
Management 
Aw~lications 

H.  Morgan 
Editor --, n ~- 

The Notions of 
Consistency and 
Predicate Locks in a 
Database System 
1C.P. Eswaran, J.N. Gray, 
R.A. Lorie, and I.L. Traiger 
IBM Research Laboratory 
San Jose, California 

In database systems, users access shared data under 
the assumption that the data satisfies certain consistency 
constraints. This paper defines the concepts of trans- 
action, consistency and schedule and shows that con- 
sistency requires that a transaction cannot request new 
locks after releasing a lock. Then it is argued that a 
transaction needs to lock a logical rather than a physical 
subset of the database. These subsets may be specified 
by predicates. An implementation of predicate locks 
which satisfies the consistency condition is suggested. 
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1. Introduction 

In database systems, users access shared data under 
the assumption that the data satisfies certain consistency 
assertions. For simplicity consider a system with a 
fixed set of named resources called entities. Each entity 
has a name and a value. Examples of such assertions 
are 

"A" is equal to "B", 
"C" is the count of the free cells in "D", 
"En  is an index for "F". 

Most such assertions are never explicitlv stated in de- 
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signing or using a system, and yet all programs and 
users depend on the correctness of these assertions 
whenever they deal with the system state. 

The assertions above are quite simple; however, in 
practice, assertions become extremely complex. A 
complete set of assertions about a system would no 
doubt be as large as the system itself. In practice, there 
is little reason for explicitly enumerating all such as- 
sertions, but for the purposes of this discussion we 
presume that a set of assertions, hereafter called con- 
sistency constraints, is explicitly defined and we say 
that the state is consistent if the contents of the entities 
of the state satisfy all the consistency constraints. 

The system state is not static. It is continually under- 
going changes due to actions performed by processes 
on the entities. Read and write are examples of such 
actions. We assume that actions are atomic; that is, 
if two processes concurrently perform actions, the 
effect will be as though one of the actions were per- 
formed before the other. 

One might think that consistency constraints could 
be enforced at each action but this is not true. One 
may need to temporarily violate the consistency of the 
system state while modifying it. For example, in moving 
money from one bank account to another there will 
be an instant during which one account has been debited 
and the other not yet credited. This violates a constraint 
that the number of dollars in the system is constant. 
For this reason, the actions of a process are grouped 
into sequences called transactions which are units of 
consistency. In general, consistency assertions cannot 
be enforced before the end of a transaction. In this paper 
it is assumed that each transaction, when executed 
alone, transforms a consistent state into a new con- 
sistent state; that is, transactions preserve consistency. 

Having grouped actions into transactions, we are 
interested in the problem of running transactions with 
maximal concurrency by Interleaving actions from 
several transactions while continuing to give each trans- 
action a consistent view of the system state. In such an 
environment, each transaction must employ a locking 
protocol to insure that it and others do  not access data 
which is temporarily inconsistent. This lock protocol 
results in an additional set of actions called lock and 
unlock. A particular sequencing of the actions of a 
set of transactions is called a schedule. A schedule 
which gives each transaction a consistent view of the 
state is called a consistent schedule. 

Not all consistent schedules for a set of transactions 
give exactly the same state (i.e. consistency is a weaker 
property than determinacy). For example, in an airlines 
reservation system if a set of transactions each requests 
a seat on a particular flight, then each consistent 
schedule will have the property that no seat is sold 
twice and no request is denied if there is a free seat, 
but two distinct consistent schedules may differ in the 
details of the seat assignment. 

In the next section, we consider the problems of 
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locking and consistency in more detail. The discussion 
is applicable to database systems and to more con- 
ventional environments such as operating systems. 
The principal result is that consistency requires that a 
transaction must be constructed to have a growing and 
a shrinking phase. During the growing phase it can 
request new locks. However, once a lock has been re- 
leased, the transaction cannot request a new one. 

After this general discussion, a second section con- 
siders the peculiarities of locking in a database system. 
A phenomenon called phantoms seems to imply that 
one must lock logical subsets of the database rather 
than locking individual records present in the data- 
base. An implementation of logical locks satisfying the 
requirements of consistency is then proposed. For 
definiteness, this section is couched in terms of a rela- 
tional model of data. 

2. General Properties of Locking 

To see the problems associated with running trans- 
actions concurrently consider the two transactions 
TI and T2 of Figure 1 (below): 

Suppose that the only assertion about the system state 
is that A = B. Although when considered alone both 
T1 and Tq conserve consistency, they have the following 
properties: 

temporary inconsistency-after the first step of 
T, or Tz , A # B and so the state is inconsist- 
ent. 

conflict-if transaction T2 is scheduled to run be- 
tween the first and second steps of T1 , then the 
end result is A Z B, which is an inconsistent 
state. 

The problem of temporary inconsistency is inherent. 
Conflict on the other hand is not inherent and is un- 
desirable. 

If transactions are run one after another with no 
concurrency then conflict never arises. Each trans- 
action starts in a consistent state and, since transac- 
tions preserve consistency, each transaction ends in a 
consistent state. Any inconsistencies seen by an in- 
progress transaction are due to changes it has made to 
the state. If transactions were instantaneous, there 
would be no penalty for a serial schedule for trans- 
actions. However, transactions are not instantaneous 
and substantial performance gains may be obtained by 
running several transactions in parallel. 

In most cases, a particular transaction depends only 
on a small part of the system state. Therefore one 
technique for avoiding conflict is to partition entities 
into disjoint classes. One can then schedule transactions 
concurrently only if they use distinct classes of entities. 

Transactions using common parts of the state must 
still be scheduled serially. If such a policy is adopted, 
then each transaction will see a consistent version of 
the state. Unfortunately, it is usually impossible to 
examine a transaction and decide exactly which sub- 
set of the state it will use. For this reason the "parti- 
tion" scheme described above is abandoned in favor 
of a more flexible scheme where individual entities are 
locked dynamically. In this system, transactions Iock 
entities for several reasons. In terms of the above 
discussion, they want to prevent conflict with other trans- 
actions (i.e. lock out changes made by other trans- 
actions) and they may want to temporarily suspend con- 
sistency assertions on the locked entities. Still another 
motive for locking is reproducibility of reads. Unless a 
transaction locks an entity, successive reads of the en- 
tity may yield distinct values reflecting updates by con- 
current transactions. This has little to do with con- 
sistency constraints; rather it rests on the notion that 
entities hold their values until updated. 

Recovery and transaction backup provide an ad- 
ditional motive for locking. Database systems usually 
maintain a log of all changes made by each transaction. 
This log forms an audit trail. It may also be used for 
backup. Backup arises not only from deadlock-pre- 
emption but also from protection violations, hardware 
errors, and human errors. One backup procedure for a 
transaction T is to undo all of its updates as recorded 
in the log. Then all entities locked by T may be unlocked 
and T may be reset to its initial state. As Davies and 
Bjork [ l ,  21 point out, this procedure may not work 
correctly after T has unlocked (committed) any en- 
tities which it has modified. This implies that (update) 
locks should be held to the end of a transaction. 

For simplicity, this section ignores the distinction 
between shared and exclusive access to an entity. It 
assumes that each action (other than lock and unlock) 
modifies the entity. The generalization of this section 
to the case of shared access is straightforward and is 
mentioned parenthetically as the section develops. 

If transaction TI attempts to  lock entity el which is 
already locked by transaction T2 then either T1 must 
wait for T, to unlock el or TI must preempt el from T2 . 
If T1 waits and then T, attempts to lock an entity 
e2 locked by T1 then Tq must wait or preempt. If both 
TI and T, wait, then deadlock arises. The question of 
when to wait and when to preempt is not the subject of 
this paper. The paper by Chamberlin, Boyce, and 
Traiger [3] presents a scheme for deciding which trans- 
action to  preempt. When a resource is preempted, the 
preempted transaction must be backed up. 

To insure that each transaction sees a consistent 
state, a transaction must not request a new lock after 
releasing some lock. To  state and prove this result we 
must proceed more formally. However, for the sake of 
simplicity, we assume in the sequel that all transactions 
have the property that they do not relock an entity at 
step i which is already locked at step i, that they do 

Communications November 1976 
of Volume 19 
the ACM Number 1 I 



not unlock an entity at step i which is not locked through 
step i, and that they end with no locks set. 

A transaction is a sequence1: T = ((T, a i  , e J ) L  
of n steps where T is the transaction name, a <  is the 
action at step i and ei is the entity acted upon at step i. 

A transaction has locked entity e through step i if 

for some j I i, a, = lock and e j  = e, and ( 2 4  
there is no k, j < k < i, such that 
ak = unlockand ek = e. (2b) 

A transaction T is well-formed if 

for each step i = 1, . . . , n, ( 3 4  
if a ,  = lock then ei is not locked by T through 

step i - 1, 
if a i  f lock then e, is locked by T through step i, 

and 

at step n, only e, is still locked by T and a, = (3b) 
unlock. 

Figure 2 shows two well-formed versions of transac- 
tion T1 from Figure 1. 

Any sequence obtained by collating the actions of 
transactions T I ,  . . . , T, is called a schedule for 
T I ,  . . . , T, . If the schedule takes actions from one 
transaction at a time it is called a serial schedule. More 
formally, a schedule for a set of transactions T1 , . . . , 
T, is any sequence S = ( ( T i ,  a ; ,  e,))y=l such that 

for e ach j  = 1 , .  . . , n, (4a) 
T j  = ( ( T i ,  a i ,  e,) t S ( Ti = T,)y=l 

and 

The length of S , m, is the sum of the lengths (4b) 
of the transactions T1 , . . . , T, (i.e. S contains 
only elements of T I ,  . . . , T,). 

Note that m is the number of steps in all transactions. 
A schedule S is serial if for some permutation 

a, S = T,(1,T,(2, . . . T,(,, (i.e. S is the concatenation 
of the transactions). Figure 3 gives three examples of 
schedules for a set of three transactions. 

Nonserial schedules run the risk of giving a trans- 
action an inconsistent view of the state. So we are 
particularly interested in those schedules which are 
"equivalent" to serial schedules. The equivalence be- 
tween schedules hinges on the dependency relation of a 
schedule. 

The dependency relation induced by schedule S ,  
DEP(S), is a ternary relation on T X E X T  (where T 
is the set of all transaction names in S and E is the set 
of all entities) defined by ( T I ,  e, T2) C DEP(S) iff for 
some i < j 
S = (. . . , (T I ,  a , ,  e), . . . , ( T 2 ,  a , ,  e), . . .) ,and (5a) 
there is no k such that i < k < j and ek = e. (5b) 
-. 

'The sequence S = s, , . . . , s, 1s denoted (Y,):'=I The sub- 
sequence of elements satisfy~ng condition C denoted 
(s, ES I C(s,)):"=l by analogy wlth the notation for sets The ith 
element of S is denoted by S(i). 

Informally, if (TI ,  e, T2) is in DEP(S) then entity 
e is an output of T1 and an input of T2 and TI gives e 
to T i .  Again, we are assuming that each action on an 
entity modifies the entity. If one distinguishes "read- 
share" actions, then the dependency relation must be 
modified so that entities which are only read by a 
transaction are not recorded as outputs of the transac- 
tion (i.e. adjoin the clause "and a ,  or a ,  is an update 
action" to (5a) and adjoin the clause "and ak is an 
update action" to (5b)). 

Two schedules, S1 and S2 are equivalent if DEP(S1) 
= DEP(S,) and a schedule S1 is consistent if it has an 
equivalent serial schedule. Figure 4 illustrates these 
definitions. It shows three schedules, where S1 is con- 
sistent, S2 is not consistent and S, is serial (therefore 
consistent). Since a serial schedule starts with a con- 
sistent state and since each transaction (when run alone) 
transforms a consistent state into a new consistent state, 
a serial schedule gives each transaction a consistent 
set of inputs. If a set of transactions is consistently 
scheduled, then each transaction sees the same state 
it would see in the corresponding serial schedule (i.e. 
a consistent state). These observations justify the dual 
use of the term consistency to describe states and 
schedules. 

It is very easy to explain the effect of a serial sched- 
ule. The user thinks of a complete transaction as 
being an "atomic" transformation of the state just as 
the scheduler thinks each action is an atomic transfor- 
mation of the state. He sees all the changes made by 
transactions "before" his transaction starts and none 
of the changes of transactions "after" his transaction 
completes (i.e. he sees a consistent state). This obser- 
vation yields the following important properties of 
serial schedules : 

If T1 and T2 are any two transactions and el and e2 (6a) 
are any entities, then (T I ,  e l ,  T,) C DEP(S) im- 
plies (T2 , e2 , TI) 4 DEP(S). 

More generally, 

The binary relation < on the set of transactions (6b) 
is defined by: TI < T2 if and only if (TI , e, Tz) € 
DEP(S) for some entity e. Then .< is an acyclic 
relation which may be extended to a total order 
of the transactions. 

Any consistent schedule also has these properties be- 
cause it has the same dependency set as some serial 
schedule. Conversely, it will later be shown that any 
schedule with property (6b) is consistent. 

We would like to further characterize those non- 
serial schedules which are consistent. To  do this it is 
necessary to consider the lock and unlock actions of 
each step. Entity e is said to be locked by transaction T 
through step k of schedule S if 

there is a j < k such that S ( j )  = (T, lock, e) and (7a) 
there is no j', j < j' < k such that ~ ( j ' )  = (7b) 
(T, unlock, e). 
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Fig. 2. Two well-formed versions of transaction TI of Fig. 1 .  

TI, 
TI, LOCK A 
TI,  A + 100  - A 
TII UNLOCK A 

TII LOCK B 

TII B + 100  - B 

TII UNLOCK B 

T12. 
TI, LOCK A 
TIZ A + 100  + A 

T12 LOCK B 
T,z UNLOCK A 
TIZ B 3- 100  - B 

TI, UNLOCK B 

Fig. 3. Schedules for three transactions T I ,  TZ , Tg . SZ is a serial 
schedule. Each small rectangle represents a transaction step. 

Fig. 4. Three schedules for T I ,  T2 of Fig. 1 .  SI is equivalent to 
serial schedule S3 and hence is consistent. Sz is inconsistent. 

Schedule S is legal if for all k, if S(k) = (T, a, e) and 
e is locked by T, through step k, then e is not locked 
by any other transaction through step k. Legal schedules 
observe the lock protocol that a transaction attempting 
to  lock an already locked entity must wait. A schedule 
gives a history of how transactions were processed. 
As the processing is being done, we imagine a scheduler 
a t  each instant choosing a particular transaction step 
from the set of all next steps of all incomplete trans- 
actions. This scheduler allows lock actions on f ~ e e  

entities but never chooses a lock action on an already 
locked entity. Such a scheduler only produces legal 
schedules, since it never chooses to run a lock step on 
an already locked entity. 

The example schedule of Figure 5 shows that not 
every legal schedule is consistent. It is very important 
to know how transactions must be constructed so that 
any legal schedule is consistent. 

Clearly, if legality is to insure consistency in all 
contexts, then it is necessary that each transaction lock 
each entity before otherwise acting on it and that the 
transaction ultimately unlock each such locked entity. 
More formally, using the definition of well-formed 
transactions (3a), (3b) : 

Consistency requires that transactions be well- (8a) 
formed. Unless all transactions are well-formed, it 
is possible to  construct a legal but inconsistent 
schedule. 

To prove this, consider any transaction TI = (T I ,  a , ,  
e;)&l which is not well-formed. Then for some step k, 
TI does not have ek locked through step k. Consider 
the (two-phase well-formed) transaction Tz = ((Tz , 
lock, ek), (T2 , read, ek), (Tz , write, ek), (Tz , unlock, 
ek)) . The schedule S = (~~(1'))::: ~ ~ ( l ) ,  T2(2), Tl(k), 
T2(3), T2(4), (Tl(k))L+,  is legal. Since (TI , ek , T2) 
and ( T 2 ,  ek , TI) are both in DEP(S), S is not equiva- 
lent to any serial schedule (by property (6a)). So S is 
not a consistent schedule and (8a) is established. In- 
tuitively, Tl could change ek after Tz read it but before 
T2 wrote it. This would not be possible in a serial 
(i.e. consistent schedule). 

A less obvious fact is that consistency requires that 
a transaction be divided into a growing and a shrinking 
phase. During the growing phase the transaction is 
allowed to request locks. The beginning of the shrink- 
ing phase is signaled by the first unlock action. After 
the first unlock, a transaction cannot issue a lock action 
on any entity. More formally, transaction T = ((T, 
a ; ,  ei))i"=l is two-phase if for some j < n, 

i < j implies a;  Z unlock, 
i = j implies u i  = unlock, 
i > j implies a ;  Z lock. 

Steps 1, . . . , j - 1 are called the growing phase and 
steps j, . . . , n are the shrinking phase of T. 

Transaction Tll of Figure 2 is not two-phase since 
it locks B after releasing A .  Transaction Tlz of Figure 2 
is well-formed and two-phase. To see that Tll may see 
an inconsistent state, consider the legal schedule S 
shown in Figure 5. In the schedule S,  T12 sees A from 
Tll and Tll sees B from Tlz . So S is not equivalent to  
any serial schedule and hence S is inconsistent. This 
construction can be generalized to prove: 

Consistency requires that transactions be two- (8b) 
phase. That is, unless all transactions are two- 
phase, it is possible to  construct a legal but incon- 
sistent schedule. 

Communications November 1976 
of Volume 19 
the ACM Number 11 



Conversely, 

If each transaction in the set of transactions (8c) 
T = ( T I ,  . . . , T,] is well-formed and two-phase 
then any legal schedule for T is consistent. 

A sketch of the proof for this is fairly simple. Let S 
be any schedule for T. Define the binary relation '<' 
on T by T, < Ti iff (T, , e, Ti) E DEP(S) for some 
entity e. One can prove a lemma that < may be ex- 
tended to a total order << on T as follows. 

First define the integer SHRINK(Ti) for each trans- 
action T ,  to be the least integer j such that T i  unlocks 
some entity at step j of S: 

SHRINK(T;) 
= min ( j  I S ( j )  = ( T i ,  unlock, e) for some entity e ) .  

If each transaction Ti is non-null then SHRINK(Ti) 
is well-defined because each T, is well-formed. 

We now argue that for any transactions TI and Tz 
and entity e, if (TI ,  e, T2) E DEP(S) then SHRINK(T1) 
is less than SHRINK(T,). For if (TI , e, T,) E DEP(S) 
then by definition of DEP(S) there are integers i and 
j such that S = (. . . , (Tl , ai  , e), . . . , (Tz , a j  , e), . . .) 
and so that for any integer k between i and j, et f e 
by Definition (5). Since S is legal, e must be locked 
only by T1 through step i of S and since T, is well 
formed e must be locked only by Tz through step j of 
S. So ai = unlock and a j  = lock. This immediately 
implies that SHRINK(Tl) is less than or equal to i. 
Since T2 is two-phase, no unlock by Tz precedes step 
j of S so SHRINK(T2) is greater than j. 

Thus we have shown that if T1 < T2 then 
SHRINK(T1) is less than SHRINK(Tz). This implies 
property (6b) and hence < can be extended to a total 
order << on T. 

Assume without loss of' generality that TI << T, 
<< . . . << T, . Induce on n to show that S is equivalent 
to the serial schedule T1 , . . . , T, . If n = 1 the result 
is trivial. The induction step follows in two steps. 

First show that S is equivalent to the schedule 

S' = Ti((T;, a i ,  ei) E S ( Tt  # Tl)Y='4;, . 

Then note that by hypothesis 

( (Ti ,  a i  , ei) E S I Ti Z Tl)&is equivalent to  Tg , . . . , T, . 

So S' is equivalent to T1 , Tz , . . . , T, . But T1 , . . . , T, 
is a serial schedule so S is equivalent to a serial schedule 
and is consistent. Figure 6 gives a graphic illustration of 
the construction of a serial schedule from S. To sum- 
marize then, 

If the transactions T I ,  . . . , T, are each well- (8d) 
formed and two-phase then any legal schedule is 
consistent. 

Unless transaction T is well-formed and two- (8e) 
phase there is a transaction T', which is well- 
formed and two-phase, such that T and T' have a 
legal but inconsistent schedule. 

Fig. 5. A schedule for transactions Tll and TI2 which is legal but 
not consistent because TI, is not two-phase. 

LOCK I 
UPDATE 

TI, LOCK B 

I TI, UPDATE 
A I 

1 Tlr  UPDATE I 
UNLOCK 

UNLOCK TI. gives Bto T I ,  

TI, LOCK 

UPDATE 

UNLOCK 

Clearly a transaction run alone is consistent. Further, 
any set of transactions which do not interact (i.e. 
DEP(S) = @) can be consistently scheduled in any 
order without locking. Even if the transactions inter- 
act, the two-phase restriction may be too strong. If, 
for example, transaction Tp2 of Figure 2 had updated 
entity C rather than entity B, then any legal schedule 
for TI1 and T12 would be consistent even though neither 
transaction is two-phase. However, if one added a 
transaction T13 which accesses entities A ,  B, and C, 
then the new transaction set would have legal but in- 
consistent schedules. It therefore seems difficult to  give 
nontrivial necessary conditions for all legal schedules 
for a set of transactions to be consistent ((8d) is suffi- 
cient). We can make the following assertion: if one 
intends to run a transaction concurrently with an 
unknown set of other transactions then, to guarantee 
that all legal schedules be consistent, all transactions 
must be well-formed and two-phase. 

3. Predicate Locks 

Section 2 introduced the notions of consistency 
and locking; it explored the locking protocols required 
by consistency. The discussion was quite general and 
applies to  any system which supports the concepts 
of transaction and shared entity. Next we consider 
locking in a database environment. Aside from the 
problem of scale (millions of entities rather than hun- 
dreds or thousands), there are substantial differences in 
the unit of locking. These differences stem from as- 
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sociative addressing of entities by transactions in a data- 
base environment. It  is not uncommon for a transac- 
tion to want to lock the set of all entities with a certain 
value (i.e. "key" addressing). Updating a seemingly 
unrelated entity may add it to such a set, creating the 
problem of "phantom" records. This section explains 
this problem and proposes a solution. 

For definiteness we adopt the relational model of 
data (Codd i41). The database consists of a collection 
of relations, R1, R2 ,  . . . , R, . Each relation can be 
thought of as a table or flat file. Each column of the 
relation is called a domain and each element of the re- 
lation (row) is called a tuple (record). Each tuple con- 
sists of a fixed number of fields. Each domain has a 
name. Figure 7 shows an example of such a database. 

One approach would be to lock whole relations or 
domains whenever any member of the relation or do- 
main is referenced. However, since there are many more 
tuples than relations or domains, this will not produce 
much concurrency. For example, two transactions 
making deposits in different accounts could not run 
concurrently if required to lock whole relations. 

This suggests that locks should apply to as smal! a 
unit as possible so that transactions do not lock in- 
formation they do not need. Therefore the natural 
unit of locking is the field or tuple of a relation. How- 
ever, a tuple is not an entity in the sense of Section 2, 
since it has no name which is separate from its value. 
This may seem odd at first, but it stems from the fact 
that tuples are referenced by value rather than by the 
address of the storage they occupy. 

To illustrate this point, consider the example of a 
transaction TI , on the database of Figure 7. The trans- 
action checks the assertion that the sum of Napa ac- 
count balances is equal to the sum of Napa assets by: 

Fig. 6 .  A graphic illustration of the construction of a serial sched- 
ule from a consistent schedule. The arrows show the dependencies 
of S. T1 << Tn << TQ and so S' has the same dependencies as S. 
The induction hypothesis applies to St to give TI , T, , T, . 

Associately addressing the ACCOUNTS relation, (9a) 
locking any accounts located in Napa. 

Summing the balances in the locked accounts. (9b) 

Locking the Napa tuple in ASSETS and compar- (9c) 
ing its value with the computed sum. 

Releasing all locks. ( 9 4  

If a second transaction T2 inserts a new tuple in 
ACCOUNTS with Location = Napa and adds the de- 
posit to the Napa assets and if T2 is scheduled between 
steps (9b) and (9c) of TI, then TI will see an incon- 
sistent state: TI will see the balance of the new account 
reflected in the ASSETS but will not have seen the 
account in the ACCOUNTS relation. A similar prob- 
lem arises if T2 merely transferred an account from 
St. Helena to Napa. 

A still more elementary example is the test for the 
existence of a tuple in a relation. If the tuple exists, it 
is to be locked to insure that no other transaction will 
delete it before the first transaction terminates. If the 
tuple does not exist, "it" should be locked to insure 
that no other transaction will create such a tuple be- 
fore the first transaction terminates. In this case the 
"nonexistence" of the tuple is being locked. Such non- 
existent tuples are called phantoms. Inspection of the 
earlier example shows that TI should lock not only all 
existing Napa accounts but also all phantom ones. 

As argued in the previous section, consistency re- 
quires that a transaction lock all tuples examined, both 
real and phantom (i.e. it be well formed). The set of all 
possible Napa accounts is the Cartesian product: 
(Napaj X INTEGERS X INTEGERS. This set is 
infinite so there is little hope of locking each individual 
tuple of the set. Rather it seems natural to lock the set of 
tuples and phantoms satisfying the predicate: Loca- 
tion = Napa. More generally, if P is a predicate on 
tuples t of relation R then P defines the set S where 
t E S iff P(t). Transactions will be allowed to lock any 
subset of a relation by specifying such a predicate. 
We only require that the truth or falsity of P depend 
only on t. 

If such predicates are used as the unit of locking, 
then a list of locks becomes a (much smaller) list of 
sets identified by their predicates. Locking the entire 
relation is achieved by using the predicate 'TRUE' 
while locking the tuple (NAPA, 32123, 1050) is achieved 
by the predicate P(t) t = (NAPA, 32123, 1050). 
However, one cannot directly apply the formulation of 
locking and consistency in the previous section, be- 
cause entities were assumed to be uniquely named 
objects. In this section we extend the results on schedu- 
ling and consistency to apply to locks on possibly over- 
lapping sets of tuples. 

First of all, if predicates are arbitrarily complex 
there is little hope of deciding whether two distinct 
predicates define overlapping sets of tuples (and hence 
whether they conflict as locks). In fact the problem is 
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Fig. 7. The sample database. 

ACCOUNTS ASSETS 

NAPA 11337 1 

Assertions: 1)  Account numbers are unique. 

21 The sum of balances of accounts at a location 
is equal to the total assets at that location. 

recursively unsolvable (Kleene [ 5 ] ) ,  so it is not clear 
how to make predicate locks "work." A method for 
scheduling predicate locks is introduced first by ex- 
ample and then more abstractly. 

In the sample database of Figure 7 suppose that 
transaction TI is interested in all tuples in ACCOUNTS 
for which Location = Napa. A transaction T2 starts 
during the processing of TI .  Tz is interested in all 
tuples in ACCOUNTS with Location = Sonoma. 
When TI declares its intent to access Napa accounts 
by executing the action 

TI LOCK ACCOUNTS: Location = Napa, 

this predicate lock is associated with TI and with the 
ACCOUNTS relation. Later when Tz declares its intent 
to access Sonoma accounts by executing the action 

Tz LOCK ACCOUNTS: Location = Sonoma, 

this predicate lock is also associated with the 
ACCOUNTS relation. Before T2 can be granted access 
to the Sonoma accounts, the lock controller must 
check that Tzls lock does not conflict with locks held 
by other transactions. In the case above, the controller 
must decide that the predicates Location = Napa and 
Location = Sonoma are mutually exclusive. In gen- 
eral, the controller must compare the requested predi- 
cate lock against the outstanding predicate locks of 
other transactions on this relation. If two such predi- 
cates are mutually satisfiable (i.e. have an existing or 
phantom tuple in common), then there is conflict and 
the request must wait or preempt; otherwise, the re- 
quest can be granted immediately. 

That is more or less how predicate locks work. It 
does not explain how sharing works and finesses the 
fact that predicate satisfiability is recursively unsolv- 
able. In order to give a more complete explanation of 
how predicate locks "work," it is necessary to define 
how an action is allowed or prohibited by a lock and 
how two locks may conflict. First we need to decide 
on the lockable entities. In [8] a field was chosen as 
the basic unit of locking. This choice gives maximal 
concurrency but presents many notational complex- 
ities. For the sake of simplicity, the formal development 
of predicate locks here is done for tuple-level locking 

rather than field-level locking. After a formal develop- 
ment of tuple-level predicate locks the generalization 
to field-level predicate locks is informally discussed. 

A particular action on a single tuple may be denoted 
by (R, t, a), meaning that tuple t of relation R is ac- 
cessed in mode a. Two modes are distinguished here: 

a = read allows sharing with other readers, 

while 

a = write requires an exclusive lock on tuple t (up- 
date, insert, delete are all examples of write access). 

The action reads tuple t if a = read and it writes tuple 
t if a = write. 

Reading the balance of account number 32123 
would be an action 

(ACCOUNTS, (Napa, 32 123, lO5O), read) 

An update of the balance by $50 would involve two 
actions and two tuples, first 

(ACCOUNTS, (Napa, 32123, 1050), write) 

and also 

(ACCOUNTS, (Napa, 32123, 1 loo), write) 

because both tuples are written by the atomic update 
operation (one is "deleted" and the other "inserted"). 
Further, consistency requires that the Napa ASSETS 
tuple be updated by $50. 

In the model of actions described above, the action 
specifies a tuple by providing the values of all fields of 
the tuple. Although this is formally correct, the ex- 
amples above show that it is inappropriate for the con- 
text at hand. The first example wants to read the 
balance of account number 3123 and cares nothing 
about the location of the account. Yet the model re- 
quires that the action specify both the balance and 
location of the account as well as the account number. 
Similarly the second transaction wants to read the 
balance and location of account number 32123 and 
then add $50 to the balance of the account and to the 
assets of the account's location. 

If one considers the problem of reading the Napa 
tuple of ASSETS without a priori knowing its current 
balance, the problem and its solution become quite 
clear. The concept of action must be generalized to the 
concept of access, which acts on all tuples satisfying a 
given predicate. This notion is consistent with the idea 
of associative addressing which returns the set of all 
tuples with designated values in given fields. To access 
account number 32123, one specifies the access: 

(ACCOUNTS, Number = 32123, read) 

which refers to either a single tuple or no tuples, since 
account numbers are unique. An access which updates 
the balance of account number 32123 would be de- 
noted by 

(ACCOUNTS, Number = 32123, write). 
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Consistency assertions require that such an access be 
followed by an access 

(ASSETS, Location = 'Napa', write), 

since we require that the assets be the sum of the 
balances at each location. 

An access to find the numbers of all Napa accounts 
would return a set of tuples and would be denoted by 

(ACCOUNTS, Location = 'Napa', read). 

To proceed more formally we need the following 
definitions. If the relation R is drawn from the Car- 
tesian product of sets Sl , S2 , . . . Sn (R s Xi"& Si), 
then any predicate P defined on all tuples (sl , . . . , 
sn) E X&l Si is an admissible predicate for R. We ask 
that P be an effective test: given a tuple t, P(t) = TRUE 
or P(t) = FALSE. 

A particular access on relation R is denoted by 
(R, P, a) where P is an admissible predicate. Such an 
access is equivalent to the (possibly infinite) set of ac- 
tions (R, t, a)  where P ( t )  = TRUE, and where t ranges 
over the Cartesian product underlying R. In particular, 
it reads all such tuples if a = read and writes all such 
tuples if a = write. A predicate lock on relation R is 
denoted by (R, P, a) where P is an admissible predi- 
cate for R and a is an access mode. 

An action (R, t, a) is said to satisfy predicate lock 
(R', P', a') if 

R = R' and 
P' (t) = TRUE and 
a = a' or a' = write. 

In the second clause of (10c) we are assuming that write 
access implies read and write access. 

The action conj2icts with the predicate lock if 

R = R' and 
~ ' ( t )  = TRUE and 
a = write or a' = write. 

To give an example, the predicate lock 

L = (ACCOUNTS, Location = Napa, read) 

is satisfied by the action 

(ACCOUNTS, (Napa, 3213, 1050), read) 

and conflicts with the action 

(ACCOUNTS, (Napa, 3213, 1050), write). 

Satisfiability and conflict are defined analogously 
for accesses. Access A = (R, P, a) satisjes predicate 
lock L if and only if for each tuple t in the Cartesian 
product underlying R, if P(t) is true then action (R, 
t ,  a )  satisfies L. Access A conflicts with L if for some 
tuple t in the Cartesian product underlying R, P(t) 
is true and action (R, t ,  a) conflicts with L. 

As an example, the access which moves account 
23175 from Napa to Sonoma would be denoted 

(ACCOUNTS, (Location = 'Napa' V Location = 'Sonoma') 
A Number = 23175, write). 

This access would require that the transaction have a 
lock on the ACCOUNTS relation of the form (AC- 
COUNTS, P, write), where the predicate P must be 
satisfied by the tuples (Napa, 23175, *) and (Sonoma, 
23175, *). That is, the lock predicate P must cover 
both the old and new values. 

Note that we require an access to be covered by a 
single predicate lock. If one holds two locks, one for 
Napa and another for Sonoma, then the access would 
not satisfy either one and so would not be allowed. 
It is possible to relax this restriction so that an access 
is allowed if it satisfies the union of the locks held by 
a transaction. 

Two predicate locks are said to conflict if there is 
some action which satisfies one of them and conflicts 
with the other; that is, if one lock allows an access 
which is prohibited by the other lock. 

Given these definitions, the notions of the previous 
section generalize as follows. A transaction is a sequence 
of (transaction name, access) pairs. A transaction is 
well-formed if each access it makes satisfies some predi- 
cate lock it holds through that step. A transaction is 
two-phase if it does not request predicate locks after 
releasing a predicate lock. 

A schedule for a set of transactions is any collating 
(merging) of the transaction sequences. The dependency 
relation is defined by choosing (tuple, relation) pairs 
as the entities (for all tuples in the Cartesian products 
underlying the relations). Let E be the set of all such 
entities. The notion of an access reading or writing 
such entities has already been introduced. If S is a 
schedule for the set of transactions T, then the de- 
pendency set ot S is defined to be the set of triples 

(TI,  e, T2) E T X E X T  

such that for some integers i < j :  

S(i) = (TI ,  Al) and A1 reads or writes entity e, (12a) 
S ( j )  = (Tz , Az) and d 2  reads or writes entity e (12b) 
and not both Al and Az simply reads e, 
for any k between i and j, if S(k) = ( T 3 ,  A3) (12c) 
then A3 does not write entity e. 

The generalization of tuple-level predicate locks to 
field-level predicate locks can be done as folloys (see 
[8] for a formal development of this notion): A par- 
ticular field-level access to a relation reads, writes, or 
ignores each of the fields of the relation specified by the 
access predicate. A field-level predicate lock locks 
particular fields of the tuples covered by the predicate. 
Fields are either ignored by the lock or are locked in 
read or write mode. Two predicate locks conflict 
if their predicates are mutually satisfiable and one de- 
mands write access to a field locked in read or write 
mode by the other. A field-level access satisfies a predi- 
cate lock if it only accesses tuples covered by the predi- 
cate lock and it only reads fields locked in read mode 
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Fig. 8. An example of the LOCK table. 

Transaction Predicate Lock 

(ACCOUNTS, Location=Napa, write) 

I T2 I (ACCOUNTS, Balance <!XO, read) I 

by the lock and only writes fields locked in write mode 
by the predicate lock. Similarly, an access conflicts 
with a predicate lock if the two predicates are mutually 
satisfiable and the access reads a field of a tuple locked 
by the lock in write mode or it writes a field locked by 
the predicate lock in read or write mode. Given these 
definitions of access, satisfiability, and conflict, the 
development of this section generalizes to field-level 
predicate locks. 

To give concrete examples, the reading of an ac- 
count balance is denoted by the access 

(ACCOUNT, Number = 32123, ( (Number, read), 
(Balance, write) 1) 
which ignores the Location field, reads the Number 
field, and updates the Balance field. This access satis- 
fies the predicate lock 

(ACCOUNT, Number = 32 123, ((Number, write), 
(Balance, write) ) ) 

and this predicate lock conflicts with the predicate lock 

(ACCOUNT, Number = 32123, ( (Number, read)]). 

The access does not satisfy the latter predicate above. 
We now return to the simpler model where locks 

apply to whole tuples. To implement arbitrary predicate 
locks, associate with the database a table called LOCK 
which is a binary relation between transactions and 
predicate locks (see Figure 8). 

The legal lock scheduler functions as follows. 
Transactions are presumed to be two-phase and well- 
formed; the scheduler enforces this rule. Any growing 
transaction may request any predicate lock. When this 
happens, the scheduler tries to enter the transaction 
name and predicate lock into the LOCK table. If the 
predicate lock does not conflict with any other predicate 
lock in the table, it may be entered and granted im- 
mediately. If the predicate lock does conflict with one 
or more locks held by other transactions, then the 
requestor must wait for the other locks to be released 
or he must preempt the locks (or be preempted). As 
commented earlier, this is a scheduling decision and 
not the proper topic of this paper. Any transaction may 
release any predicate lock belonging to it. This deletes 
the lock from LOCK and marks the transaction as 
shrinking. If other transactions are waiting for tuples 
released by this lock then they may be started. Each 
time a transaction T* makes an action or access A the 
LOCK table is examined to find the set 

YES = ((T, L) t LOCK I A satisfies L and T = T*j 
YES is a list of all the reasons T* should be allowed to 
make the access. If YES is empty then T* is not well- 
formed and it should be given an error. 

It is clear that the scheduler described above checks 
the following properties : 

All transactions are well-formed and two-phase. (13a) 
If transaction T locks predicate P on relation R, (13b) 
then for any tuple t in the Cartesian product un- 
derlying R such that P(t) = TRUE, no other 
transaction may insert, delete or modify t until 
T releases the predicate lock. That is, predicate 
locks solve the problem of phantoms. 

So the scheduler described produces legal schedules 
and by the results of the previous section, gives each 
transaction a consistent view of the state of the system. 

Thus far we have ignored the details of how the 
scheduler decides whether or not two predicate locks 
conflict. In general this is a recursively unsolvable 
problem (even if predicates are restricted to using the 
arithmetic operators +, *, -, + as shown by Godel 
(see Kleene [ 5 ] ) ) .  The problem then is to find an in- 
teresting class of predicates for which it is easily de- 
cidable whether two predicates "overlap." We propose 
the following simple class of predicates. 

A simple predicate is any Boolean combination of 
atomic predicates. Atomic predicates have the form 

(' < , 
(field name) 1 (constant) 

where constant is a string or number and field name is 
the name of some field of the relation. For example, 

((Location = 'Napa' V Location = 'Santa Rosa1) 
A ((Balance < 200) A (Balance > 10)) 

is a simple predicate with four atomic predicates. 
Again, Presburger (see Kleene [ 5 ] )  showed a pro- 

cedure to decide if two predicates overlap for a class of 
predicates slightly more general than simple predicates 
(he allowed +, -, <, = , f , > , mod and allowed 
any Boolean combination of these operators and 
operands on integers). However, his decision procedure 
is much more complicated than the procedure for this 
simple set of predicates. 

To decide whether two simple predicate locks L 
and L' conflict is a fairly straightforward matter. Sup- 
pose L = (R, P, a) and L' = (R', P', a') are two predi- 
cate locks. Then 

If R Z R' there is no conflict as the locks apply (14a) 
to  different relations. 
If neither a = write nor a' = write then there is (14b) 
no conflict. 
Otherwise, there will be no conflict only if there (14c) 
is no tuple t such that P A ~ ' ( t )  is TRUE. 
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