
On Saying“Enough Alr eady!” in SQL

MichaelJ.Carey DonaldKossmann
�

IBM AlmadenResearchCenter
SanJose,CA 95120

carey@almaden.ibm.com,kossmann@db.fmi.uni-passau.de

Abstract

In this paper, we studya simpleSQLextensionthat enablesquery
writers to explicitly limit the cardinality of a query result. We
examineits impactonthequeryoptimizationandrun-timeexecution
componentsof a relational DBMS, presentingtwo approaches—a
Conservativeapproach and an Aggressiveapproach—toexploiting
cardinality limits in relational queryplans. Resultsobtainedfrom
an empirical studyconductedusing DB2 demonstrate the benefits
of the SQL extensionand illustrate the tradeoffs betweenour two
approachesto implementingit.

1 Intr oduction

TheSQL-92querylanguageincludessupportfor awiderange
of relationalqueryoperations,includingselection,projection,
many flavorsof joins,unions,sorting,aggregation,grouping,
andsubqueries[MS93]. In addition,SQLcontinuesto evolve,
with extensionssuch as the object featuresof SQL3 and
the control constructsof SQL/PSM.Surprisingly, despiteits
impressive querypower, SQL providesno way to specifya
limit onaquery’sresultcardinality—sothereis nodeclarative
way for a SQL querywriter to say“enoughalready!” As a
result,applicationprogramsthatwishtoposeaqueryandthen
processat mostsomenumber(N) of its resulttuplesmustdo
so, using a cursor, by submittingthe entire query and then
fetchingonly its first N results.

There are two relational databasesystemtrendsthat, in
our view, will soon producea strong needfor declarative
supportfor querycardinalitylimits. Onetrendis theircurrent
evolution into object-relationaldatabasesystems[Sto96]
and their use for managingmultimedia data types such
as text and images. Multimedia predicatesoften involve
approximatematching(i.e., matchingwith a goodness-of-
match measure),as in “show me the ten images in the
databasethatlook themostlikethisexample”[Fag96, CG96].
This is a clear casewhere ranked results and cardinality
limits are needed. Another trend is the increasinguse of
relationaldatabasesin decision-supportanddatawarehousing
environments.Rankingandcardinalitylimits arecommonly
neededby businessanalysts[KS95], as in “show me last

�
Currentaddress:Universityof Passau,94030Passau,Germany

week’sgrossrentalincomefrom thetenmostpopularvideos.”
In this paper, we extend SQL with explicit support for

limiting the cardinalityof a query result to a user-specified
numberof tuples.While a cursor-basedapproachis sufficient
to limit the resultsizeat the applicationlevel, in mostcases
it fails to limit the work done by the databaseengine—
leadingto potentially long responsetimes,large amountsof
wastedwork, and a correspondingreductionin the amount
of processingcapacity that the databaseenginecan make
available for other, concurrentqueries. After suggesting
this simpleSQL extension,we show how to incorporatethe
knowledgeit providesinto the queryoptimizerandruntime
queryexecutionsubsystemof a typical relationalDBMS. In
addition, we presentexperimentsusing an actual relational
DBMS (DB2) thatquantifythepotentialperformancegains.

Theremainderof thispaperisorganizedasfollows: Section
2 presentstheSQL extensionandprovidesseveralexamples
to illustrateits usefulness.Section3 discussesthequerypro-
cessingimplicationsof the extension,proposingtwo imple-
mentationstrategies—aconservative strategy andan aggres-
sive strategy—for exploiting querycardinalityspecifications.
Section4 outlinesourapproachto evaluatingtheperformance
of thedifferentstrategies,which involvesrunningbenchmark
queriesagainstasyntheticdatabase,andSection5 appliesthis
approachto DB2. Section6 discussesrelatedwork, including
the“optimizefor earlyresults”featuresfoundin currentcom-
mercialqueryoptimizers.Section7 presentsour conclusions
andplansfor futurework.

2 Extending SQL

The specificationof a cardinality limit for a query can
be supportedby extending the syntax of SQL’s SELECT
statement[C

�
95, CG96]. In this paper, we will do so by

addingaSTOP AFTER clauseasanoptionalsuffix, i.e.:

SELECT ... FROM ... WHERE ...
GROUP BY ... HAVING ...
ORDER BY

�
sort specification list �

STOP AFTER
�
value expression �

An SQL <value expression> is any expressionthat
evaluates to an atomic value; it may be a constant, a
computationof somesort, or even a subquery[MS93]. In
a STOP AFTER clause,the expressionmustevaluateto an
integer value that specifiesthe maximumnumberof result
tuples desired. In addition, the <value expression>
mustbeuncorrelatedwith theremainderof thequeryin order
to ensurethatthequery’ssemanticsarewell-defined.

1

The semanticsof a STOP AFTER query are straightfor-
ward� to explain operationally: after doing everything else
specifiedby the query, retain only the first N result tuples
(whereN is the integer that<value expression> eval-
uatesto). In caseswheretheresultof thequeryis totally or-
deredby theinclusionof anORDER BY clause,only thefirst
N tuplesin thisorderingarereturnedto thequery’suseror ap-
plicationprogram.In caseswheretheparticularN-tupleresult
setis not completelydefined,dueto duplicatevaluesfor the
ORDER BY attribute(s),thechoiceof which of thecandidate
setsof N tupleswill bereturnedis left unspecified.If thereis
a STOP AFTER clausebut no ORDER BY clause,thenany
N tuplesthat satisfythe restof thequeryis consideredto be
a valid result. Finally, if therearefewer thanN tuplesin the
result, then the STOP AFTER clausehasno effect. These
STOP AFTER semanticsyield thesameresultsasthecursor-
basedapproachusedby applicationstoday.

In addition, we propose to eliminate some of SQL’s
restrictionsconcerningORDER BY clauses.First,wesuggest
eliminatingSQL’s restrictionof requiringa query’s ORDER
BY column(s)to alsoappearin its SELECT list. � Second,we
suggestallowingORDER BY clausesto appearin subqueries,
as they becomemeaningfulin subqueriesthat also have a
STOP AFTER clause. Both of theseextensionsare trivial,
and their usefulnessfor STOP AFTER queriesshould be
apparentfrom thefollowing examples.

2.1 ExampleSELECT Queries
To illustrate the usefulnessof having the STOP AFTER
clause,aswell asillustrating its generality, let us considera
few examplequeriesthatit enables.

Example 1: Spatial Data Consideran object-relational
travel database. Supposethe locations of various travel-
relatedobjectsarekept trackof usinglocation attributes,
which areof a user-definedPoint datatype, and suppose
that thePoint type hasa distancefunction that returnsthe
distancebetweentwo points.We canthenfind thefive hotels
closestto theO’Hareairportasfollows:

SELECT h.name, h.address, h.phone
FROM Hotels h, Airports a
WHERE a.name = "O’Hare"
ORDER BY distance(h.location, a.location)
STOP AFTER 5;

Example 2: Decision-SupportData Now considera busi-
nessdatabasecontainingproductsalesdata. We canfind the
top 10%of thesoftwareproductsin termsof grosssalesrev-
enuesasfollows:

SELECT p.name, s.gross
FROM Products p, Sales s
WHERE p.type = "Software"

AND p.prod num = s.prod num
ORDER BY s.gross DESC
STOP AFTER (SELECT count(*) / 10

FROM Products p
WHERE p.type = "Software")

�
In fact,somecommercialsystemsalreadysupportthisextension.

2.2 What About Updates?

ExtendingtheSQLSELECT statementwith aSTOP AFTER
clause also makes it possible, without modifying SQL’s
INSERT, UPDATE, or DELETE statements,to expressa
variety of interestingupdatesaswell. This is shown by the
following exampleinvolving a databaseof informationabout
baseballplayers.

Example 3: An Update We cangive a 50%paycut to the
threeworstbattersasfollows:

UPDATE Players
SET salary = 0.5 * salary
WHERE id IN (SELECT p.id

FROM Players p
ORDER BY p.batting avg
STOP AFTER 3)

2.3 Implications

Clearly, it is nothardto extendSQLto allow usersto specifya
limit on theresultsizeof a query, andanumberof interesting
queriesand updatesbecomeexpressible. The advantageof
extendingSQL is thatit providesinformationthattheDBMS
can exploit during query optimizationand execution. The
challenge,addressedin the next section,is to find ways to
exploit this information—waysthatareeffective, yet require
asfew optimizerandruntimesystemchangesaspossible.

3 ProcessingSTOP AFTER Queries

OneapproachtohandlingapplicationswhereaSTOP AFTER
clauseis neededis to do so with little or no changeto the
databaseengine.This canbedoneexternally, asis generally
donetoday, or it canbedoneby addinga very thin additional
queryprocessinglayer to the engine. This layer could strip
off theSTOP AFTER clauseandexecuteit (if necessary)to
computethedesiredstoppingcardinality;it couldthensubmit
the remainderof the queryto the engine,fetch resultsusing
the system’s cursorinterfaceuntil the desirednumberof tu-
pleshave beenreturnedto theuser, andthenclosethecursor.
As we will seelater, however, both the “external” and“thin
layer” approachesmissopportunitiesfor major performance
improvementsthatcanbeobtainedby makinguseof thede-
siredcardinalitylimits in thedatabaseengine.

In this section,we presenta betteralternative—extending
the relational databaseengine to understandand process
STOP AFTER queries. We will first describea new query
operator, called Stop; this operatorencapsulatesthe STOP
AFTER functionalitysothatotheroperators,suchasSortand
Join,neednot bechangedandcanbeusedin STOP AFTER
queriesjust asin otherSQL queries.Then,we will describe
two extremeheuristicsto placeStopoperatorsin queryplans:
Conservative andAggressive. At the endof the section,we
will describehow Stopoperatorsandthesetwo heuristicscan
be integratedinto an existing dynamic-programmingbased
optimizer. Throughoutthe section,we will focuson STOP
AFTER queryprocessingin the presenceof an ORDER BY
clausebecausewe expect this to be the mostcommoncase

2

in practice;STOP AFTER querieswithout an ORDER BY
clause� canbeprocessedin a very similar way. Furthermore,
we will focusonSTOP AFTER querieswith only onequery
block; we will explore techniquesto processquerieswith
more than one query block (e.g., queriesagainstviews or
querieswith subqueries)in futurework.

3.1 The StopOperator

TheStopoperatoris anew logicalqueryoperator;it produces,
in order, the top or bottom 	 tuplesof its input stream.The
Stop operatorrequiresthree parametersto be provided at
queryinitialization time. The first is N, the desirednumber
of resulttuples.Thesecondis aSort Dir ective, whichwill be
oneof threevalues:desc, asc, or none. If the sort directive
is desc(asc), the Stop operatorsorts its input streamand
returnsthe top (bottom) 	 tuplesin descending(ascending)
order. If the sort directive is none, the Stopoperatorsimply
returnsthefirst 	 tuplesfromits inputstream;thenoneoption
is chosenby the optimizer when the Stop operator’s input
streamis known to alreadybeappropriatelysorted.Thethird
parameterto Stopis a Sort Expression. If thesortdirective
is descor asc, the Stopoperatorsortsits input accordingto
thissortexpression,which is usuallyidenticalto theordering
expressionfrom theORDER BY clauseof thequery.

Like otherlogical operators(e.g.,Join), the Stopoperator
canhave morethanonephysicaloperatorthat is capableof
implementingit in a queryplan. Clearly, theimplementation
of the Stopoperatorshouldat leastbe dependenton its sort
directive. Accordingly, we definetwo differentphysicalStop
operatorshere:Scan-Stop, for whenthesortdirectiveis none,
andSort-Stop, for whenthesortdirective is descor asc. We
now discussa possibleimplementationanda costmodel(for
theoptimizer’suse)for eachone.

3.1.1 Scan-Stop

The Scan-Stopoperatoris extremelysimple. Scan-Stopis a
pipelinedoperatorthatsimply requestsandthenpasseseach
of the first 	 tuplesof its input streamon to its consumer
(i.e., to the operatorabove it in the queryplan), after which
it closesdown its input streamandreturnsan end-of-stream
indicatorto its consumer. As a result, the costof the Scan-
Stopoperatoritself is negligible, andthetotal costof a query
subplanrootedat a Scan-Stopoperatoris dominatedby the
costrequiredto producethefirst 	 tuplesof its inputstream.
In a state-of-the-artrelationalDBMS, the queryoptimizer’s
cost model provides estimatesfor the total cardinality of a
plan’s output (ALL), the cost to producethe first tuple of a
plan’s output(cost
���
��), andthecostto produceALL output
tuples(cost
�� ALL)). Givenestimatesfor thesequantitiesfor
thesubplanthatgeneratestheinput streamfor theScan-Stop
operator, theoptimizercanestimatethecost,cost����	�� , for the
wholeplanrootedat theScan-Stop() operatorasfollows:

cost����	���� cost
���
������ cost
�� ALL ��� cost
���
���� � 	
ALL

(1)

This estimateassumesthat the tuplesafter the first one are
generatedsmoothlyby the subplanthat feedsinto the Scan-
Stopoperator, i.e.,thatcost
 �"!#�$
���� cost
 �%!�� is moreor less
constantfor
'&(!�) ALL . Also, it assumesthat 	*& ALL
(sincefor 	,+ ALL , cost����	���� cost��� ALL �).

Thenatureof Equation1 impliesthattheoptimizeris likely
to favor pipelinedqueryplans(e.g.,queryplanswith nested-
loop join operators)for STOP AFTER queries,particularly
when the cardinality limit 	 is small. This is because
pipelinedexecutionplansquickly producetheirfirst row (i.e.,
cost
 ��
��.-0/); therefore, the relative cost of the STOP
AFTER query will be proportional to its cardinality limit
	 . In contrast,if the Scan-Stopoperator’s input streamis
producedbyapipeline-breakingsubplan(e.g.,onewith asort-
merge join in it), thenthe cost to produce	 tupleswill be
almostthesameasthecostto produceALL tuples.

3.1.2 Sort-Stop

If the input of a (logical) Stopoperatoris not alreadysorted,
then the Stop operatormust consumeand sort its whole
input to producethe top or bottom 	 output tuples. For
relatively small 	 (which we expectto bethemostcommon
case),the sortingcanbe carriedout in main memoryusing
a priority heap[Knu73]. The first 	 tuplesconsumedby
the Sort-Stopoperatorcan be insertedinto a priority heap,
andthe remainingtuplescan thenbe testedwith the heap’s
membershipbound to determinewhether or not the new
tuple’s valuewarrantsits insertioninto theheap.Thecostof
producing	 resultswith thisimplementationof theSort-Stop
operatorhasthe following threecomponents:(1) thecostof
generatingthewhole input streamfor theSort-Stopoperator
(cost
 (ALL)), (2) the costof testingALL �1	 tuplesagainst
the heap’s membershipbounds(� ALL ��	��2�43 , where 3
is the cost of a comparison),and (3) the costof inserting 5
qualifying tuplesinto a heapwith atmost 	 elements(where
5 is estimatedbelow). In all, the resultingplan costcanbe
estimatedas shown in Equation2; again,we assume	6&
ALL, asfor 	,+ ALL, cost���"	��7� cost�8� ALL).

cost� ��	��7� cost
 � ALL �9�:� ALL �;	��<�=3$�>5?� @BADC��"	�� (2)

Assumingrandomlyordereddata,5 canbeestimatedas:

5=�E	:� 	
	.�F
 �

	
	G�IH �KJLJLJM�

	
ALL

�N� HALL � H OP�Q
��R�?	
(3)

(Here,H S denotesthek-th harmonicnumber[Knu73].)
Again, this cost estimateassumesthat 	 is small and

that a heapof 	 tupleswill fit in memory. For larger 	 ,
external sorting is required. Although Sort-Stop’s specific
requirementsinvite thedesignof a specializedexternalSort-
Stopalgorithm,we will not discusssuchan algorithmhere.
Instead,wewill assumeaSort-Stopimplementationthatuses
an ordinary external Sort operatorin conjunctionwith the
Scan-Stopoperatorwhen 	 is large.

3

3.2 The ConservativePolicy
We now turn to thequestionof whereStopoperatorsshould
beplacedin a queryplan. Stopoperatorplacementinvolves
a fundamentaltradeoff: On onehand,a deeplyplacedStop
operatorwill cut down the sizeof intermediateresultsearly,
thusreducingthecostof operatorshigherup in theplan. On
theotherhand,it is possiblefor adeeplyplacedStopoperator
to eliminatetoo many tuplesof an intermediateresult; this
situationmustthenbetrappedat run-time,andtheexecution
of the query must be restarted to producethe remaining
(missing)tuplesof thequeryresult.

An idealoptimizerwouldweightherisk andcostof restarts
againstthebenefitsof deepStopoperatorsplacement.How-
ever, currentoptimizershave no notionof risk. We therefore
proposethe useof a heuristicStopoperator placementpol-
icy to assisttheoptimizerin placingStopoperatorsin a plan.
In this subsection,we will presentthe Conservativepolicy,
which completelyavoidsrestartsby restrictingStopoperator
placementto “provably safe” locationsin a plan. In thenext
subsection,wewill presenttheAggressivepolicy, whichdoes
permittheplacementof Stopoperatorsatunsafeplaces.

3.2.1 ConservativeStopPlacement

The Conservative policy introducesStopoperationsasearly
aspossiblein a plan,subjectto thefollowing principlewhich
makessurethatundernocircumstancesrestartsarerequired:

ConservativeStopPlacementPrinciple: Never insert
a Stopoperatorat a point in a planwhereits presence
cancausetuplesto bediscardedthatmayberequired
to composetherequestedN tuplesof thequeryresult.

Intuitively, a Stopoperatorcanbeappliedto a tuplestreamif
everytuplein thatstreamis guaranteedto generateatleastone
tupleof theoverall queryresult. During queryoptimization,
this conditioncan be testedfor a tuple streamproducedby
a subplanby (i) inspectingthe querypredicatesthat remain
to beappliedfollowing the subplan(to completethe query),
and(ii) examiningtheintegrity constraintsinvolving columns
thatparticipatein theseremainingpredicates.Thecondition
is satisfiedfor the subplan’s output streamif eachof the
remainingpredicatesis non-reductive, definedasfollows:

1. the predicateis of the form TU� V , where T is an
expressioncomputablefrom the stream and V is an
expressioninvolving oneor moretablesyet to be added
to theplan,and

2. it canbe inferredfrom the databaseintegrity constraints
that (i) T cannotbe null, and (ii) for each T theremust
exist at leastone V suchthat T;�WV holds.

For example,if T is a columnwith a NOT NULL constraint,
andthedatabasehasareferentialintegrity constraintdeclaring
that T is a foreign key that referencesa table yet to be
joined whosekey is V , then thesecriteria aremet—making
TN�XV a non-reductive predicate. In the caseof outer-join

predicates,thetwo conditionscanberelaxedbecausea tuple
from the outer relation survives even if no matchingtuple
from the inner relationexists. In the caseof GROUP BY or
DISTINCT queries,if the groupingoperation(or duplicate
elimination)remainsto bedone,a similar setof rulescanbe
derived. In this case,the tuple streammustbe functionally
dependentontheGROUP BY (orDISTINCT) column(s),and
any HAVING predicatesmustalsosatisfytheconditionsabove
so that all groupswill survive. Naturally, the Conservative
Stop insertionconditionswill always hold at the root of a
plan for thewholequerybecauseno predicatesremainto be
appliedat that point. In all cases,theStopoperatorinserted
will have a cardinalityparameterof 	 , where 	 is thevalue
specifiedin theSTOP AFTER clause.

3.2.2 ConservativePlan Examples
Considerthe following databasefor managinga company’s
employees,departments,andemployees’ travel expenseac-
counts(TEAs):

Emp(empId, name,salary, works in, teaNo)
Dept(dno, name,budget,function,description)
TEA(accountNo, expenses,comments)

The underlinedcolumnsarethe primary keys for the tables,
while the italicizedcolumns(works in, teaNo) arefor-
eign keys. In addition to key and referentialintegrity con-
straints,we assumethat the databasehasan integrity con-
straintto enforcethe fact that every employeemustwork in
a department;i.e., Emp.works in is NOT NULL. Finally,
weassumethatnotall employeestravel, sothecorresponding
specificationfor Emp.teaNo wouldsayNULL ALLOWED.

Figure 1 shows threeSTOP AFTER queries,with corre-
spondingqueryexecutionplans,to show how Conservative
Stopplacementworks. In Query1, a Stopoperatorcanbe
placedbeneaththejoin ontheEmp side(i.e.,justaboveascan
of theEmp table). This is permittedbecausee.works in
= d.dno is a non-reductivepredicate.In contrast,in Query
2, theplacementof a Stopoperatorwill be forbiddenat that
point in the plan, as two predicatesremain: e.works in
= d.dno andd.function = ’Research’. The latter
predicateis not non-reductive: If theEmp tuplestreamwere
reducedto the10 highestpaidemployeesbeforethejoin, the
querycouldcomeup short,asjoining thoseemployeeswith
only researchdepartmentscouldeliminatemany of them.Y Fi-
nally, in Query3, which asksfor thebottom10 tuplesby de-
partmentalbudgetratherthanthetop 10 by employeesalary,
theStopoperatormustagainbeplacedabove,ratherthanbe-
low, the join. In this case,the join predicateitself is non-
reductive, as our integrity constraintsprovide no guarantee
thateverydepartmenthasat leastoneemployee.

To completeour discussionof the Conservative approach,
we needto raiseonesubtlepoint that we have glossedover
up to now. Even if a join predicatesatisfiesthe criteria for
beingnon-reductive,it is possiblethatthejoin mayreducethe
Z
Lou Gerstner, for example,is not anIBM researcher!

4

SELECT [
FROM Emp e, Dept d
WHERE e.works in = d.dno
ORDER BY e.salary DESC
STOP AFTER 10;

SELECT [
FROM Emp e, Dept d
WHERE e.works in = d.dno
AND d.function = ’Research’
ORDER BY e.salary DESC
STOP AFTER 10;

SELECT [
FROM Emp e, Dept d
WHERE e.works in = d.dno
ORDER BY d.budget
STOP AFTER 10;

Emp

Stop(10)

Join

Dept

Emp

Stop(10)

Join

Dept Dept Emp

Stop(10)

Join

Query1 & Plan1 Query2 & Plan2 Query3 & Plan3

Figure1: ExampleQueriesandConservativePlans

cardinalityof theinputstreamin question—thiscanhappenif,
andonly if, theto-be-joinedtableis empty, in whichcaseeven
a Cartesianproductwith this table will reducethe stream’s
cardinality(to zero). While true, this doesnot invalidateour
specificationof theConservativeapproach,asthequeryresult
is itself emptyin this case—sopruningthe tuplestreamwill
notcauserequiredtuplesto beerroneouslydiscarded.

3.3 The AggressivePolicy
TheConservative policy hasseveraladvantages:its Stopop-
eratorssimply take their valueof 	 from theSTOP AFTER
clause,andConservativeexecutionplansareastraightforward
extensionof regularplans(with Stopsaddedin strategic but
safeplaces).It alsohasa disadvantage,however: it only in-
sertsStopoperationsatpointswhereall remainingpredicates
arenon-reductive,soin theabsenceof NOT NULL andrefer-
ential integrity constraints,it cannotplaceStopoperatorsbe-
low joins in multi-way join plans.Giventhatjoins areexpen-
siveoperationsthatbenefitsignificantlyfrom inputcardinality
reductions,it would beniceif we couldrelaxthis restriction.
Thatis thegoalof theAggressivepolicy.

3.3.1 AggressiveStopPlacement

TheAggressive policy seeksto introduceStopoperationsas
early in queryplansaspossible,regardlessof whetheror not
theirinsertionis provablysafe.In otherwords,theAggressive
policy operatesaccordingto thefollowing principle:

AggressiveStop PlacementPrinciple: Insert Stop
operatorsin queryplanswherever they canprovide a
beneficialcardinalityreduction.

Thus,an optimizer that employs the Aggressive policy will
considera Stop insertionat eachpoint in a queryplan tree
where the first (high order) column of the query’s ORDER
BY clausecan be computed,i.e., at eachpoint wherea set
of top (or bottom) tuples can be identified with respectto
therequestedresultorder. Severalnew issuesarisewhenthe
optimizeris ableto generateplanswith aStopoperatorbelow
oneor morereductive predicates.First of all, the optimizer
mustnow computethe stoppingcardinality for sucha Stop
operator;this canbe doneusinga simple formula basedon
the cardinalityestimatesutilized by a typical state-of-the-art
queryoptimizer. Let ALL \^]`_badc be the estimatednumberof

tuplesthatwouldbeproducedby thequeryasawholewithout
any Stops,and let ALL ef]`gLhLi jlk be the estimatednumberof
tuplesproducedby thesubplanthatfeedstuplesinto theStop
operatorin question. As always, let 	 denotethe target
cardinalityof thequeryasa whole(thevaluespecifiedin the
STOP AFTER clause).Given thesequantities,the stopping
cardinalityfor theStopoperatorin questionshouldbesetto:

	nm^o�p h � ALL ef]`gLh`i jlk
ALL \^]`_badc �2	 (4)

In otherwords,theStopshouldreducethecardinalityof the
tuplestreamat its point in theplan in proportionto theopti-
mizer’sestimateof theoverallcardinalityreductionrequested
by theuser. In practice,it would bebetterto inflatethestop-
ping cardinalityby, say, 20%to accommodateestimationer-
ror; wewill explorethis issuefurtherin Section5.

Sincesettingthestoppingcardinalityin this way relieson
cardinalityestimates,additionalstepsmustbetakento ensure
that the right numberof result tuplesis ultimately produced
by an Aggressive query plan. To handlesituationswhere
the Aggressive optimizer sets a Stop operator’s stopping
cardinality too high, another(final) Stop operatormust be
placedat (or near)the root of the plan. To handlesituations
wherethe stoppingcardinalityis settoo low, the queryplan
mustbe restartedto producethemissingtuples.We propose
to handlethe requiredrestartactivity at runtime by having
a well-placedRestartoperatorin the Aggressive queryplan.
Wepresentthisoperatorin thefollowing subsection,showing
how it canbe addedto an Aggressive Stopplan aspart of a
plan refinementstepthat takesplaceafter Aggressive query
optimizationis completed.

3.3.2 Restartsand Plan Refinement
The job of a Restartoperatoris to make sure that, above
the point where it is placedin the query plan, at least 	
tupleswill surelybegenerated.If theRestartoperator’s input
streamis exhaustedbefore	 tuplesarereceived,thenit must
“restart”thequerysubplanbeneathit to generatetherequired,
but missing,results.Thereareseveralpossiblestrategiesfor
actuallyrestartinga querysubplan.Ideally, we would like to
computethe missingtupleswithout recomputingany of the
resultsthatwehavealreadygathered.However, thiswould in
somesituationsbedifficult (if not impossible)to accomplish

5

withoutmakingall of thesystem’soperatorsrestartable.
Toq handlerestartswithout changingexisting runtimeoper-

ators,we adopta simpleapproach:the Restartoperatorwill
simplycloseandthenre-opentheiteratorassociatedwith the
operatorthatfeedsit tuplesfrom thesubplanimmediatelybe-
neathit—causingthe root operatorof the subplanto recur-
sively closeandre-openits own input iterator(s),andso on
down the line. The Stop operatorin the scopeof the sub-
planwill reconfigureitself whenit is reopenedby increasing
its stoppingcardinalityby a predeterminedfactor(e.g.,a fac-
tor of 2) to let moredatathroughthenext time around.The
otheroperatorsin thesubplanwill simply startover from the
beginning,thoughtheir costwill be lower sincemuchof the
relevantdatawill still bein thebuffer pool. To ensurethatthe
correctnumberof resultsareultimatelyproduced,theRestart
operatorwill repeatthisprocess(if necessary)until it haspro-
duced	 tuplesor therearenomoretuplesto produce.

Restartoperatorinsertioncanbe doneby post-processing
the optimizer’s chosenqueryplan asfollows: Find the non-
Conservative Stop operatorin the plan and insert a Restart
operator at the first point above it where all remaining
predicatesarenon-reductive. If we produce	 resultsthere,
weare“safe”; nofurthercardinalityshrinkagecanoccur. The
post-processorcansimplywalk uptheplantreefrom thenon-
Conservative Stop operatorin order to placethe Restartas
deeplyaspossible(to minimizethecostof a restart).

For Aggressivequeryplansthatarefully pipelined,or have
pipelinedsections,thereis anadditionalplanrefinementthat
is possibleand very useful: Scan-Stoppullup. This trans-
formation pulls Scan-Stopoperatorsresidingin a pipelined
segmentof a queryplan up to the top of the pipeline. This
reducesthe risk of restarts,as it re-positionsthe Scan-Stop
above reductive predicatesin the pipeline(whoseimpacton
the tuple streamcardinality might be difficult to estimate).
In the extremecase,whenall the remainingreductive pred-
icatesareappliedin the pipeline,Scan-Stoppullup converts
anAggressive Scan-Stopoperatorinto a Conservative one—
completelyeliminatingthe risk of restarts;Scan-Stoppullup
must,therefore,be performedbeforeRestartoperatorplace-
ment,andwhenthe pullup transformationis performed,the
cardinalityparameterof theaffectedScan-Stopoperatormust,
of course,be recomputedbasedon its new position in the
query plan. Note that Scan-Stoppullup is never detrimen-
tal. Consider, for example,a Scan-Stopoperatorsitting im-
mediatelybeneatha pipelinedoperatorsuchasa nestedloop
index join (NLIJ). In suchacase,nothingis gainedby having
theScan-Stopoperatorsit beneaththeNLIJ operator, because
theNLIJ producesoutputincrementally, on demand—i.e.,its
cost is proportionalto the amountof datathat it is asked to
materialize,not to thesizeof its inputs.We canthuspull the
Scan-Stopoperatorup above theNLIJ without increasingthe
costof the plan. This pullup opportunityarisesbecausethe
two NLIJ planswill have thesamecostduringplanenumer-
ation,andtherisk of restartsis not takeninto accountduring
enumeration.

TEA
r

Emp

Stop(20)
s

Stop(10)
s

Join
t

DeptRestart

Join
t

TEA
u

Emp

Stop(20)
v

Dept

Join
w

Join
w

Restart

Stop(10)
v

Plan1 Plan2

Figure2: AggressiveStopPush-Down for a 3-WayJoin

3.3.3 AggressivePlan Examples
Figure 2 shows two examplesof query plansthat could be
producedby Aggressive Stopoptimizationfollowedby plan
refinementfor thefollowing query:

SELECT e.name, e.salary, d.name, t.expenses
FROM Emp e, Dept d, TEA t
WHERE e.works in = d.dno

AND e.teaNo = t.accountNo
ORDER BY e.salary DESC;
STOP AFTER N;

Recall that all employeeswork in somedepartment,but not
everyemployeehasa travel account.For illustration,suppose
that half of the employeeshave a travel account(i.e., an
associatedTEA tuple). In Plan1 of Figure3, whereEmp is
joinedwith TEA first, theAggressiveapproachis ableto place
aStopoperatorjustabovethescanof Emp, atwhichpoint the
stoppingcardinalityis setto 20 (becausexzy{yD|M}�~���� �"�xzy{yD� }b�f��� �NH and
	��*
`/). Becausethis Stopoperatoris non-Conservative,
a correspondingRestartoperatoris needed;it goesabove
the first Join, wherethe Conservative approachwould have
placeda Stop(10)operator. If the join is non-pipelined(e.g.,
a sort-mergeor hashjoin), theAggressive plancanprovidea
significantjoin costsavingsoverits Conservativecounterpart.

In Plan2, thejoin with theTEA tablecomeslast. Sinceits
join predicateis reductive, theConservativeplanfor this join
orderwould only be ableto placea Stop(10)operatorat the
root of the plan. In contrast,the Aggressive approachagain
placesaStop(20)operatorright abovewhereEmp is accessed.
Thepotentialcostsavings in this caseis obviously large—if
eitherjoin is non-pipelined,Plan2 is quitea bit cheaperthan
its Conservative(in thiscase“do nothing”)counterpart.

3.4 ExtendedQuery Optimization
Stopoperatorsimpactthecostof otheroperationsin a query
plan, thus affecting optimization decisionssuch as access
path selection,join methods,and join orderings. We now
show how to extendamodernqueryoptimizer—onethatuses
dynamicprogramminga la [S

�
79]—to incorporateour Stop

placementpolicies.

3.4.1 Plan Enumeration
Modernqueryoptimizersuserulesto controltheenumeration
of alternative queryplans[GD87, Loh88]. To enumerateall
possibleplanswith Stopoperators,weproposemodifyingthe
optimizer’s rule set to model the Stop operatoras another

6

kind of accesspath for intermediateresults. This will
cause� thequeryoptimizerto consideraddinga Stopoperator
immediatelyafter eachof its usualwaysof accessingeither
basedataor subplandata. Moreover, this changeintroduces
Stopswith minimal impacton the optimizerasa whole, as
therestof its rulesetremainsuntouched.This is importantto
ensuremodularity, andthereforemaintainability, of theStop-
enhancedrule set.Theinsertionof a Stopoperatormustalso
be consideredat the root of eachquery plan to ensurethat
the right numberof result tuples(asspecifiedby the STOP
AFTER clause)will bereturnedto theapplication.Thiscanbe
accomplishedthroughanothernew rule thatconsidersadding
aStopoperatorat thisfinal point.

Once theseadditional Stop rules have beenestablished,
both the Conservative and Aggressive policies can easily
be integratedby defining conditionsthat control in which
situations(i.e.,for whichsubplans)aStoprulecanbeapplied;
again,other rulesof the optimizerarenot affected. A vital
conditionfor bothpoliciesis thataStopoperatormayonly be
generatedat placesin a plan wherethe top or bottomtuples
canbe identified(i.e., whereat leastthe first columnof the
query’sORDER BY expressionis computable).To implement
theConservativepolicy, theconditionsof theStopruleswould
further be restrictedto generateStopoperatorsonly at safe
places(asdefinedin Section3.2). Sucha restrictionwould
notbeconsideredfor theAggressivepolicy.

An important issueto make plan enumerationmore effi-
cient is to avoid the enumerationof planswith superfluous
Stop operators. To keep track of the placeswherea Stop
operatoris useful,we introducean additionalplan property
called stoppingcardinality. (The useof plan propertiesis
a commontechniqueimplementedin most query optimiz-
ers[GD87, Loh88, S

�
96].) For the Conservative policy, the

stoppingcardinalitypropertycantakeoneof two values:EN-
FORCED,indicatingthattheplan’s resultstreamalreadysat-
isfiestheSTOP AFTER clause’s cardinalityspecification,or
NOT ENFORCED,indicatingthat this is not true. At leaves
of plans(e.g.,tablescans),the stoppingcardinalityproperty
is setto NOT ENFORCED;it is setto ENFORCEDwhena
(Conservative)Stopoperatoris addedto theplan. This prop-
erty is “destroyed” (resetto NOT ENFORCED)by operators
that potentiallychangethe cardinalityof their input streams
(e.g.,certainjoins),andis transportedby otheroperators.Us-
ing theConservativepolicy, therefore,Stopoperatorscanonly
beaddedto NOT ENFORCEDsubplans,andagain,this con-
straintcanbeimplementedin theconditionpartof therules.

In addition to ENFORCEDand NOT ENFORCED,the
stoppingcardinalitycanbe set to ASSISTEDto supportthe
Aggressive policy. This is doneby a non-Conservative Stop
operatorwhosestoppingcardinality is basedon cardinality
estimates,andit specifiesthatcardinalityreductionhasbeen
performedbut that an additional Stop operator is needed
at (or near) the root of the plan to guaranteeENFORCED
cardinality for the whole plan. An ASSISTED stopping
cardinalityis transportedby every operator;it is overwritten

by thefinal ConservativeStopoperator, soonly planswith at
mostonenon-ConservativeStopoperatorareenumerated.

3.4.2 Impact on Pruning
In thedynamicprogrammingapproachto queryoptimization,
a (sub-) plan � � is prunedin favor of a (sub-) plan � Y if
andonly if � � hasboth a highercostandweaker properties
than � Y . In addition to the propertiesconsideredin a
traditionaloptimizer, our STOP-AFTER-extendedoptimizer
must respectcertain additional pruning conditions. If the
output of � � and � Y is orderedaccordingto the query’s
ORDER BY expression, then � � may only be pruned in
favor of � Y if � � has higher cost and weaker properties
(asin traditionaloptimizers)and cost(Scan-Stop(� �L� 	 e o�p h))�

cost(Scan-Stop(� Y � 	 e o�p h ��� . � Otherwise,even if � � has
highercostthan � Y for producingall results,� � maybepart
of the overall bestplan to produce 	 results. As statedin
Section3.1.1,this conditionwill forcetheoptimizerto retain
planswith (seeminglyexpensive)pipelinedoperators,suchas
scansof unclusteredindexes.

If � � and � Y are not orderedaccordingto the query’s
ORDER BY expression,all of their tuplesmustbe produced
to computetheoverall orderedqueryresult. In this case,our
Stop-enhancedoptimizermuststill respectcertainadditional
pruning conditions to retain query plans with deep Stop
operators.To seewhy, considerthefollowing query:

SELECT *
FROM Emp e, Dept d
WHERE e.works in = d.dno
ORDER BY e.salary
STOP AFTER 100

Supposethat the databasehas10,000employeesand 1,000
departments,andthata Sort-Stopoperationon 10,000tuples
costs40,000units,ascomparedto 200unitsfor eithera Sort-
StoporaplainSortoperationon100tuples.Also,assumethat
asort-mergejoin costs43,000unitsto join 10,000employees
with 1,000departments,versus3,200units for a sort-merge
join between100 employeesand 1,000 departments. (For
simplicity, weuse��@BADC�� to approximatethecostof sorting �
tuplesfor a Sort-Stopor sort-mergejoin.)

During planenumeration,the following two subplanswill
beenumerated,amongothers:

P� = SMJoin(Sort-Stop(Emp),Dept)
PY = SMJoin(Emp,Dept)

Given our assumptions,the cost estimatefor subplanP� is
43,200units (40,000+ 3,200),while the costof � Y will be
estimatedas43,000units,whichis slightly lower. To produce
the final queryresult in the requestedorder(e.salary), a
Sortoperatorcosting200unitscanbeattachedto � � , giving a
totalcostof 43,400units.For � Y , aSort-Stopoperatorcosting
40,000units is required,resultingin a total cost of 83,000
units.Thus,thewinningplanis basedon � � ratherthan � Y —
eventhough� � itself hashighercostthan � Y . This is because
� � hasstrongercardinality properties;i.e., � � produces100
�
Scan-Stopcostasin Equation(1); �7���d��� asin Equation(4.

7

SELECT� e.name, e.salary
FROM Emp e
ORDER BY e.salary DESC
STOP AFTER N;

SELECT e.name, e.salary,
d.name

FROM Emp e, Dept d
WHERE e.works in = d.dno
ORDER BY e.salary DESC
STOP AFTER N;

SELECT e.name, e.salary,
d.name, t.expenses

FROM Emp e, Dept d, TEA t
WHERE e.works in = d.dno

AND e.teaNo = t.accountNo
ORDER BY e.salary DESC
STOP AFTER N;

TestQuery1 TestQuery2 TestQuery3

Figure3: STOP AFTER TestQueries

tuplesandhasa stoppingcardinalityof ENFORCED, whereas
� Y produces10,000tuplesandhasa stoppingcardinalityof
NOT ENFORCED. In general,a planhasstrongercardinality
propertiesthananotherplanandmaynot be prunedif it has
a smallerestimatedresultcardinalityor a strongerstopping
cardinalitypropertyobeying the total order: ENFORCED >
ASSISTED > NOT ENFORCED.

Obviously, addingrulesfor Stopenumerationandrestrict-
ing pruningincreasesthesizesof thequeryoptimizer’ssearch
spaceandits setof candidatequeryplans.Studyingthis im-
pactis beyondthescopeof thispaper, but giventheefficiency
andpre-existing complexity of modernqueryoptimizers,we
do not believe thatour extensionswill seriouslyimpacttheir
performance.In fact, relatedsearchspaceissueshave been
studiedin thecontext of GROUP BY queryoptimization(e.g,
[CS94]); thoseresultsaredirectlyapplicablehere.

4 Evaluation Methodology

We have proposedtwo approachesto placingStopoperators
in executionplansfor STOP AFTER queries. To compare
them to eachother, and to the “do nothing” approach,we
will employ a syntheticdatabaseand several representative
STOP AFTER queries. Our approachwill be to “cheat”—
using our knowledgeof the attribute value distributions to
translatetheSTOP AFTER queriesinto regularSQL queries
with additionalpredicatesthat force the target DBMS do an
amountof work that is essentiallythe sameas if its query
planswereStop-enhanced.

4.1 SyntheticDatabase
For the test database,we used the tables and integrity
constraintspresentedin the examplesof Section 3. We
controlledtheattributevaluedistributionsto facilitateour test
queriesandbuilt indexesonall therelevantattributes.

Our test databaseconsistsof the Emp, Dept, andTEA
tablesintroducedearlier. The integrity constraintsspecify
that every employee works in a department,but not every
employeehasatravel account.Eachtableholds100,000rows
of 100byteseach.(Wealsotriedothertablesizes,includinga
muchsmallerDept table,butwill notshow thoseresultshere;
we saw large performancebenefitsfor our STOP AFTER
schemes,but sincetheDept join itself wasinexpensive, the
basicresultsweresimilar to our single-tablequery results.)
Thetables’attributevaluesweresynthesizedto controlrange
predicateselectivities and join selectivities. Emp.salary
valuesrangedfrom 0 to 99,999, and the key and foreign
key valueswere chosenso that eachEmp row joins with
exactly one Dept row and one TEA row. We created

clusteredindexeson Dept.dno andTEA.accountNo to
supportjoins betweeneachof thesetablesandtheEmp table.
Our experimentsvariedthe index createdon Emp.salary,
whichwasthefield usedin theORDER BY clausesof ourtest
queries—wetried clustered,unclustered,andno index at all,
usinga descendingorder index in the caseswherethis field
wasindexed.

4.2 TestQueries

Ourtestqueriesareshown in Figure3. Thequeriesrangefrom
asimplesingle-tablequeryto morecomplex join queries.The
first querysimply finds the 	 mosthighly paid employees.
Its purposeis to investigatethe impactof theSTOP AFTER
clauseon (1) row blocking (for sendingthe result set back
to the client), (2) accesspathselection,and(3) coststo sort
query results. The secondquery finds the 	 most highly
paid employeesand their departmentnames. Its purposeis
to show theimpactof theSTOP AFTER clauseonthechoice
of join method.Thethird queryfindsthe 	 mosthighly paid
employees,including both their departmentnamesandtheir
travel expenses.Its purposeis to provideamorecomplex join
exampleto explore the tradeoffs betweenthe Conservative
and Aggressive approaches.For eachquery, we varied the
requestedstoppingcardinality 	 from 1 to 100,000.

4.3 DB2 Simulation Approach

Giventhesequeries,we wantedto know—beforeembarking
on an actualimplementation,andfor a real DBMS with so-
phisticatedqueryoptimization(includingcardinalityestima-
tion) andan industrial-strengthruntimesystem—how much
benefitcouldbeobtainedfrom our STOP AFTER optimiza-
tionsasafunctionof thestoppingcardinality 	 andthephys-
ical databasedesign. We choseto “simulate” the execution
of Stopplanson IBM’ s DB2 for CommonServersby replac-
ing eachquery’sSTOP AFTER clausewith anappropriately
designedEmp.salary predicate.

For Queries1 and 2, we can createregular DB2 queries
that require the sameamount of work by dropping their
STOP AFTER clausesand addinga predicateof the form
e.salary >= 100,000-N. Rewriting the queries this
waysimulatestheeffectof placingaStopoperatorjustabove
the tableor index scanof the tableEmp, as it givesDB2 a
predicatetoapplyatthatpointthathasthesamefilteringeffect
astheStopoperatorwouldhavethere.

For Query 3, we can simulatea Conservative versionof
Plan 1 of Figure 2, wherethere is one Stop operatorthat
sits immediatelyabove the join Emp � TEA (in place of
Figure2’sRestartoperator),via thefollowing DB2 query:

8

SELECT e.name, e.salary, d.name, t.expenses
FROM� Emp e, Dept d, TEA t
WHERE e.works in = d.dno

AND e.teaNo = t.accountNo
AND e.salary + t.zero � 100,000-N

ORDER BY e.salary DESC;

The field TEA.zero is a specialfield of the TEA table
that simply containsthe value 0 in eachrow. Using this
field, we have translatedtheSTOP AFTER N clausein the
original versionof Query 3 into the predicatee.salary
+ t.zero >= 100,000-N; doing so providesthe same
selectivity asthe simplerpredicateintroducedfor Queries1
and2, but forcesDB2 to wait until afterEmp andTEA have
beenjoinedbeforerestrictingthenumberof tuples(wherethe
Conservatively placedStopoperatorwoulddo it).

WecanalsosimulateanAggressiveversionof Query3,one
wheretheStopoperatoris pusheddown to theEmp table,and
wherethereis a Restartoperatorat the top of thequeryplan
to handlethecasewherean estimationerrorcausesthe plan
to prematurelyrun out of tuples.� We cando so by running
the following query, which has a pair of parameterized
predicatesonEmp.salary, againstDB2 from within aC++
applicationprogramthat usesthe parametersto simulatethe
effectsof estimationandrestarts:

SELECT e.name, e.salary, d.name, t.expenses
FROM Emp e, Dept d, TEA t
WHERE e.works in = d.dno

AND e.teaNo = t.accountNo
AND ? � e.salary AND e.salary � ?
AND e.salary + t.zero � 100,000-N

ORDER BY e.salary DESC;

Instantiationof the two queryparameters(the “?”s) enables
the C++ programto simulateunderestimation,preciseesti-
mation,andoverestimationof therequiredcardinalityfor the
Stopoperator;it alsoallows theprogramto simulatea restart
of thequery. In additionto thisparameterizedrangepredicate,
theDB2-translatedaggressive querystill includesthespecial
predicateinvolving TEA.zero to simulatethepresenceof a
StopoperatorafterEmp � TEA; this operator’s job is to cut
down thecardinalitywhentheparametersof therangepredi-
cateleadto a rangethat is too large(simulatinga casewhere
therequiredcardinalityis overestimated).

4.4 TestEnvir onmentDetails
OurtestswererunonanIBM RS/6000PowerStation550with
128MB of main memoryrunning AIX 4.1.4. We usedthe
productversionof IBM’ sDB2 for CommonServers(Version
2.1.1). We usedDB2’s default settingsalmostexclusively,
whichgaveus4 MB of main-memorybuffer space(desirable
so that we didn’t have to generatea hugedatabasefor our
tests),a512KB applicationheapfor row blocking,andquery
optimizationlevel 5. All querieswere run againsta warm
database(though this was largely a non-issuebecausethe
databasesize was much larger than the buffer pool). We
measuredwarm times becausecold query execution times
werenot accuratelymeasurablefor theshorterqueries(such

Note:WecouldnotsimulateaRestartoperatorin themiddleof aplan.

as index scansfor small valuesof); obtaining accurate
times required running them several times and reporting
(total elapsedtime/ no of runs).

5 Experimentsand Results

In this section,weuseoursyntheticdatabaseandtestqueries
to explore, using the DB2 “simulation” schemeoutlined in
theprevioussection,(i) theperformancebenefitsof ourSTOP
AFTER optimizationtechniquesand(ii) thetradeoffsbetween
AggressiveandConservativequeryplans.

5.1 Traditional vs.STOP AFTER Query Optimization

We begin by examiningthebenefitsof STOP AFTER query
optimization for single table queries; we then explore its
impacton join queries.Resultsaregivenfor threeapproaches
in this section:(1) TRADITIONAL, which is the traditional,
“do nothing” approachin which an application program
handsDB2 theoriginalSTOP AFTER querywith theSTOP
AFTER N clauseremoved, opensa cursorover the results,
requests	 rows (oneat a time), andthenclosesthe cursor.
(2) TRAD(NRB), which is thetraditionalapproach,but with
no row blocking. By default, the DB2 server processships
answersetsto client processesin largeblocksof rows (based
on the applicationheapsize) to minimize communication
costs;theTRAD(NRB) resultswereobtainedby turningthis
featureoff, therebymakingthe server sendresultsbackone
row at a time. (3) STOP-AFTERwhich is the Conservative
STOP AFTER optimization approach; these results were
obtainedby sendingDB2 the “simulated” STOP AFTER
queriesdescribedin Section4.3.

5.1.1 SingleTableQueries(Query 1)

Figure 4 presentsthe performanceresultsfor Query 1 as a
functionof 	 , thequery’sstoppingcardinality, whenthereis
a clusteredindex availableon Emp.salary. Query1 gets
thenamesandsalariesof the 	 mosthighly paidemployees.
In all threeapproaches,DB2 utilizes the clusteredindex to
processthequery—toextract the resultsin thedesiredorder
without sorting—soall of the performancedifferencesseen
here are due to row blocking. TRADITIONAL has very
poor performance(note the logarithmic y-axis!) for small
	 becauseit groupsquery resultsinto blocksof about500
rows beforesendingthem back to the client; this is clearly
a wastewhenrelatively few of theresultrows areultimately
consumedby theapplication.TRAD(NRB) performswell for
small 	 , but becomesrelatively worsefor large 	 because
it requiresa client/server interactionfor eachresultrow. At
	¡�.
�/D/ � /D/¢/ , TRAD(NRB) endsup being2.5 timesslower
thanTRADITIONAL. In contrast,STOP-AFTERdoeswell
throughouttheentire 	 range.In this case,DB2 sendsresult
rows back in chunksof min(, applicationheap), as the
STOP-AFTERplan limits the resultsizeon the server side;
this is goodfor small 	 becauseit avoids wastedwork, and
goodfor large 	 becauseit involveslow overheadwhenmany
resultsareindeeddesiredby theapplicationprogram.

9

0.001

0.01

0.1

1

10

100

1 10 100 1000 10000 100000

R
es

po
ns

e
T

im
e

[s
]

£

N

TRADITIONAL
TRAD (NRB)

STOP-AFTER

Figure4: Resp.Time(log), Q1
ClusteredIndex onEmp.salary.

0.001

0.01

0.1

1

10

100

1 10 100 1000 10000 100000

R
es

po
ns

e
T

im
e

[s
]

£

N

TRADITIONAL
TRAD (NRB)

STOP-AFTER

Figure5: Resp.Time(log), Q1
UnclusteredIndex onEmp.salary.

1

10

100

1 10 100 1000 10000 100000

R
es

po
ns

e
T

im
e

[s
]

£

N

TRADITIONAL
TRAD (NRB)

STOP-AFTER

Figure6: Resp.Time(log), Q1
No Index on Emp.salary.

Figure 5 presentsthe resultsfor Query 1 when there is
an unclustered index on Emp.salary. The traditionalap-
proachesusea table-scanfollowed by a sort to obtain the
queryresult; they do not know that the applicationprogram
will only request	 of theresults,andthetable-scan/sortplan
is a cheaperplan for Query 1 in the absenceof the STOP
AFTER clause. In contrast, the STOP-AFTER approach
choosesthe unclusteredindex to obtain the resultswhen 	
is small, as it hasenoughinformation to comparethe costs
of producingthe requested	 tupleseachway. As a result,
STOP-AFTERperformsmuchbetterthaneitherof the tradi-
tionalapproachesfor mostof therangeof 	 values,entering
the ballpark of their performanceonly for 	¤+¥�¦
�/ � /¢/D/ .
TRADITIONAL and TRAD(NRB) perform similarly until
this region, at which point the costof client/server commu-
nication becomessignificantenoughto causeTRAD(NRB)
to performworsethanTRADITIONAL.

Lastly, Figure 6 presentsthe results for Query 1 when
thereis no index on Emp.salary. In this case,all three
approachessort to producethe query’s orderedresult set.
STOP-AFTERhasthe lowestcosthere(by abouta factorof
threeat 	§�¨
) becauseit only sortsthe 	 rows actually
of interest to the applicationprogram.© In contrast,both
traditionalapproachessort100,000rows,makingthemquitea
bit moreexpensive.Again,TRAD(NRB) is somewhatslower
thanTRADITIONAL due to the costof shippingthe query
resultbackto theapplicationonerow ata time. (In fact,from
thispoint on wewill stopshowing TRAD(NRB) results,asit
consistentlylost to TRADITIONAL in theremainingtests.)

5.1.2 Join Queries(Query 2)

Figures7- 9 show the resultsfor Query2. This queryasks
for the name,salary, and departmentnameof the 	 most
highly paidemployees,soit is like Query1 with theaddition
ª
TheDB2 queryplanfor thissimulatedSTOP AFTER versionof Query1

is atablescan,with theEmp.salary predicatebeingapplied,followedby a
sortto orderthequeryresult;thissortis small,occurringin memory, for small
� . TheactualSTOP-AFTERqueryplanwould bea tablescanfollowedby
a Sort-Stopoperation;the Sort-Stopwould be an in-memoryoperationfor
small � , andwould requireexternalsortingfor larger � . It shouldbeclear
that the overall cost for thesetwo executionplansis essentiallythe same,
which is whatmakesthisa reasonablesimulation.

of a Dept join. Regardlessof the availability or type of
Emp.salary index, STOP-AFTERperformsmuch better
than TRADITIONAL. The reasonfor this is quite simple:
Sincethe STOP-AFTERplan is chosenbasedon the value
of 	 , andthe join predicateis non-reductive (given the test
database’s integrity constraints),only the first 	 rows of
Emp arejoined with Dept in this plan. Moreover, when 	
is small, the STOP-AFTERqueryplan usesthe nested-loop
index join methodto performthejoin, which is cheaperthan
thesort-mergejoin methodusedin theTRADITIONAL (-
insensitive)plan.Sort-mergeis thesuperiorstrategy for a full
Emp � Dept join, but not for a restrictedjoin; althoughthe
Dept tablecanbeaccessedin dno orderusingits clustered
index, thesort-mergequeryplanstill involvessortingtheEmp
tableon theworks in columnaswell assortingthe join’s
resultto producetheresultsin salary order. Theadvantage
of the STOP-AFTERapproachis especiallypronouncedin
Figures7 and 8. Here, the STOP-AFTER plan usesthe
Emp.salary index to cheaplyobtainthe mosthighly paid
employees(by piping the resultsof an index scaninto an
inexpensive Scan-Stopoperator); moreover, for small 	 ,
whereit usesthenested-loopindex join methodto probethe
Dept table,no furthersortingis needed.

In addition to theseresults, we also ran tests with no
index on Dept.dno. We observed smallerdifferencesin
thosetests,but STOP-AFTERstill significantlyoutperformed
TRADITIONAL. STOP-AFTER was better for small 	
becauseits ability to do Stoppush-down led to cheaperjoins
aswell ascheapersorts; for 	��«
�/ , for example,STOP-
AFTER outperformedTRADITIONAL by a factor of two
when an index existed on Emp.salary, and it won by a
factorof 1.5without this index.

5.2 AggressivePlans: Benefitsand Risks

We have seenthat STOP AFTER query planscan provide
a large cost savings with respectto traditional query plans
with cursors.But what aboutAggressive plans—how much
additionalsavingscanthey provide? And how costlyarethe
estimationerrors that may occur? Thesequestionsare the
focusof our next testswhich arebasedon Query 3, the 3-
wayjoin querythatasksfor thename,salary, department,and

10

0.001

0.01

0.1

1

10

100

1 10 100 1000 10000 100000

R
es

po
ns

e
T

im
e

[s
]

£

N

TRADITIONAL
STOP-AFTER

Figure7: Resp.Time(log), Q2
ClusteredIndex onEmp.salary.

0.001

0.01

0.1

1

10

100

1 10 100 1000 10000 100000

R
es

po
ns

e
T

im
e

[s
]

£

N

TRADITIONAL
STOP-AFTER

Figure8: Resp.Time(log), Q2
UnclusteredIndex onEmp.salary.

1

10

100

1 10 100 1000 10000 100000

R
es

po
ns

e
T

im
e

[s
]

£

N

TRADITIONAL
STOP-AFTER

Figure9: Resp.Time(log), Q2
No Index on Emp.salary.

precise underestimate overestimateTrad Cons
Ag(1) Ag(1/5) Ag(1/10) Ag(5) Ag(10)

128.3 63.9 6.4 33.2 63.1 6.7 18.5

Table1: Resp.Time[s], Q3;No Idx onEmp.salary;	¬�­
�/D/
travel expensesof the 	 mosthighly paidemployees.

In the previous tests, the STOP-AFTER results show
what both the Conservative andAggressive approachwould
produce,asthe join predicateusedtherewasnon-reductive.
Wemustdistinguishtheapproacheshere,however, astheTEA
join predicateis (potentially) reductive and is thusa barrier
to deepStop push-down in the Conservative approach. As
shown in Table 1, which containsthe cost of Traditional,
Conservative, and Aggressive plansfor Query3 with 	®�

�/D/ andno index on Emp.salary, the differencebetween
the Conservative and Aggressive approachescan be quite
large. If the optimizer’s cardinality estimatesare precise
(the Ag(1) column in Table 1), Aggressive outperforms
Conservative by a factorof 10 in this experiment.Here,the
Conservative plan involveda full sort-merge join for Emp �
TEA, followed by a Sort-Stopand a nested-loopindex join
to find the matchingDept names.¯ The Aggressive plan
hasa Sort-Stopoperatorjust above the Emp scan,anduses
thenested-loopindex join methodfor both joins; it therefore
avoids sortingthe wholeEmp table. The Traditionalplan is
significantly worsethan both Stop-enhancedapproaches;it
usestwo sort-mergejoins andthussortsthewholeEmp table
threetimes(twice for the joins andonceto producethefinal
queryresultin theright order).

Table 1 also shows the cost of Aggressive plans if the
cardinalityestimatesaretoo low or too high. If theoptimizer
underestimatesthe “precise”stoppingcardinalityby a factor
of T (the Ag(1/T) numbers),then T restartsare requiredto
producethe full query result. In this case,restartsarevery
expensive, as eachone requiresre-scanningthe Emp table.
As a result,the Ag(1/5) plan is about5 times,andAg(1/10)
about10 times,asexpensiveastheAg(1) plan.BothAg(1/5)
andAg(1/10)arestill betterthan,or at leastasgoodas,the
°
An alternative Conservative plan with slightly lower cost would com-

pletelysorttheEmp tableandthendo two nestedloop index joins; we could
notmodelthisplanwith ourDB2 simulationapproach.

Conservative andTraditionalplansfor 	±�²
`/¢/ . However,
for large 	 (notshown in Table1),whenthepotentialbenefits
of Aggressive Stoppush-down decrease,thecostof Ag(1/5)
and Ag(1/10) can exceed those of Conservative and even
Traditionalplansby up to a factorof two in theextremecase
(³�N
`/¢/ � /¢/D/).

If theoptimizeroverestimatesthe“precise”stoppingcardi-
nality (theAg(T) numbers),anAggressive plancarriesmore
Emp tuplesthannecessaryuntil the final Stop; this requires
no restarts,but meansthat too much work is done in the
Join andStopoperators.In this experiment,the extra work
is fairly cheap,so the performancedegradationis moderate
and the Ag(5) and Ag(10) plansoutperformthe Traditional
andConservativeplans.In general,evenfor largeN, overesti-
matedAggressive plansnever becomeworsethanConserva-
tive plans—they have, at worst, thesameperformance.This
doesnotmakeit wiseto alwaysoverestimatethestoppingcar-
dinality of Aggressive Stops,however. We also conducted
experimentswith Query 3 and an index on Emp.salary.
Restartswerecheapin this case(sincethe wholeEmp table
neednot be re-scanned),while extra work wasrelatively ex-
pensive if theindex wasunclustered,sounderestimationout-
performedoverestimation.

6 RelatedWork

Many commercialrelationaldatabasesystemsallow applica-
tionsto passahint to theoptimizerto indicatethatthey would
like the first few tuplesof the query result to be produced
quickly. For example,Oracle7 hasan optimizationoption
calledFIRST ROWS [A

�
92], and IBM’ s DB2 systemof-

fersanOPTIMIZE FOR N ROWS clause[IBM95]. Thede-
tailsof how (or how well) thesefeaturesareimplementedhas
not beenpublished,but accordingto their referencemanuals,
they heuristicallybiasthequeryoptimizerto moreheavily fa-
vor pipelinedexecutionplans. We experimentedwith DB2’s
OPTIMIZE FOR N ROWS construct.Its planswereaseffi-
cientasourStopplansfor single-tablequerieswhenanindex
existedon thequery’sORDER BY column;whenno suchin-
dex existed(so no fully pipelinedplanexisted),or whenthe
querywascomplex (makingfully pipelinedplansinefficient),
ourStopplansperformedmuchbetter.

11

OtherSQL extensionsrelatedto ourSTOP AFTER clause
have� recentlybeenproposedfor decisionsupportandmulti-
mediaqueries.[KS95] proposesspecifyingcardinalitylimits
by having “ rank(. . .) &´	 ” predicatesin theWHERE clause
of the query. Conceptually, the rank function andthe corre-
spondingquerypredicatesareevaluatedafterall otherpredi-
cates,joins,andaggregationshave beencomputed;thepaper
doesnotdiscusshow cardinalitylimits canbeexploitedearlier
to reducejoin andsortingcosts.[CG96] proposesanORDER
BY [N] clausethat is similar to (thoughlesspowerful than)
ourSTOP AFTER clause.Thepaperdoesdiscusstheimpli-
cationsof thenew clauseonqueryprocessing,but focuseson
dealingwith the limited queryinterfacesof multimediadata
sources(e.g.,joinsarenotaddressed)andtheirexecutioncost
features(e.g.,expensivepredicatesandrankingexpressions);
asaresult,theiroptimizationframeworkandqueryprocessing
techniquesareverydifferentthanours.

Relatedwork on relationalqueryprocessinghasconcen-
tratedon developingpipelinedjoin methodsor costmodels
that canpredict the cost to obtain the first row of a query’s
resultset(see[G

�
92, WA91, BM96], amongothers).To our

knowledge,nonehasproposedaStopoperatoror studiedhow
to achievedeepStoppushdown for STOP AFTER queries.

7 Conclusions

We have examinedthe opportunitiesand query processing
issuesraised by adding a STOP AFTER clauseto SQL’s
SELECT statement.We discussedhow STOP AFTER sup-
port can be addedto an existing DBMS, encapsulatingthe
detailsof STOP AFTER queriesby addingStopoperatorsto
its queryexecutionsystem. Doing so makesit unnecessary
to changetherestof thesystem’s queryexecutionengine;its
existingoperatorsfor scan,join, andsoonareunaffected.We
discussedhow to implementtheStopoperatorphysically, de-
scribingScan-StopandSort-Stoprealizationsof thisoperator
andtheir costs. Finally, we proposedandempiricallyevalu-
atedtwo policiesfor STOP AFTER plangeneration,Conser-
vativeandAggressive,andexplainedhow they canberealized
in a rule-basedqueryoptimizer. The Conservative approach
only permitsStop operatorsto be positionedat plan points
wherethey aresurenot to eliminatetuplesthat shouldulti-
matelyparticipatein thequeryresult;in contrast,theAggres-
siveapproachis moreadventurous,usingrequiredcardinality
estimationto aggressively limit intermediateresultsizes.

We useda syntheticdatabaseandquerytranslationscheme
to “simulate” our two approacheson DB2, comparingthem
to eachother and to the traditional “just usea cursor” ap-
proach. We saw that, as anticipated,orders-of-magnitude
performancegainscanbeachieved. Thebenefitsof special-
izedSTOP AFTER handlingwereseento beparticularlypro-
nouncedwhen an index is available on the query’s ORDER
BY column(s). The Conservative approachalwaysprovided
superiorperformancewith respectto thetraditionalapproach;
theAggressiveapproachwasshown to offer furtherimprove-
mentsat thepriceof introducingsomesensitivity to cardinal-

ity estimationerrors.
In terms of future work, we plan to implementSTOP

AFTER in the Garlic system[C
�

95] at IBM Almaden. On
the optimizer side, we also plan to explore techniquesfor
handling complex STOP AFTER clauses(with subqueries
thatsharecommonsubexpressionswith thequerybody)and
for pushingStopoperatorsdown into querieswith multiple
query blocks. On the runtime system side, we plan to
designa more efficient external Sort-Stopoperatorand to
explore join methodsto handleSTOP AFTER querieswith
multi-tableORDER BY expressions(drawing on Fagin’s µ·¶
work [Fag96] in thejoin case).

Acknowledgments We would like to thankEugeneShekita
for readingthroughthepaperandmakingseveralveryhelpful
suggestions.ManishArya helpedwith theDB2 installation.

References

[A ¸ 92] E. Armstrong, et al. ORACLE7 server – application
developer’s guide, OracleCorporation,1992.

[BM96] R. Bayardoand D. Miranker. Processingqueriesfor the
first few answers,Proc.3rd CIKM Conf., Rockville,MD, 1996.

[C ¸ 95] M. Carey et al. Towardsheterogeneousmultimediainfor-
mation systems,Proc. IEEE RIDE Workshop, Taipei, Taiwan,
1995.

[CG96] S. Chaudhuriand L. Gravano. Optimizing queriesover
mulitmediarepositories,Proc. ACM SIGMODConf., Montreal,
Canada,1996.

[CS94] S. Chaudhuriand K. Shim. Including group-byin query
optimization,Proc.20thVLDBConf., Santiago,Chile,1994.

[Fag96] R. Fagin. Combining fuzzy information from multiple
systems,Proc.ACM PODSConf., Montreal,Canada,1996.

[GD87] G. Graefeand D. J. DeWitt. The EXODUS optimizer
generator, Proc.ACM SIGMODConf., SanFrancisco,CA, 1987.

[G ¸ 92] S.Ganguly, etal. Queryoptimizationfor parallelexecution,
Proc.ACM SIGMODConf., SanDiego,CA, 1992.

[IBM95] IBM Corporation. DB2 applicationprogrammingguide
for commonservers (version2), 1995.

[Knu73] D. E. Knuth. TheArt of ComputerProgramming/Sorting
andSearching, volume3, Addison-Wesley, 1973.

[KS95] R. Kimball andK. Strehlo.Why decisionsupportfails and
how to fix it, SIGMODRecord, 24(3):92–97,1995.

[Loh88] G.Lohman.Grammar-likefunctionalrulesfor representing
query optimization alternatives, Proc. ACM SIGMOD Conf.,
Chicago,IL, 1988.

[MS93] J. Melton andA. Simon. Understandingthe new SQL: a
completeGuide, Morgan-KaufmannPublishers,Inc.,1993.

[Ş 79] P. Selinger, et al. Accesspathselectionin a relationaldata-
basemanagementsystem,Proc. ACM SIGMODConf., Boston,
MA, 1979.

[Ş 96] D. Simmen, et al. Fundamentaltechniquesfor order
optimization, Proc. ACM SIGMOD Conf., Montreal, Canada,
1996.

[Sto96] M. Stonebraker. Object-RelationalDBMSs:TheNext Great
Wave, MorganKaufmannPublishers,Inc.,1996.

[WA91] A. Wilshut and P. Apers. Dataflow queryexecutionin a
parallelmainmemory, Proc.1stPDISConf., Miami, FL, 1991.

12

