cost (IV), for the
wholeplanrootedat the Scan-Stop¥V) operatorasfollows:

cost(N) = cosp(1) + (cosp(ALL) — cosp (1)) * % @)

This estimateassumeghat the tuplesafter the first one are
generatedmoothlyby the subplanthat feedsinto the Scan-
Stopoperatori.e.,thatcost, (k + 1) — cosy, (k) is moreor less
constanfor 1 < k£ < ALL. Also, it assumeshatN < ALL
(sincefor N > ALL, cost(N) = cost(ALL)).

Thenatureof Equationl impliesthattheoptimizeris likely
to favor pipelinedqueryplans(e.g.,queryplanswith nested-
loop join operators¥or STOP AFTER queries,particularly
when the cardinality limit N is small. This is because
pipelinedexecutionplansquickly producetheirfirst row (i.e.,
cosi(1) =~ 0); therefore,the relative cost of the STOP
AFTER query will be proportionalto its cardinality limit
N. In contrast,if the Scan-Stopoperators input streamis
producedy apipeline-breakingubplane.g.,onewith asort-
metge join in it), thenthe costto produceN tupleswill be
almostthe sameasthecostto produceALL tuples.

3.1.2 Sort-Stop

If theinput of a (logical) Stopoperatoris not alreadysorted,
then the Stop operatormust consumeand sort its whole
input to producethe top or bottom N output tuples. For

relatively small N (which we expectto be the mostcommon
case),the sorting can be carriedout in main memoryusing
a priority heap[Knu73]. The first N tuplesconsumedby

the Sort-Stopoperatorcan be insertedinto a priority heap,
andthe remainingtuplescanthenbe testedwith the heaps
membershipbound to determinewhetheror not the newv

tuple’s valuewarrantsits insertioninto the heap. The costof

producingN resultswith thisimplementatiorof the Sort-Stop
operatorhasthe following threecomponents(1) the costof

generatinghe whole input streamfor the Sort-Stopoperator
(cosp(ALL)), (2) the costof testingALL —N tuplesagainst
the heaps membershippounds((ALL — N) x C, whereC

is the costof a comparison)and (3) the costof insertingi

qualifying tuplesinto a heapwith atmostN elementgwhere
1 is estimatedbelow). In all, the resultingplan costcanbe
estimatedas shavn in Equation2; again,we assumeN <

ALL, asfor N > ALL, cost(N) = cost(ALL).

cost(N) = cosp,(ALL) + (ALL — N) «C +ixlog(N) (2)
Assumingrandomlyordereddata,; canbeestimateds:

N

N
i=N+——t

N +2

N

+.. .+m = (HALL —HN+1)*N

3

(Here,H;, denoteghek-th harmonicnumberKnu73].)

Again, this cost estimateassumeghat N is small and
that a heapof N tupleswill fit in memory For larger NV,
external sorting is required. Although Sort-Stops specific
requirementsnvite the designof a specializedexternal Sort-
Stopalgorithm,we will not discusssuchan algorithmhere.
Insteadwe will assume Sort-Stopimplementatiorthatuses
an ordinary external Sort operatorin conjunctionwith the
Scan-StomperatowhenN is large.

3.2 The Consewative Policy

We now turn to the questionof where Stop operatorshould
be placedin a queryplan. Stopoperatomplacemeninvolves
a fundamentatradeof: On onehand,a deeplyplacedStop
operatorwill cutdown the size of intermediateresultsearly,

thusreducingthe costof operatorsiigherup in the plan. On

theotherhand,it is possiblefor adeeplyplacedStopoperator
to eliminatetoo mary tuplesof an intermediateresult; this

situationmustthenbe trappedat run-time,andthe execution
of the query must be restartedto producethe remaining
(missing)tuplesof thequeryresult.

An idealoptimizerwould weightherisk andcostof restarts
againstthe benefitsof deepStopoperatorplacement.How-
ever, currentoptimizershave no notion of risk. We therefore
proposethe useof a heuristicStopopemtor placementol-
icy to assistthe optimizerin placingStopoperatorsn a plan.
In this subsectionwe will presentthe Conservativepolicy,
which completelyavoids restartshy restrictingStopoperator
placemento “provably safe”locationsin a plan. In the next
subsectionwe will presenthe Aggressivepolicy, whichdoes
permitthe placemenbf Stopoperatorsat unsafeplaces.

3.2.1 Consewative Stop Placement

The Conserative policy introducesStop operationsas early
aspossiblein a plan,subjectto the following principle which
makessurethatunderno circumstancesestartsarerequired:

ConservativeéstopPlacemen®rinciple: Never insert
a Stopoperatorat a pointin a planwhereits presence
cancauseuplesto be discardedhatmay berequired
to composdherequestedN tuplesof the queryresult.

Intuitively, a Stopoperatorcanbe appliedto a tuple streamif

everytuplein thatstreanis guaranteetb generatatleastone
tuple of the overall queryresult. During queryoptimization,
this condition can be testedfor a tuple streamproducedby
a subplanby (i) inspectingthe query predicateghat remain
to be appliedfollowing the subplan(to completethe query),
and(ii) examiningtheintegrity constraintsnvolving columns
that participatein theseremainingpredicates.The condition
is satisfiedfor the subplan$ output streamif eachof the
remainingpredicatess non-reductive definedasfollows:

1. the predicateis of the form z = y, wherez is an
expressioncomputablefrom the streamand y is an
expressioninvolving one or moretablesyet to be added
totheplan,and

2. it canbeinferredfrom the databaséntegrity constraints
that (i) z cannotbe null, and (ii) for eachz theremust
exist atleastoney suchthatz = y holds.

For example,if z is a columnwith a NOT NULL constraint,
andthedatabasbasareferentiaintegrity constraindeclaring
that z is a foreign key that referencesa table yet to be
joined whosekey is y, thenthesecriteria are met—making
z = y anon-reductie predicate. In the caseof outerjoin

predicatesthe two conditionscanberelaxed because tuple
from the outer relation survives even if no matchingtuple
from the innerrelationexists. In the caseof GROUP BY or
DI STI NCT queries,if the groupingoperation(or duplicate
elimination)remainsto be done,a similar setof rulescanbe
derived. In this case,the tuple streammustbe functionally
dependentntheGROUP BY (or DI STI NCT) column(s)and
arny HAVI NGpredicatesnustalsosatisfytheconditionsabove
so that all groupswill survive. Naturally, the Conserative
Stop insertion conditionswill always hold at the root of a
planfor the whole querybecauseo predicategsemainto be
appliedat thatpoint. In all casesthe Stopoperatorinserted
will have a cardinalityparametepf N, whereN is thevalue
specifiedn theSTOP AFTER clause.

3.2.2 Consewative Plan Examples

Considerthe following databasdor managinga compary’s
employees,departmentsand employees’ travel expenseac-
counts(TEAS):

Emp(empldname salary worksin, teaNg
Dept(dng name budget,function,description)
TEA(accountNoexpensesgcomments)

The underlinedcolumnsare the primary keys for the tables,
while the italicized columns(wor ks_i n, t eaNo) arefor-
eign keys. In additionto key and referentialintegrity con-
straints,we assumethat the databaséhas an integrity con-
straintto enforcethe factthat every employee mustwork in
a departmentj.e., Enp. wor ks_i n is NOT NULL. Finally,
we assumehatnotall employeestravel, sothe corresponding
specificatiorfor Enp. t eaNo would sayNULL ALLOWED.

Figure 1 shows three STOP AFTER queries,with corre-
spondingquery executionplans,to shov how Consenrative
Stop placementworks. In Query 1, a Stopoperatorcanbe
placedbeneattihejoin onthe Enp side(i.e.,justaboseascan
of the Enp table). This is permittedbecauses. wor ks_i n
= d. dno is anon-reductie predicate.In contrastjn Query
2, the placemenbf a Stop operatorwill be forbiddenat that
point in the plan, astwo predicatesemain: e. wor ks_i n
= d. dno andd. functi on = ' Resear ch’. Thelatter
predicateis not non-reductie: If the Enp tuple streamwere
reducedo the 10 highestpaid employeesbeforethejoin, the
guerycould comeup short,asjoining thoseemployeeswith
only researchiepartmentsouldeliminatemary of them? Fi-
nally, in Query3, which asksfor the bottom 10 tuplesby de-
partmentabudgetratherthanthe top 10 by employeesalary
the Stopoperatomustagainbe placedabove, ratherthanbe-
low, the join. In this case,the join predicateitself is non-
reductive, as our integrity constraintsprovide no guarantee
thatevery departmenhasatleastoneemployee.

To completeour discussiorof the Consenrative approach,
we needto raiseone subtlepoint that we have glossedover
up to now. Evenif ajoin predicatesatisfiesthe criteria for
beingnon-reductie, it is possiblethatthejoin mayreducehe

2Lou Gerstnerfor example,is notanIBM researcher!

SELECT =*

FROM Enp e, Dept d

VWHERE e. works_in = d.dno

ORDER BY e.sal ary DESC
STOP AFTER 10;

Join

ped

Stop(10)

Emp
Queryl & Planl

Dept

o
°
~—
g

d. dno

Stop(10)

Join
/

Emp Dept
Query2 & Plan2

Resear ch’
DESC

VWH
ORDER BY d. budget
STOP AFTER 10;

Query3 & Plan3

Figurel: ExampleQueriesandConserative Plans

cardinalityof theinputstreanin question—thisanhapperif,
andonly if, theto-be-joinedableis empty in which casesven
a Cartesianproductwith this table will reducethe stream$
cardinality (to zero). While true, this doesnot invalidateour
specificatiorof the Conserative approachasthequeryresult
is itself emptyin this case—s@runingthe tuple streamwill
not causerequiredtuplesto be erroneoushdiscarded.

3.3 The Aggressve Policy

The Conserative policy hasseveral advantagesits Stopop-
eratorssimply take their valueof N from the STOP AFTER
clauseandConserative executionplansareastraightforvard
extensionof regular plans(with Stopsaddedin strategic but
safeplaces).It alsohasa disadwantage however: it only in-
sertsStopoperationsat pointswhereall remainingpredicates
arenon-reductie,soin theabsencef NOT NULL andrefer
entialintegrity constraintsit cannotplaceStopoperatorde-
low joinsin multi-way join plans.Giventhatjoins areexpen-
sive operationghatbenefitsignificantlyfrom inputcardinality
reductionsijt would be niceif we couldrelaxthis restriction.
Thatis thegoalof the Aggressivepolicy.

3.3.1 Aggressve Stop Placement

The Aggressie policy seeksto introduceStopoperationsas
earlyin queryplansaspossible regardlessof whetheror not
theirinsertionis provablysafe.ln otherwords,the Aggressie
policy operatesccordingo thefollowing principle:

Aggressive Stop PlacementPrinciple: Insert Stop
operatorsn queryplanswherever they canprovide a
beneficialcardinalityreduction.

Thus, an optimizerthat employs the Aggressie policy will
considera Stopinsertionat eachpoint in a query plan tree
where the first (high order) column of the query’s ORDER
BY clausecan be computed,i.e., at eachpoint wherea set
of top (or botton) tuplescan be identified with respectto
therequestedesultorder Severalnew issuesarisewhenthe
optimizeris ableto generatglanswith a Stopoperatoibeloy
oneor morereductive predicates.First of all, the optimizer
mustnow computethe stoppingcardinality for sucha Stop
operator;this canbe doneusinga simple formula basedon
the cardinality estimateautilized by a typical state-of-the-art
queryoptimizer Let ALL guery be the estimatechumberof

tuplesthatwould beproducedy thequeryasawholewithout
ary Stops,andlet ALL sybplan be the estimatednumberof
tuplesproducedyy the subplanthatfeedstuplesinto the Stop
operatorin question. As always, let N denotethe tamget
cardinalityof the queryasawhole (the valuespecifiedin the
STOP AFTER clause). Given thesequantities,the stopping
cardinalityfor the Stopoperatorin questiorshouldbe setto:

ALL subplan

* N 4
ALL query ®

NStop =

In otherwords,the Stopshouldreducethe cardinality of the
tuple streamat its pointin the planin proportionto the opti-
mizer's estimateof theoverall cardinalityreductionrequested
by theuser In practice,it would be betterto inflate the stop-
ping cardinalityby, say 20% to accommodatestimationer-
ror; we will explorethisissuefurtherin Section5.

Sincesettingthe stoppingcardinalityin this way relieson
cardinalityestimatesadditionalstepsnustbetakento ensure
thatthe right numberof resulttuplesis ultimately produced
by an Aggressie query plan. To handlesituationswhere
the Aggressie optimizer sets a Stop operators stopping
cardinality too high, another(final) Stop operatormust be
placedat (or near)theroot of the plan. To handlesituations
wherethe stoppingcardinalityis settoo low, the queryplan
mustberestartedto producethe missingtuples. We propose
to handlethe requiredrestartactvity at runtime by having
a well-placedRestartoperatorin the Aggressve queryplan.
We presenthis operatorin thefollowing subsectionshaving
how it canbe addedto an Aggressie Stopplanaspartof a
plan refinementstepthat takes placeafter Aggressve query
optimizationis completed.

3.3.2 Restartsand Plan Refinement

The job of a Restartoperatoris to make sure that, abore
the point whereit is placedin the query plan, at least N
tupleswill surelybegeneratedlf the Restartperatorsinput
streamis exhaustedeforeN tuplesarereceved,thenit must
“restart”thequerysubplarbeneattit to generatéherequired,
but missing,results. Thereare several possiblestrategiesfor
actuallyrestartinga querysubplan.ldeally, we would like to
computethe missingtupleswithout recomputingary of the
resultsthatwe have alreadygatheredHowever, thiswould in
somesituationsbe difficult (if notimpossible}o accomplish

withoutmakingall of the systems operatorgestartable.

To handlerestartswithout changingexisting runtimeoper
ators,we adopta simpleapproach:ithe Restartoperatorwill
simply closeandthenre-operntheiteratorassociatedavith the
operatotthatfeedsit tuplesfrom the subplanmmediatelybe-
neathit—causingthe root operatorof the subplanto recur
sively closeand re-openits own input iterator(s),and so on
down the line. The Stop operatorin the scopeof the sub-
planwill reconfigurdtself whenit is reopenedy increasing
its stoppingcardinalityby a predeterminediactor(e.g.,afac-
tor of 2) to let more datathroughthe next time around. The
otheroperatorsn the subplanwill simply startover from the
beginning, thoughtheir costwill be lower sincemuchof the
relevantdatawill still bein thebuffer pool. To ensurehatthe
correctnumberof resultsareultimately producedthe Restart
operatowill repeathis procesgif necessaryintil it haspro-
ducedN tuplesor thereareno moretuplesto produce.

Restartoperatorinsertioncan be doneby post-processing
the optimizers chosenquery plan asfollows: Find the non-
Consenrative Stop operatorin the plan and inserta Restart
operator at the first point above it where all remaining
predicatesare non-reductie. If we produceN resultsthere,
we are“safe”; nofurthercardinalityshrinkagecanoccur The
post-processaransimplywalk up theplantreefrom thenon-
Consenrative Stop operatorin orderto placethe Restartas
deeplyaspossible(to minimizethe costof arestart).

For Aggressve queryplansthatarefully pipelined,or have
pipelinedsectionsthereis anadditionalplan refinementhat
is possibleand very useful: Scan-Stogullup. This trans-
formation pulls Scan-Stopoperatorsresidingin a pipelined
segmentof a queryplan up to the top of the pipeline. This
reducesherrisk of restarts,asit re-positionsthe Scan-Stop
above reductie predicatesn the pipeline (whoseimpacton
the tuple streamcardinality might be difficult to estimate).
In the extremecase,whenall the remainingreductie pred-
icatesare appliedin the pipeline, Scan-Stoppullup corverts
an Aggressie Scan-Stomperatorinto a Conserative one—
completelyeliminatingthe risk of restarts;Scan-Stogpullup
must, therefore be performedbeforeRestartoperatorplace-
ment,andwhenthe pullup transformations performed,the
cardinalityparameteof theaffectedScan-Stomperatomust,
of course,be recomputedbasedon its new positionin the
query plan. Note that Scan-Stoppullup is never detrimen-
tal. Consideyfor example,a Scan-Stopperatorsitting im-
mediatelybeneatha pipelinedoperatorsuchasa nestedoop
index join (NLIJ). In suchacasenothingis gainedby having
the Scan-Stopperatorsit beneattithe NLIJ operatoybecause
theNLIJ producesutputincrementallyon demand—i.e.its
costis proportionalto the amountof datathatit is asked to
materialize not to the sizeof its inputs. We canthuspull the
Scan-Stomperatoup above the NLIJ without increasinghe
costof the plan. This pullup opportunityarisesbecausehe
two NLIJ planswill have the samecostduring planenumer
ation,andtherisk of restartss nottakeninto accountduring
enumeration.

Stop(10) Stolp(lo)
|
Joi Restart
N |
Restart Dept Join
| VRN
Joi / Join TEA
Stop(20) TEA Stop(20) Dept
| |
Emp Emp
Plan1 Plan2

Figure2: Aggressie StopPush-Davn for a 3-Way Join

3.3.3 Aggressve Plan Examples

Figure 2 shavs two examplesof query plansthat could be
producedby Aggressie Stopoptimizationfollowed by plan
refinementor thefollowing query:

SELECT e. nane, e.salary, d.nane,
FROM Enp e, Dept d, TEA t
WHERE e.works_in = d. dno

t. expenses

AND e.teaNo = t.account No
ORDER BY e. sal ary DESC;
STOP AFTER N,

Recallthatall employeeswork in somedepartmentput not
everyemployeehasatravel account.For illustration,suppose
that half of the employeeshave a travel account(i.e., an
associated EA tuple). In Plan1 of Figure 3, whereEnp is
joinedwith TEA first,theAggressve approachs ableto place
a Stopoperatofjustabove the scanof Enp, atwhich pointthe
stoppingcardinalityis setto 20 (becauséf,,{fﬁfﬁ =2 and
N = 10). Becausehis Stop operatoris non-Conserative,
a correspondingRestartoperatoris needed;it goesabove
the first Join, wherethe Conserative approachwould have
placeda Stop(10)operator If the join is non-pipelinede.g.,
a sort-megeor hashjoin), the Aggressve plancanprovide a
significantjoin costsavingsoverits Conserative counterpart.

In Plan2, thejoin with the TEA tablecomedast. Sinceits
join predicatas reductive, the Conserative planfor this join
orderwould only be ableto placea Stop(10)operatorat the
root of the plan. In contrastthe Aggressve approachagain
placesa Stop(20)peratoright abovewhereEnp is accessed.
The potentialcostsavingsin this caseis obviously large—if
eitherjoin is non-pipelinedPlan2 is quite a bit cheapethan
its Conserative (in this case'do nothing”) counterpart.

3.4 ExtendedQuery Optimization

Stopoperatorsmpactthe costof otheroperationsn a query
plan, thus affecting optimization decisionssuch as access
path selection,join methods,and join orderings. We now
shav how to extenda modernqueryoptimizer—onethatuses
dynamicprogramminga la [ST79—to incorporateour Stop
placemenpolicies.

3.4.1 Plan Enumeration

Modernqueryoptimizersuserulesto controltheenumeration
of alternatve queryplans[GD87, Loh8g. To enumeratall
possibleplanswith Stopoperatorsye proposemodifyingthe
optimizers rule setto model the Stop operatoras another

kind of accesspath for intermediateresults. This will
causethe queryoptimizerto consideraddinga Stopoperator
immediatelyafter eachof its usualways of accessingither
basedataor subplandata. Moreover, this changeintroduces
Stopswith minimal impacton the optimizeras a whole, as
therestof its rule setremainsuntouchedThis is importantto
ensuremodularity andthereforemaintainability of the Stop-
enhancedule set. Theinsertionof a Stopoperatomustalso
be consideredat the root of eachquery plan to ensurethat
the right numberof resulttuples(as specifiedby the STOP
AFTERclausewill bereturnedo theapplication.Thiscanbe
accomplishedhroughanothemew rule thatconsidersadding
a Stopoperatoratthis final point.

Once theseadditional Stop rules have been established,
both the Conserative and Aggressie policies can easily
be integratedby defining conditionsthat control in which
situationgdi.e.,for which subplanspa Stoprule canbeapplied;
again,otherrules of the optimizerare not affected. A vital
conditionfor bothpoliciesis thata Stopoperatormayonly be
generatedt placesin a plan wherethe top or bottomtuples
canbe identified (i.e., whereat leastthe first column of the
guerysORDER BY expressioris computable)To implement
theConsenrativepolicy, theconditionsof the Stopruleswould
further be restrictedto generateStop operatorsonly at safe
places(asdefinedin Section3.2). Sucha restrictionwould
notbe consideredor the Aggressve policy.

An importantissueto make plan enumeratiormore effi-
cientis to avoid the enumeratiorof planswith superfluous
Stop operators. To keeptrack of the placeswhere a Stop
operatoris useful, we introducean additionalplan property
called stoppingcardinality. (The useof plan propertiesis
a commontechnigueimplementedin most query optimiz-
ers[GD87, Loh88 S™96].) For the Conserative policy, the
stoppingcardinalitypropertycantake oneof two values:EN-
FORCED,indicatingthattheplan’sresultstreamalreadysat-
isfiesthe STOP AFTER clauses$ cardinalityspecificationpr
NOT ENFORCED,indicatingthatthis is nottrue. At leaves
of plans(e.g.,table scans)the stoppingcardinality property
is setto NOT ENFORCED:;it is setto ENFORCEDwhena
(Consenrative) Stopoperatoris addedto the plan. This prop-
ertyis “destrojed” (resetto NOT ENFORCED)by operators
that potentially changethe cardinality of their input streams
(e.g.,certainjoins), andis transportedby otheroperatorsUs-
ingtheConsenrative policy, therefore Stopoperatorganonly
beaddedo NOT ENFORCEDsubplansandagain,this con-
straintcanbeimplementedn theconditionpartof therules.

In additionto ENFORCEDand NOT ENFORCED,the
stoppingcardinalitycanbe setto ASSISTEDto supportthe
Aggressve policy. This is doneby a non-Conserative Stop
operatorwhosestoppingcardinality is basedon cardinality
estimatesandit specifieghatcardinalityreductionhasbeen
performedbut that an additional Stop operatoris needed
at (or near)the root of the planto guaranteeENFORCED
cardinality for the whole plan. An ASSISTED stopping
cardinalityis transportedby every operator;it is overwritten

by thefinal Conserative Stopoperatoyso only planswith at
mostonenon-Conserative Stopoperatorareenumerated.

3.4.2 Impact on Pruning

In thedynamicprogrammingapproactio queryoptimization,
a (sub-) plan P; is prunedin favor of a (sub-) plan P, if
andonly if P; hasbotha highercostandwealer properties
than P,. In addition to the propertiesconsideredin a
traditionaloptimizer, our STOP- AFTER-extendedoptimizer
must respectcertain additional pruning conditions. If the
output of P, and P, is orderedaccordingto the query’s
ORDER BY expression,then P; may only be prunedin
favor of P, if P; has higher cost and wealer properties
(asin traditionaloptimizers)and cost(Scan-Stof; , Nstop))
> cost(Scan-Sto, Nstop)).> Otherwise,evenif P; has
highercostthan P, for producingall results,P; maybe part
of the overall bestplan to produceN results. As statedin
Section3.1.1,this conditionwill forcethe optimizerto retain
planswith (seeminglyexpensve) pipelinedoperatorssuchas
scanf unclusteredndexes.

If P, and P, are not orderedaccordingto the query's
ORDER BY expressionall of their tuplesmustbe produced
to computethe overall orderedqueryresult. In this caseour
Stop-enhancedptimizermuststill respectcertainadditional
pruning conditionsto retain query plans with deep Stop
operatorsTo seewhy, considetthefollowing query:

SELECT *
FROM Enmp e, Dept d
VWHERE e.works.in = d.dno

ORDER BY e. sal ary
STOP AFTER 100

Supposehat the databaséras10,000employeesand 1,000
departmentsandthata Sort-Stopoperationon 10,000tuples
costs40,000units,ascomparedo 200unitsfor eithera Sort-
Stopor aplainSortoperatioron 100tuples.Also, assuméhat
asort-megejoin costs43,000unitsto join 10,000employees
with 1,000departmentsyersus3,200units for a sort-mege
join betweenl100 employeesand 1,000 departments. (For
simplicity, we usen log n to approximatehe costof sortingn
tuplesfor a Sort-Stopor sort-megejoin.)

During plan enumerationthe following two subplanswill
be enumeratedamongothers:

P; = SMJoin(Sort-Stop(Emppept)
P, = SMJoin(EmpDept)

Given our assumptionsthe cost estimatefor subplanP; is
43,200units (40,000+ 3,200), while the costof P, will be
estimatedis43,000units,whichis slightly lower. To produce
thefinal queryresultin the requestedrder(e. sal ary), a
Sortoperatorcosting200unitscanbeattachedo Py, giving a
total costof 43,400units. For Py, a Sort-Stopoperatoicosting
40,000units is required,resultingin a total cost of 83,000
units. Thus,thewinning planis basedn P; ratherthan P,—
eventhoughP; itself hashighercostthanP,. Thisis because
P, hasstrongercardinality properties;.e., P; producesl00

3Scan-Stogostasin Equation(1); Nstop asin Equation(4.

SELECT e. nanme, e.salary
SELECT e. nane, e.salary, ' ’
EELECE e. nanme, e.salary . E d. nameDe q FROM En‘g' ga”EDépE : SXD_?_EZetS
ROM e ROM Enp e, pt J LS
ORDER BY o. sal ary DESC VHERE e.works_in = d.dno VHERE 2N‘60gkts-e'a”,\b‘ —d'tdr;%count No
STOP AFTER N, ORDER BY e.sal ary DESC ORDER BY e. sal ar E)ESC
STOP AFTER N, STop AFTER N oY
TestQueryl TestQuery?2 TestQuery3

Figure3: STOP AFTER TestQueries

tuplesandhasa stoppingcardinalityof ENFORCED, whereas
P» producesl0,000tuplesandhasa stoppingcardinality of
NOT ENFORCED. In generala planhasstrongercardinality
propertiesghananothermlan and may not be prunedif it has
a smallerestimatedresult cardinality or a strongerstopping
cardinality propertyobeying the total order: ENFORCED >
ASS| STED > NOT ENFORCED.

Obviously, addingrulesfor Stopenumeratiorandrestrict-
ing pruningincreaseshesizesof thequeryoptimizerssearch
spaceandits setof candidategueryplans. Studyingthis im-
pactis beyondthe scopeof this paper but giventheefficiency
andpre-«isting compleity of modernqueryoptimizers,we
do not believe thatour extensionswill seriouslyimpacttheir
performance.In fact, relatedsearchspaceissueshave been
studiedin thecontext of GROUP BY queryoptimization(e.qg,
[CS99); thoseresultsaredirectly applicablehere.

4 Evaluation Methodology

We have proposedwo approacheso placing Stopoperators
in executionplansfor STOP AFTER queries. To compare
themto eachother andto the “do nothing” approachwe

will employ a syntheticdatabaseand several representasie

STOP AFTER queries. Our approachwill be to “cheat™—

using our knowledge of the attribute value distributions to

translatehe STOP AFTER queriesinto regular SQL queries
with additionalpredicateghat force the taget DBMS do an

amountof work that is essentiallythe sameasiif its query
planswereStop-enhanced.

4.1 Synthetic Database

For the test database,we used the tables and integrity
constraintspresentedin the examplesof Section3. We
controlledtheattributevaluedistributionsto facilitateour test
queriesandbuilt indexeson all therelevantattributes.

Our testdatabaseonsistsof the Enp, Dept, and TEA
tablesintroducedearlier The integrity constraintsspecify
that every employee works in a departmentbut not every
employeehasatravel account Eachtableholds100,000rows
of 100byteseach.(We alsotried othertablesizes ncludinga
muchsmallerDept table,butwill notshowv thoseresultshere;
we saw large performancebenefitsfor our STOP AFTER
schemeshut sincethe Dept join itself wasinexpensve, the
basicresultswere similar to our single-tablequery results.)
Thetables’attribute valuesweresynthesizedo controlrange
predicateselectvities and join selectvities. Enp. sal ary
valuesrangedfrom 0 to 99,999, and the key and foreign
key valueswere chosenso that eachEnmp row joins with
exactly one Dept row and one TEA row. We created

clusteredindexeson Dept . dno and TEA. account No to
supportjoins betweereachof thesetablesandthe Enp table.
Our experimentsvariedtheindex createdon Enp. sal ary,
whichwasthefield usedin theORDER BY clause®f ourtest
gueries—wdried clusteredunclusteredandno index atall,
usinga descendingrderindex in the casesvherethis field
wasindexed.

4.2 TestQueries

Ourtestqueriesareshovnin Figure3. Thequeriegangefrom

asimplesingle-tablequeryto morecomplex join queries.The
first query simply finds the N mosthighly paid employees.
Its purposeis to investigateheimpactof the STOP AFTER
clauseon (1) row blocking (for sendingthe result set back
to the client), (2) accesgathselection,and (3) coststo sort
query results. The secondquery finds the N most highly
paid emplo/eesand their departmennames. Its purposeis

to shav theimpactof the STOP AFTER clauseonthechoice
of join method.Thethird queryfindsthe N mosthighly paid
employees,including both their departmenhamesandtheir
travel expenseslts purposés to providea morecomple join

exampleto explore the tradeofs betweenthe Conserative
and Aggressve approaches.For eachquery we variedthe
requestedtoppingcardinality N from 1 to 100,000.

4.3 DB2 Simulation Approach

Giventhesequerieswe wantedto know—beforeembarking
on an actualimplementationandfor a real DBMS with so-
phisticatedquery optimization(including cardinality estima-
tion) and an industrial-strengthruntime system—hw much
benefitcould be obtainedfrom our STOP AFTER optimiza-
tionsasafunctionof thestoppingcardinality N andthephys-
ical databaselesign. We choseto “simulate” the execution
of StopplansonIBM’s DB2 for CommonSenershy replac-
ing eachquerys STOP AFTER clausewith anappropriately
designedEnp. sal ary predicate.

For Queriesl and 2, we can createregular DB2 queries
that require the sameamountof work by dropping their
STOP AFTER clausesand adding a predicateof the form
e.sal ary >= 100, 000- N. Rewriting the queriesthis
way simulategheeffect of placinga Stopoperatofjust above
the table or index scanof the table Enp, asit givesDB2 a
predicatdo applyatthatpointthathasthesamdfiltering effect
asthe Stopoperatowould have there.

For Query 3, we can simulatea Conserative version of
Plan 1 of Figure 2, wherethereis one Stop operatorthat
sits immediatelyabove the join Emp X TEA (in place of
Figure2's Restarperator)yvia thefollowing DB2 query:

SELECT e. nane, e.salary,
FROM Enp e, Dept d, TEA t
WHERE e.works_.in = d.dno
AND e.teaNo = t.account No
AND e.salary + t.zero > 100, 000-N
ORDER BY e. sal ary DESC,

d. nanme, t.expenses

The field TEA. zer o is a specialfield of the TEA table
that simply containsthe value 0 in eachrow. Using this
field, we have translatedhe STOP AFTER N clausein the
original version of Query 3 into the predicatee. sal ary
+ t.zero >= 100, 000- N; doing so providesthe same
selectvity asthe simplerpredicateintroducedfor Queriesl
and?2, but forcesDB2 to wait until after Enp and TEA have
beenjoinedbeforerestrictingthenumberof tuples(wherethe
Consenratively placedStopoperatowould doiit).

We canalsosimulateanAggressieversionof Query3, one
wherethe Stopoperatoiis pusheddown to the Enp table,and
wherethereis a Restartoperatorat the top of the queryplan
to handlethe casewherean estimationerror causeghe plan
to prematurelyrun out of tuples? We cando so by running
the following query which has a pair of parameterized
predicate®nEnp. sal ar y, againsDB2 from within aC++
applicationprogramthat usesthe parameterso simulatethe
effectsof estimationandrestarts:

SELECT e. nane, e.salary, d.nane,
FROM Enp e, Dept d, TEA t
WHERE e.works_in = d.dno
AND e.teaNo = t.account No
AND ? < e.salary AND e.salary < ?
AND e.salary + t.zero > 100, 000-N
ORDER BY e. sal ary DESC,

t. expenses

Instantiationof the two query parametergthe “?”s) enables
the C++ programto simulateunderestimationpreciseesti-

mation,andoverestimatiorof the requiredcardinalityfor the

Stopoperator;jt alsoallows the programto simulatea restart
of thequery In additionto this parameterizethngepredicate,
the DB2-translatedhggressie querystill includesthe special
predicatanvolving TEA. zer o to simulatethe presencef a

Stopoperatorafter Emp X TEA; this operators job is to cut

down the cardinalitywhenthe parametersf the rangepredi-

cateleadto arangethatis too large (simulatinga casewhere
therequiredcardinalityis overestimated).

4.4 TestEnvironmentDetails

OurtestswvererunonanIlBM RS/6000PowerStatiorb50with
128MB of main memoryrunning AlX 4.1.4. We usedthe
productversionof IBM’s DB2 for CommonSeners(Version
2.1.1). We usedDB2’s default settingsalmostexclusively,
whichgave us4 MB of main-memonpbuffer spacgdesirable
so that we didn’t have to generatea huge databasdor our
tests)a512KB applicationheapfor row blocking,andquery
optimizationlevel 5. All querieswere run againsta warm
databasgthough this was largely a non-issuebecausethe
databasesize was much larger than the buffer pool). We
measuredvarm times becausecold query executiontimes
werenot accuratelymeasurabldor the shorterqueries(such

“Note: We couldnot simulatea Restarbperatoin themiddleof aplan.

asindex scansfor small valuesof N); obtainingaccurate
times required running them several times and reporting
(total_elapsedtime/ no_of_runs).

5 Experimentsand Results

In this sectionwe useour syntheticdatabaseandtestqueries
to explore, usingthe DB2 “simulation” schemeoutlinedin
theprevioussection (i) theperformancéenefitsof our STOP
AFTER optimizationtechniquesnd(ii) thetradeofs between
Aggressve andConserative queryplans.

5.1 Traditional vs.STOP AFTER Query Optimization

We begin by examiningthe benefitsof STOP AFTER query
optimization for single table queries; we then explore its
impactonjoin queries Resultsaregivenfor threeapproaches
in this section: (1) TRADITIONAL, whichis the traditional,
“do nothing” approachin which an application program
handsDB2 the original STOP AFTER querywith the STOP
AFTER N clauseremoved, opensa cursorover the results,
requestsV rows (oneat a time), andthenclosesthe cursor
(2) TRAD(NRB), which is the traditionalapproachhput with
no row blocking. By default, the DB2 sener processships
answersetsto client processe large blocksof rows (based
on the application heapsize) to minimize communication
costs;the TRAD(NRB) resultswere obtainedby turningthis
featureoff, therebymakingthe sener sendresultsbackone
row at atime. (3) STOP-AFTERwhich is the Conserative
STOP AFTER optimization approach; these results were
obtainedby sendingDB2 the “simulated” STOP AFTER
gueriesdescribedn Sectior4.3.

5.1.1 SingleTable Queries(Query 1)

Figure 4 presentghe performanceesultsfor Query 1 asa
functionof N, thequery’s stoppingcardinality whenthereis
a clusteredindex availableon Enp. sal ary. Query1 gets
thenamesandsalariesof the N mosthighly paidemployees.
In all threeapproachesDB?2 utilizes the clusteredindex to
procesghe query—toextractthe resultsin the desiredorder
without sorting—soall of the performancedifferencesseen
here are due to row blocking. TRADITIONAL has very
poor performance(note the logarithmic y-axis!) for small
N becauseat groupsqueryresultsinto blocks of about500
rows beforesendingthem backto the client; this is clearly
awastewhenrelatively few of the resultrows are ultimately
consumedby theapplication. TRAD(NRB) performswell for
small N, but becomegelatively worsefor large N because
it requiresa client/serer interactionfor eachresultrow. At
N = 100,000, TRAD(NRB) endsup being2.5timesslower
than TRADITIONAL. In contrast,STOP-AFTERdoeswell
throughoutheentire N range.In this case DB2 sendgesult
rows back in chunksof min(V, applicationheap), as the
STOP-AFTERplan limits the resultsize on the sener side;
this is goodfor small N becauset avoids wastedwork, and
goodfor large N becausé involveslow overheadvhenmary
resultsareindeeddesiredby theapplicationprogram.

@ @ =
)) ,)
E E 1t / E £ /
= = A = /
3 3 3 £
c c c 10 e]
3 2 01k ; i g
/ i e R
- TRADITIONAL —— TRADITIONAL —~— TRADITIONAL ~—
B TRAD (NRB) -8-- TRAD (NRB) -8-- TRAD (NRB) -8--
0.01 | 4 STOP-AFTER -+~ 0.01 ¢ o STOP-AFTER —+- STOP-AFTER ——
0001 Il Il Il Il 0001 Il Il Il Il l Il Il Il Il
1 10 100 1000 10000 100000 1 10 100 1000 10000 100000 1 10 100 1000 10000 100000
N

Figure4: Resp.Time (log), Q1
Clusteredndex on Emp.salary

Figure 5 presentsthe resultsfor Query 1 when thereis
anunclusteedindex on Enp. sal ary. Thetraditionalap-
proachesuse a table-scarfollowed by a sort to obtain the
queryresult; they do not know thatthe applicationprogram
will only requestV of theresults,andthetable-scan/sogtlan
is a cheapermlan for Query 1 in the absenceof the STOP
AFTER clause. In contrast,the STOP-AFTER approach
choosedhe unclusteredndex to obtainthe resultswhen N
is small, asit hasenoughinformationto comparethe costs
of producingthe requestedV tupleseachway. As aresult,
STOP-AFTERperformsmuchbetterthaneitherof the tradi-
tional approachefor mostof therangeof NV valuesentering
the ballpark of their performanceonly for N >= 10, 000.
TRADITIONAL and TRAD(NRB) perform similarly until
this region, at which point the costof client/serer commu-
nication becomessignificantenoughto causeTRAD(NRB)
to performworsethanTRADITIONAL.

Lastly, Figure 6 presentsthe resultsfor Query 1 when
thereis no index on Enp. sal ary. In this case,all three
approachesort to producethe querys orderedresult set.
STOP-AFTERhasthe lowestcosthere(by abouta factorof
threeat N = 1) becausét only sortsthe N rows actually
of interestto the applicationprogram® In contrast, both
traditionalapproachesort100,000rows, makingthemquitea
bit moreexpensve. Again, TRAD(NRB) is somavhatslower
than TRADITIONAL dueto the costof shippingthe query
resultbackto theapplicationonerow atatime. (In fact,from
this pointon we will stopshaving TRAD(NRB) results asit
consistentiyjostto TRADITIONAL in theremainingtests.)

5.1.2 Join Queries(Query 2)

Figures7- 9 shaw the resultsfor Query2. This query asks
for the name,salary and departmeninameof the N most
highly paidemployeessoit is like Query1 with the addition

5TheDB2 queryplanfor thissimulatedSTOP AFTERversionof Queryl

is atablescanwith theEnp. sal ar y predicatébeingapplied followedby a
sortto orderthequeryresult;thissortis small,occurringin memory for small
N. TheactualSTOP-AFTERqueryplanwould be a tablescanfollowed by

a Sort-Stopoperation;the Sort-Stopwould be an in-memoryoperationfor

small N, andwould requireexternalsortingfor larger N. It shouldbeclear
that the overall costfor thesetwo executionplansis essentiallythe same,
whichis whatmalesthis areasonablsimulation.

Figure5: Resp.Time (log), Q1
Unclusteredndex on Emp.salary

Figure6: Resp.Time (log), Q1
No Index on Emp.salary

of a Dept join. Regardlessof the availability or type of
Enp. sal ary index, STOP-AFTER performsmuch better
than TRADITIONAL. The reasonfor this is quite simple:
Sincethe STOP-AFTERplanis chosenbasedon the value
of N, andthejoin predicateis non-reductie (giventhe test
databasa’ integrity constraints),only the first N rows of
Enp arejoinedwith Dept in this plan. Moreover, when N
is small, the STOP-AFTERquery plan usesthe nested-loop
index join methodto performthe join, whichis cheapethan
the sort-megejoin methodusedin the TRADITIONAL (N-
insensitve) plan. Sort-megeis the superiorstratey for afull
Emp X Deptjoin, but not for a restrictedjoin; althoughthe
Dept tablecanbeaccesseth dno orderusingits clustered
index, thesort-megequeryplanstill involvessortingthe Enp
tableon thewor ks_i n columnaswell assortingthe join’s
resultto producetheresultsin sal ar y ordetr Theadwantage
of the STOP-AFTER approachis especiallypronouncedn
Figures7 and 8. Here, the STOP-AFTER plan usesthe
Enp. sal ary index to cheaplyobtainthe mosthighly paid
employees(by piping the resultsof an index scaninto an
inexpensve Scan-Stopoperator); morewer, for small N,
whereit usesthe nested-loopndex join methodto probethe
Dept table,nofurthersortingis needed.

In addition to theseresults, we also ran testswith no
index on Dept . dno. We obsened smallerdifferencesin
thosetests put STOP-AFTERStill significantlyoutperformed
TRADITIONAL. STOP-AFTER was better for small N
becauséts ability to do Stoppush-davn led to cheapejoins
aswell ascheapesorts;for N = 10, for example, STOP-
AFTER outperformedTRADITIONAL by a factor of two
when an index existedon Enp. sal ary, andit won by a
factorof 1.5withoutthisindex.

5.2 Aggressve Plans: Benefitsand Risks

We have seenthat STOP AFTER query planscan provide
a large cost savings with respectto traditional query plans
with cursors. But what aboutAggressive plans—hav much
additionalsavings canthey provide? And how costlyarethe
estimationerrorsthat may occur? Thesequestionsare the
focus of our next testswhich are basedon Query 3, the 3-
way join querythatasksfor thename salary departmentand

10

100 | 7z 100 | 7 7
. 100 | 2
. > /
P -
10 | E 10 | b E
© /. © © A
£ 1k A 4 E 1k g £
= = / [-
3 3 2 -
c / c ¥ = 10 E
g A g v 2
2 01} . g 2 01} g 2 | S FE—
[0 [0 Q
24 24 [24
+ B ,//
0.01 |- TRADITIONAL ~+— 001} TRADITIONAL +— TRADITIONAL ~<—
STOP-AFTER —+- - STOP-AFTER —+- STOP-AFTER —+-
0001 Il Il Il Il 0001 Il Il Il Il l Il Il Il Il
1 10 100 1000 10000 100000 1 10 100 1000 10000 100000 1 10 100 1000 10000 100000
N N

Figure7: Resp.Time (log), Q2
Clusteredndex on Emp.salary

precise undeestimate overestimate

Trad | Cons| "y 01) | Agw/s) | Ag(1/10) | Ag(5) | Ag(10)

128.3| 63.9 6.4 33.2 63.1 6.7 185

Tablel: Resp.Time[s], Q3;Noldx onEmp.salaryN = 100

travel expense®f the N mosthighly paidemployees.

In the previous tests, the STOP-AFTER results shav
what both the Consenrative and Aggressve approachwould
produce,asthe join predicateusedtherewasnon-reductie.
We mustdistinguishtheapproachebere however, asthe TEA
join predicateis (potentially) reductive andis thusa barrier
to deepStop push-devn in the Conserative approach. As
shavn in Table 1, which containsthe cost of Traditional,
Consenrative, and Aggressive plansfor Query3 with N =
100 andnoindex on Enp. sal ary, the differencebetween
the Consenrative and Aggressve approachesan be quite
large. If the optimizer’s cardinality estimatesare precise
(the Ag(1) column in Table 1), Aggressie outperforms
Consenrative by a factorof 10 in this experiment. Here, the
Consenrative planinvolveda full sort-megejoin for Enp X
TEA, followed by a Sort-Stopand a nested-loopgndex join
to find the matchingDept name<$ The Aggressie plan
hasa Sort-Stopoperatorjust above the Enp scan,and uses
the nested-loopndex join methodfor bothjoins; it therefore
avoids sortingthe whole Enp table. The Traditionalplanis
significantly worse than both Stop-enhancedpproachesit
usestwo sort-megejoins andthussortsthe whole Enp table
threetimes (twice for the joins andonceto producethe final
queryresultin theright order).

Table 1 also shavs the cost of Aggressie plansif the
cardinalityestimatesretoo low or too high. If theoptimizer
underestimatethe “precise” stoppingcardinality by a factor
of z (the Ag(1/z) numbers)thenz restartsare requiredto
producethe full queryresult. In this case,restartsare very
expensve, as eachone requiresre-scanninghe Enp table.
As aresult,the Ag(1/5) planis about5 times,and Ag(1/10)
aboutl0times,asexpensve asthe Ag(1) plan. Both Ag(1/5)
andAg(1/10) arestill betterthan,or at leastasgoodas, the

8An alternatve Conserative plan with slightly lower costwould com-
pletelysortthe Enp tableandthendo two nestedoop index joins; we could
notmodelthis planwith our DB2 simulationapproach.

Figure8: Resp.Time (log), Q2
Unclusteredndex on Emp.salary

Figure9: Resp.Time (log), Q2
No Index on Emp.salary

Consenrative and Traditionalplansfor N = 100. However,
for large N (notshowvnin Tablel), whenthepotentialbenefits
of Aggressie Stoppush-devn decreasethe costof Ag(1/5)
and Ag(1/10) can exceedthose of Conserative and even
Traditionalplansby up to a factorof two in the extremecase
(N = 100, 000).

If theoptimizeroverestimatethe“precise”stoppingcardi-
nality (the Ag(z) numbers)an Aggressie plan carriesmore
Enp tuplesthannecessaryntil the final Stop; this requires
no restarts,but meansthat too much work is donein the
Join and Stop operators.In this experiment,the extra work
is fairly cheap,so the performancedegradationis moderate
andthe Ag(5) and Ag(10) plansoutperformthe Traditional
andConsenrative plans.In generalgvenfor largeN, overesti-
matedAggressie plansnever becomeworsethanConsera-
tive plans—thg have, at worst, the sameperformance.This
doesnotmalkeit wiseto alwaysoverestimatéhestoppingcar
dinality of Aggressie Stops,however. We also conducted
experimentswith Query 3 andan index on Enp. sal ary.
Restartawvere cheapin this case(sincethe whole Enp table
neednot be re-scannedvhile extra work wasrelatively ex-
pensveif theindex wasunclusteredsounderestimatiomut-
performedoverestimation.

6 RelatedWork

Many commerciakelationaldatabaseystemsallow applica-
tionsto passahintto theoptimizerto indicatethatthey would

like the first few tuplesof the query resultto be produced
quickly. For example,Oracle7 hasan optimizationoption
calledFI RST ROAs [A192], andIBM’'s DB2 systemof-

fersanOPTI M ZE FOR N ROWS claus€IBM95]. Thede-
tails of how (or how well) thesefeaturesareimplementedhas
not beenpublished put accordingo their referencananuals,
they heuristicallybiasthequeryoptimizerto moreheaily fa-

vor pipelinedexecutionplans. We experimentedvith DB2's

OPTI M ZE FOR N ROWS construct.ts planswereaseffi-

cientasour Stopplansfor single-tablequerieswhenanindex

existedonthe query’s ORDER BY column;whenno suchin-

dex existed(sono fully pipelinedplan existed),or whenthe
querywascomplex (makingfully pipelinedplansinefficient),
our Stopplansperformedmuchbetter

11

OtherSQL extensiongelatedto our STOP AFTER clause
have recentlybeenproposedor decisionsupportand multi-
mediaqueries.[KS95] proposespecifyingcardinalitylimits
by having “rank(...) < N” predicatesn the WHERE clause
of the query Conceptuallythe rank function andthe corre-
spondingquerypredicatesare evaluatedafterall otherpredi-
catesjoins, andaggreyationshave beencomputedthe paper
doesnotdiscussow cardinalitylimits canbeexploitedearlier
to reducejoin andsortingcosts.[CG96 proposesan ORDER
BY [N] clausethatis similarto (thoughlesspowerful than)
our STOP AFTER clause.The paperdoesdiscusghe impli-
cationsof the new clauseon queryprocessingbut focuseson
dealingwith the limited queryinterfacesof multimediadata
sourcege.g. joinsarenotaddressedindtheir executioncost
featureqe.g.,expensve predicatesandrankingexpressions);
asaresult,theiroptimizationframevork andgqueryprocessing
techniguesirevery differentthanours.

Relatedwork on relationalquery processincghasconcen-
tratedon developing pipelinedjoin methodsor costmodels
that can predictthe costto obtainthe first row of a query’s
resultset(see[G1T92, WA91, BM96], amongothers).To our
knowledge nonehasproposed Stopoperatoror studiedhow
to achieve deepStoppushdevn for STOP AFTER queries.

7 Conclusions

We have examinedthe opportunitiesand query processing
issuesraised by addinga STOP AFTER clauseto SQLs
SELECT statement.We discussechow STOP AFTER sup-
port can be addedto an existing DBMS, encapsulatinghe
detailsof STOP AFTER querieshy addingStopoperatorgo
its query executionsystem. Doing so makesit unnecessary
to changetherestof the systems queryexecutionengine;its
existing operatorgor scanjoin, andsoonareunafected.We
discussedhow to implementthe Stopoperatomphysically de-
scribingScan-StoandSort-Stoprealizationsof this operator
andtheir costs. Finally, we proposedand empirically evalu-
atedtwo policiesfor STOP AFTER plangenerationConser
vativeandAggressive,andexplainedhow they canberealized
in arule-basedjueryoptimizer The Conserative approach
only permits Stop operatorsto be positionedat plan points
wherethey are surenot to eliminatetuplesthat shouldulti-
matelyparticipatein thequeryresult;in contrastthe Aggres-
sive approachs moreadwenturoususingrequiredcardinality
estimationto aggressiely limit intermediateesultsizes.

We useda syntheticdatabas@ndquerytranslationscheme
to “simulate” our two approaches®n DB2, comparingthem
to eachotherandto the traditional “just use a cursor” ap-
proach. We saw that, as anticipated,orders-of-magnitude
performancegainscanbe achieved. The benefitsof special-
izedSTOP AFTERhandlingwereseerto beparticularlypro-
nouncedwhen an index is available on the query’s ORDER
BY column(s). The Conserative approachalways provided
superiomperformancavith respecto thetraditionalapproach;
the Aggressie approactwasshown to offer furtherimprove-
mentsat the price of introducingsomesensitvity to cardinal-

ity estimatiorerrors.

In terms of future work, we plan to implement STOP
AFTER in the Garlic system[Ct95] at IBM Almaden. On
the optimizer side, we also plan to explore techniquesfor
handling complex STOP AFTER clauses(with subqueries
that sharecommonsubepressionavith the querybody) and
for pushingStop operatorsdown into querieswith multiple
query blocks. On the runtime systemside, we plan to
designa more efficient external Sort-Stopoperatorand to
explore join methodsto handleSTOP AFTER querieswith
multi-table ORDER BY expressiongdrawing on Fagin’s 4,
work [Fag94 in thejoin case).

Acknowledgments We would lik e to thankEugeneShekita
for readingthroughthe paperandmakingseveralvery helpful
suggestionsManishArya helpedwith the DB2 installation.

References

[A+92] E. Armstrong, et al. ORACLE7 server — application
developers guide OracleCorporation,1992.

[BM96] R. BayardoandD. Miranker. Processingjueriesfor the
first few answersProc. 3rd CIKM Conf, Rockville,MD, 1996.

[CT95] M. Carey etal. Towardsheterogeneousiultimediainfor-
mation systems,Proc. IEEE RIDE Workshop Taipei, Taiwan,
1995.

[CG96] S. Chaudhuriand L. Gravano. Optimizing queriesover
mulitmediarepositoriesProc. ACM SIGMOD Conf, Montreal,
Canadal996.

[CS94] S. Chaudhuriand K. Shim. Including group-byin query
optimization,Proc. 20thVLDB Conf, SantiagoChile, 1994.

[Fag96] R. Fagin. Combining fuzzy information from multiple
systemsProc. ACM PODSConf, Montreal,Canadal996.

[GD87] G. Graefeand D. J. DeWitt. The EXODUS optimizer
generatqrProc. ACM SIGMODConf, SanFranciscoCA, 1987.

[G192] S.Gangulyetal. Queryoptimizationfor parallelexecution,
Proc. ACM SIGMODConf, SanDiego, CA, 1992.

[IBM95] IBM Corporation. DB2 application programmingguide
for commorserves (version2), 1995.

[Knu73] D. E. Knuth. TheArt of ComputerProgramming/Sorting
and Seaching, volume3, Addison-Wésley, 1973.

[KS95] R. Kimball andK. Strehlo. Why decisionsupportfails and
haw to fix it, SIGMODRecod, 24(3):92—97,1995.

[Loh88] G.Lohman.Grammailikefunctionalrulesfor representing
query optimization alternatves, Proc. ACM SIGMOD Contf,
Chicago|L, 1988.

[MS93] J. Melton andA. Simon. Undesstandingthe new SQL: a
completeGuide Morgan-KaufmanrPublishersinc., 1993.

[ST79] P Selingeretal. Accesspathselectionin arelationaldata-
basemanagemensystem,Proc. ACM SIGMOD Conf, Boston,
MA, 1979.

[ST96] D. Simmen, et al. Fundamentaltechniquesfor order
optimization, Proc. ACM SIGMOD Conf, Montreal, Canada,
1996.

[Sto96] M. Stonebrakr. Object-RelationaDBMSs:TheNext Great
Wave MorganKaufmannPublishers|nc., 1996.

[WA91] A. WilshutandP. Apers. Dataflov queryexecutionin a
parallelmainmemory Proc. 1stPDIS Conf, Miami, FL, 1991.

12

