
Online AggregationJoseph M. HellersteinComputer Science DivisionUniversity of California, Berkeleyjmh@cs.berkeley.edu Peter J. HaasAlmaden Research CenterIBM Research Divisionpeterh@almaden.ibm.com Helen J. WangComputer Science DivisionUniversity of California, Berkeleyhelenjw@cs.berkeley.eduAbstractAggregation in traditional database systems is performed inbatch mode: a query is submitted, the system processes alarge volume of data over a long period of time, and, even-tually, the �nal answer is returned. This archaic approach isfrustrating to users and has been abandoned in most otherareas of computing. In this paper we propose a new onlineaggregation interface that permits users to both observe theprogress of their aggregation queries and control executionon the y. After outlining usability and performance re-quirements for a system supporting online aggregation, wepresent a suite of techniques that extend a database sys-tem to meet these requirements. These include methods forreturning the output in random order, for providing con-trol over the relative rate at which di�erent aggregates arecomputed, and for computing running con�dence intervals.Finally, we report on an initial implementation of online ag-gregation in postgres.1 IntroductionAggregation is an increasingly important operation in to-day's relational database management systems (dbms's). Asdata sets grow larger and both users and user interfaces be-come more sophisticated, there is a growing emphasis onextracting not just speci�c data items, but also general char-acterizations of large subsets of the data. Users want thisaggregate information right away, even though producing itmay involve accessing and condensing enormous amounts ofinformation.Unfortunately, aggregation processing in today's data-base systems closely resembles the batch processing of the1960's. When users submit an aggregation query to thesystem, they are forced to wait without feedback while thesystem churns through millions of records or more. Onlyafter a signi�cant period of time does the system respondwith the (usually small) �nal answer. A particularly frus-trating aspect of this problem is that aggregation queriesare typically used to get a \rough picture" of a large bodyof information, and yet they are computed with painstak-ing precision, even in situations where an acceptably precisePermission to make digital/hard copy of part or all of this work for per-sonal or classroom use is granted without fee provided that copies arenot made or distributed for pro�t or commercial advantage, the copy-right notice, the title of the publication and its date appear, and notice isgiven that copying is by permission of ACM, Inc. To copy otherwise, torepublish, to post on servers, or to redistribute to lists, requires speci�cpermission and/or a fee.SIGMOD '97 AZ, USAcACM 0-89791-911-4/97/005...$3.50

Figure 1: An online aggregation interface for Query 1.approximation might be available very quickly.We propose changing the interface to aggregation pro-cessing and, by extension, changing aggregation processingitself. The idea is to perform aggregation online in order toallow users both to observe the progress of their queries andto control execution on the y. In this paper we present mo-tivation, methodology, and some initial results on enhancinga relational dbms to support online aggregation. This en-hancement requires changes not only to the user interface,but also to the techniques used for query optimization andexecution. We also show how both new and existing sta-tistical estimation techniques can be incorporated into thesystem to help the user assess the proximity of the run-ning aggregate to the �nal result; the proposed interfacemakes these techniques accessible even to users with littleor no statistical background. As discussed below, the on-line aggregation interface described here goes well beyondmerely providing a platform for such statistical estimationtechniques, and permits an interactive approach to both for-mal and informal data exploration and analysis.1.1 A Motivating ExampleAs a very simple example, consider the query that �nds theaverage grade in a course:Query 1: AVGSELECT AVG(final_grade) ------------FROM grades | 2.631046 |WHERE course_name = 'CS186'; ------------If there is no index on the course_name attribute, this queryscans the entire grades table before returning the answershown above.As an alternative, consider the user interface in Figure 1,which could appear immediately after the user submits thequery. This interface can begin to display output as soon asthe system retrieves the �rst tuple that satis�es the WHEREclause. The output is updated regularly, at a speed that is1

comfortable to the human observer. The % done and statusbar display give an indication of the amount of processingremaining before completion. The AVG �eld shows the run-ning aggregate, i.e., an estimate of the �nal result basedon all the records retrieved so far. The Confidence andInterval �elds give a probabilistic estimate of the proxim-ity of the current running aggregate to the �nal result |according to Figure 1, for example, the current average iswithin �:0652539 of the �nal result with 95% probability.The interval 2:6336 � 0:0652539 is called a running con�-dence interval . As soon as the query completes, this statis-tical information becomes unnecessary and need no longerbe displayed.This interface is signi�cantly more useful than the \blink-ing cursor" or \wristwatch icon" traditionally presented tousers during aggregation processing. It presents informationat all times, and more importantly it gives the user controlover processing. The user is allowed to trade accuracy fortime, and to do so on the y, based on changing or unquan-ti�able human factors including time constraints, accuracyneeds, and priority of other tasks. Since the user sees theongoing processing, there is no need to specify these factorsin advance.Obviously this example is quite simple; more complexexamples are presented below. Even in this very simple ex-ample, however, the user is given considerably more controlover the system than was previously available. In the rest ofthe paper we highlight additional ways that a user can con-trol aggregation (Sections 1.2 and 2). We discuss a numberof system issues that need to be addressed in order to bestsupport this sort of control (Section 3), provide formulas forcomputing Confidence and Interval parameters (Section 4and the Appendix), and present results from our initial im-plementation of online aggregation in postgres (Section 5).1.2 Online Aggregation and Statistical EstimationAssuming that records are retrieved in random order, a run-ning aggregate can be viewed as a statistical estimator ofthe �nal query result. The proximity of the running ag-gregate to the �nal result can therefore be expressed, forexample, in terms of a running con�dence interval as illus-trated above. The width of such a con�dence interval servesas a measure of the precision of the estimator. Previouswork [HOT88, HNSS96, LNSS93] has been concerned withmethods for producing a con�dence interval with a widththat is speci�ed prior to the start of query processing (e.g.\get within 2% of the actual answer with 95% probability").The underlying idea in most of these methods is to e�ectivelymaintain a running con�dence interval (not displayed to theuser) and stop sampling as soon as the length of this inter-val is su�ciently small. Hou, et al. [HOT89] consider therelated problem of producing a con�dence interval of mini-mal length, given a real-time stopping condition (e.g. \runfor 5 minutes only").A key strength of an online aggregation interface is thatcon�dence intervals can be exploited without requiring apriori speci�cation of stopping conditions. Though thismay seem a simple point, consider the case of an aggregationquery with a GROUP BY clause and six groups in its output,as in Figure 2. In an online aggregation system, the user canbe presented with six outputs and six \Stop-sign" buttons.In a traditional dbms, the user does not know the outputgroups a priori, and hence cannot control the query in agroup-by-group fashion.Because the online aggregation interface is natural and

Figure 2: An online aggregation interface with groups.easy to use, con�dence-interval methodology is more accessi-ble to non-statistical users than in a traditional dbms. Busyend-users are likely to be quite comfortable with the onlineaggregation \Stop-sign" buttons, since such interfaces arefamiliar from popular tools like web browsers. End-usersare certainly less likely to be comfortable specifying statis-tical stopping conditions. They are also unlikely to wantto specify explicit real-time stopping conditions, given thatconstraints in a real-world scenario are uid | often anotherminute or two of processing \suddenly" becomes worthwhileat a previously imposed deadline. The familiarity and natu-ralness of the online aggregation interface cannot be overem-phasized. It has been shown in the User Interface literaturethat status bars alone improve a user's perception of thespeed of a system [Mye85]. The combination of these sta-tus bars with both running estimates of the �nal result andonline processing controls has the potential to signi�cantlyincrease user satisfaction.The increase in power of the online aggregation interfaceover traditional interfaces calls for commensurately morepowerful statistical estimation techniques. Some of the pre-vious methods (such as \double sampling" [HOD91]) forcomputing con�dence intervals assume that records are sam-pled using techniques that are not appropriate in the settingof online aggregation. Previous work also has focused pri-marily on COUNT queries, and a number of the con�dence-interval formulas that have been proposed are based onChebyshev's inequality. We provide con�dence-interval for-mulas (see Section 4 and the Appendix) that are applicableto a much wider variety of aggregation queries. The for-mulas for \conservative" con�dence intervals are based onrecent extensions to Hoe�ding's inequality [Hoe63] and leadto conservative con�dence intervals that are typically muchnarrower than corresponding intervals based on Chebyshev'sinequality.Although the above discussion has focused on issues per-tinent to statistical estimation, it is important to remem-ber that much of the bene�t derived from online aggre-gation is not statistical in nature. The ongoing feedbackprovided by an online aggregation interface allows intuitive,non-statistical insight into the progress of a query. It alsopermits ongoing non-textual, non-statistical representationsof a query's output. One common example of this is theappearance of data on a map or graph as they are retrievedfrom the database.2

1.3 Other Related WorkAn interesting new class of systems is developing to supportso-called On-Line Analytical Processing (OLAP) [CCS93].Though none of these systems support online aggregationto the extent proposed here, one system | Red Brick |supports running count, average, and sum functions. Oneof the features of OLAP systems is their support for super-aggregation (\roll-up"), sub-aggregation (\drill-down") andcross-tabulation. The CUBE operator [GBLP96] has beenproposed as an addition to SQL to allow standard relationalsystems to support these kinds of aggregation. Comput-ing CUBE queries typically requires signi�cant processing[AAD+96], and batch-style aggregation systems will be veryunpleasant to use for these queries. Moreover, it is likelythat accurate computation of the entire data cube will oftenbe unnecessary; online approximations of the various aggre-gates are likely to su�ce in numerous situations.Other recent results on relational aggregation have fo-cused on new transformations for optimizing queries withaggregation [CS96, GHQ95, YL95, SPL96, SHP+96]. Thetechniques in these papers allow query optimizers more lat-itude in reordering operators in a plan. They are thereforebene�cial to any system supporting aggregation, includingonline aggregation systems.There has been some initial work on \fast-�rst" queryprocessing, which attempts to quickly return the �rst fewtuples of a query. Antoshenkov and Ziauddin report on theOracle Rdb (formerly DEC Rdb/VMS) system, which ad-dresses the issues of fast-�rst processing by running mul-tiple query plans simultaneously; this intriguing architec-ture requires some unusual query processing support [AZ96].Bayardo and Miranker propose optimization and executiontechniques for fast-�rst processing using nested-loops joins[BM96]. Much of this work is potentially applicable to onlineaggregation. The performance goals of online aggregationare somewhat more complex than those of fast-�rst queries,as we describe in Section 2.A di�erent but related notion of online query processingwas implemented in a system called approximate [VL93].This system de�nes an approximate relational algebra whichit uses to process standard relational queries in an iterativelyre�ned manner. If a query is stopped before completion, asuperset of the exact answer is returned in a combined ex-tensional/intensional format. This model is di�erent fromthe type of data browsing we address with online aggrega-tion: it is dependent on carefully designed metadata anddoes not address aggregation or statistical assessments ofprecision.2 Usability and Performance GoalsIn this section, we outline usability and performance goalsthat must be considered in the design of a system for onlineaggregation. These goals are di�erent than those in eithera traditional or real-time dbms. In subsequent sections, wedescribe how these goals are met in our initial implementa-tion.2.1 Usability GoalsContinuous Observation: As indicated above, statistical,graphical, and other intuitive interfaces should be presentedto allow users to observe the processing, and get a sense ofthe current level of precision. The set of interfaces must beextensible, so that an appropriate interface can be presentedfor each aggregate function, or combination of functions.

Figure 3: A speed-controllable multi-group online aggrega-tion interface.A good Application Programming Interface (api) must beprovided to facilitate this.Control of Time/Precision: Users should be able toterminate processing at any time, thereby controlling thetradeo� between time and precision. Moreover, this con-trol should be o�ered at a relatively �ne granularity. As anexample, consider the following query:Query 2:SELECT AVG(final_grade) FROM gradesGROUP BY major;The output of this query in an online aggregation system canbe a set of interfaces, one per output group, as in Figure 2.The user should be able to terminate processing of eachgroup individually. Such precise control is permitted by theinterface in Figure 2.Control of Fairness/Partiality: Users should be ableto control the relative rate at which di�erent running aggre-gates are updated. When aggregates are computed simul-taneously for more than one group (as in Query 2 above),and each group is equally important, the user may want toensure that either (i) the running aggregates are all updatedat the same rate or (ii) the widths of the running con�denceintervals all decrease at the same rate. (In the latter case,courses with higher variability among grades are updatedmore frequently than courses with lower variability.) Ide-ally, of course, the user would not like to pay an overallperformance penalty for this fairness. In many cases it maybe bene�cial to extend the interface so that users can dy-namically control the rate at which the running aggregatefor each group is updated relative to the others. Such anextension allows users to express partiality in favor of somegroups over others. An example of such an interface appearsin Figure 3.2.2 Performance GoalsMinimum Time to Accuracy: In online aggregation, akey performance metric is the time required to produce auseful estimate of the �nal answer. The de�nition of a \use-ful" answer depends, of course, upon the user and the sit-uation. As in traditional systems, some level of accuracymust be reached for an answer to be useful. As in real-timesystems, an answer that is a second too late may be entirelyuseless. Unlike either traditional or real-time systems, someanswer is always available, and therefore the de�nition of\useful" can be based on both kinds of stopping conditions| statistical and real-time | as well as on dynamic andsubjective user judgments.3

Minimum Time to Completion: It is desirable tominimize the time required to produce the �nal answer,though this goal is secondary to the performance goal givenabove. We conjecture that, for large queries, users of anonline aggregation typically will terminate processing longbefore the �nal answer is produced.Pacing: The running aggregates should be updated ata regular rate, to guarantee a smooth and continuously im-proving display. The output rate need not be as regular asthat of a video system, for instance, but signi�cant updatesshould be available often enough to prevent frustration forthe user, without being so frequent that they overburdenthe user or user interface.3 Building a System for Online AggregationWe have developed an initial prototype of our ideas in thepostgres dbms. In this section we describe two approacheswe followed in trying to add online aggregation to postgres.The �rst approach was trivial to implement, but su�eredfrom serious de�ciencies in both usability and performance.The second approach required signi�cant modi�cations topostgres internals, but met our goals e�ectively.3.1 A Naive ApproachSince postgres already supports arbitrary user-de�ned out-put functions, it is possible to use it without modi�cation toproduce simple running aggregates like those in Red Brick.Consider Query 3, which requests the average of all grades:Query 3:SELECT running_avg(final_grade),running_confidence(final_grade),running_interval(final_grade)FROM grades;In postgres, we can write a C function running avg thatreturns a oat by computing the current average after eachtuple. We can also write functions running confidenceand running interval, based on the statistical results wepresent in Section 4. Note that the running * functionsare not registered as aggregate functions with postgres,but rather as standard user-de�ned functions. As a result,postgres returns running * values for every tuple that sat-is�es the WHERE clause. In Section 5, we present performanceresults demonstrating the prohibitive costs of handling allthese tuples.postgres's extensibility features make it convenient forsupporting simple running aggregates such as this. Unfortu-nately, postgres is less useful for more complicated aggre-gates: since our running functions are not in fact postgresaggregates, they cannot be used with an SQL GROUP BYclause. A number of other performance and functionalityproblems arise in even the most forward-looking of today'sdatabase systems, because they are all based on the tra-ditional performance goal of minimizing time to a completeanswer. As we present our more detailed approach, it shouldbe clear that it goes much further in meeting our perfor-mance and usability goals than this naive solution.3.2 Modifying a DBMS to Support Online AggregationOnline aggregation should not be implemented as a user-level addition to a traditional dbms. In this section, wedescribe modi�cations to a database engine to support on-line aggregation. We have implemented the bulk of of these

techniques in postgres, and present some performance re-sults in Section 5.3.2.1 Random Access to DataRunning aggregates are computed correctly regardless of theorder in which records are accessed. However, statisticallymeaningful estimates of the precision of running aggregatesare available only if records are retrieved in random order.Practically speaking, this means that an online aggregationsystem should avoid access methods in which the attributevalues of a tuple a�ect the order in which the tuple is re-trieved. This can be guaranteed in a number of ways:1. Heap Scans: In traditional Heap File access meth-ods, records are stored in an unspeci�ed order, so sim-ple heap scans can be e�ective for online aggregation.It should be noted, however, that the order of a heap�le often does reect some logical order, based on ei-ther the insertion order or some explicit clustering. Ifthis order is correlated with the values of some at-tributes of the records (as may be the case after a bulkload, or for clustered heap �les), an online aggregationsystem should note that fact in the system statistics,so that online aggregation queries over these attributescan choose an alternative access method.2. Index Scans: Scanning an index returns tuples ei-ther in order based on some attributes (e.g. in a B+-tree index), or in groups based on some attributes(e.g. in Hash or multi-dimensional indices). Both ofthese techniques are inappropriate for online aggrega-tion queries over the indexed attributes. For example,if a column contains 10,000 copies of the value 0, and10,000 copies of the value 100, an ordered or groupedaccess to the tuples will return wildly skewed online es-timates for the average of this column. However, if theattributes that are indexed are not the same as thosebeing aggregated in the query, an index scan shouldproduce an appropriately random access to the valuesin the attributes that are being aggregated, assumingno correlation between attributes.3. Sampling from Indices: Olken presents techniquesfor pseudo-random sampling from various index struc-tures [Olk93]. These techniques are ideal for producingmeaningful con�dence intervals. On the other hand,they can be less e�cient than heap scans or even stan-dard index scans, since they require repeated probingof random index buckets, and therefore defeat opti-mizations like clustering and prefetching.Heap scans are often the method of choice for large ag-gregation queries. One of the other access methods may bemore appropriate, however, when the heap �le is ordered onthe aggregation attributes or when it is crucial to have sta-tistically valid running con�dence intervals. Our implemen-tation in postgres supports heap scans and index scans;we do not currently support a sampling access method.3.2.2 Fair, Non-Blocking GROUP BY and DISTINCTAn online aggregation system should begin returning an-swers as soon as possible. Moreover, if aggregates for mul-tiple groups are being displayed simultaneously, it is oftenimportant that the groups receive updates in a fair manner.A traditional technique for grouping is to sort the input re-lation by the aggregation �elds, and then collect the groups4

by scanning the output of the sort. This presents two prob-lems. First, sorting is a blocking algorithm: no outputs canbe produced until the entire input has been processed intosorted runs, which can take considerable time. Second, theresults for groups are computed in their entirety one at atime: the aggregate for the �rst group is computed to com-pletion before the second group is considered, and so on.Thus sort-based grouping algorithms are inappropriate foronline aggregation.An alternative is to hash the input relation on its group-ing columns. Hashing provides a non-blocking approach togrouping: as soon as a tuple is read from the input, anupdated estimate of the aggregate for its group can be pro-duced. Moreover, groups at the output can be updated asoften as one of their constituent records is read from theinput. On the other hand, a drawback of hashing is thatit does not scale gracefully with the number of groupingvalues | when the hash table exceeds the size of its as-sociated bu�er space, the hashing algorithm will begin tothrash. This problem is alleviated by using unary HybridHashing [Bra84]. It may be expected that the number ofdistinct groups in a query should be relatively small, andhence naive hashing may be acceptable in many cases. Arecent optimization of unary Hybrid Hashing called HybridCache [HN96] guarantees performance that is equivalent tonaive hashing for the cases where the hash table �ts in mem-ory, and scales gracefully when the hash table grows toolarge.SQL supports aggregates of the form aggregate(DISTINCTcolumns). For such aggregates, the system must removeduplicates from the aggregation columns before computingthe aggregate. Grouping and duplicate elimination are verysimilar, and both can be accomplished via either sorting orhashing. As with grouping, duplicates should be eliminatedvia hashing in an online aggregation system. In this scenarioit is not unusual for the hash table to grow quite large, andtechniques like Hybrid Cache can prove very important.The original version of postgres used sorting to removeduplicates and form groups, so we modi�ed it to do naivehashing for these operations. We plan an implementation ofHybrid Cache in our next online aggregation system.3.2.3 Index StridingEven with hash-based grouping, updates to a particulargroup will be available only as often as constituent recordsappear in the input of the grouping operator. Given a ran-dom delivery of tuples at the input, updates for groups withfew members will be very infrequent. To prevent this prob-lem, it would be desirable to read tuples from the input in around-robin fashion | that is, to provide random deliveryof values within each group, but to choose from the groupsin order (a tuple from Group 1, a tuple from Group 2, atuple from Group 3, and so on). To support equal-widthcon�dence intervals or partiality constraints, it may be de-sirable to use a weighted round-robin scheme that fetchesfrom some groups more often than others.We support this behavior with a technique called indexstriding. Given a B-tree index on the grouping columns,1 onthe �rst request for a tuple we open a scan on the leftmostedge of the index, where we �nd a key value k1. We assignthis scan a search key (or \SARG" [SAC+79]) of the form[= k1]. After fetching the �rst tuple with key value k1, ona subsequent request for a tuple we open a second index1Index striding is naturally applicable to other types of indices aswell, but we omit discussion here due to space constraints.

scan with search key [> k1], in order to quickly �nd thenext group in the table. When we �nd this value, k2, wechange the second scan's search key to be [= k2], and returnthe tuple that was found. We repeat this procedure forsubsequent requests until we have a value kn such that asearch key [> kn] returns no tuples. At this point, we satisfyrequests for tuples by fetching from the scans [= k1]; : : : ;[= kn] in a (possibly weighted) round-robin fashion.With appropriate bu�ering, striding any index is at leastas e�cient as scanning a relation via an unclustered index| each tuple of the relation should be fetched exactly once,though each fetch may require a random I/O. This perfor-mance is improved if either (i) the index is the primary ac-cess method for the relation, (ii) the relation is clustered bythe grouping columns, or (iii) the index keys contain boththe grouping and aggregation columns, with the groupingcolumns as a pre�x. In all of these cases, the performanceof the index stride will be as good as that of scanning a rela-tion via a clustered secondary index: no block of the relationwill be fetched more than once.An important advantage of index striding is that it allowscontrol over delivery of tuples across groups. In particular,it can assure that each group is updated at the output atan appropriate rate based on default settings or online usermodi�cations. A �nal advantage is that when a user requeststhat a group be stopped, the other groups will begin todeliver tuples more quickly than they did before.We extended postgres to support index striding withweighted round-robin scheduling. Using this technique, wesupport the \Stop-sign" and \Speed" buttons of Figure 3.Index striding supports many of our usability and perfor-mance goals.3.2.4 Non-Blocking Join AlgorithmsIn order to guarantee reasonably interactive display of onlineaggregations, it is important to avoid algorithms that blockduring query processing. In this section we present an initialdiscussion of standard join algorithms with regard to theirblocking properties. We plan to do a quantitative evaluationof these tradeo�s in future work, but this initial analysisalready points out some important trends.Sort-merge join is clearly unacceptable for online aggre-gation queries, since sorting is a blocking operation. Mergejoin (without sort) is acceptable in most cases. Complica-tions arise, however, because of the sorted output of a mergejoin. As with access methods that provide tuples in sortedorder, join methods that generate sorted output can causeproblems in terms of statistics, and also in terms of fairnessin grouping. So merge join is useful in some cases and notothers, and must be chosen with care.Hybrid hash join [DKO+84] blocks for the time requiredto hash the inner relation. This may be acceptable if the in-ner relation is small, and particularly if it �ts into the bu�erspace available. The Pipeline hash join technique of [WA91]is a non-blocking hash join that treats its inner and outerrelations symmetrically. Pipeline hash join is typically lesse�cient (in terms of completion time) than hybrid hash joinsince it shares bu�ers among both the inner outer relations.However, it may be appropriate for online aggregation ifboth relations in the join are large.The \safest" join algorithm for online aggregation is nest-ed-loops join, particularly if there is an index on the inner re-lation. It is non-blocking, and produces outputs in the sameorder as the outermost relation. There are recent results onoptimizing a pipeline of nested-loops joins to improve the5

speed of access to the �rst few tuples [BM96]. However,with a large, unindexed inner relation, the rate of produc-tion of nested-loops join may be so slow (albeit steady), thatit will be unacceptable even for online aggregation.Clearly there are a number of choices for join strategiesthat satisfy the goals of online aggregation in certain situa-tions. As in traditional query processing, an optimizer mustbe used to choose between these strategies, and we discussthis issue next.3.2.5 OptimizationA thorough understanding of query optimization for onlineaggregation will require (i) a quantitative speci�cation ofperformance goals for online processing, and (ii) an accu-rate cost model for relational operators within that frame-work. We consider our work to date to be too preliminaryfor such speci�c analyses. However, some basic observationscan vastly improve the quality of plans produced for onlineaggregation, and we present these points here.First, sorting can be avoided entirely in an online aggre-gation system, unless explicitly requested by the user. Inscenarios where sorting is quick (e.g. for small relations),alternative algorithms based on hashing or iteration shouldbe comparably fast anyway.Second, the notion of \interesting orders" [SAC+79] ina traditional optimizer must be extended for online aggre-gation. As shown in Section 3.2.4, it is undesirable to pro-duce results that are ordered on the aggregation or group-ing columns. Hence certain operations (e.g. scans and joins)should be noted to have \interestingly bad" orders, and mayoften be pruned from the space of possible sub-solutions dur-ing optimization.Third, blocking sub-operations (e.g. processing the innerrelation of a Hybrid Hash Join) should have costs that aredisproportionate to their processing time. The cost modelfor an operation in an online aggregation system should bebroken into two parts: time td spent in blocking operations(\dead time" from the user's perspective), and time to spentproducing tuples for the output (\output time"). An appro-priate cost function for online aggregation should have theform f(to) + g(td), where f is a linear function, and g issuper-linear (e.g. exponential). This will \tax" operationswith large amounts of dead time, and may naturally pruneinappropriate plans like those that include sorting.Fourth, some preference should be given to plans thatmaximize user control, such as those that use index striding.To guarantee this, there must be a way to characterize thecontrollability features of an operator and weigh the bene�tof these features against raw performance considerations.Finally, tradeo�s need to be evaluated between the out-put rate of a query and its time to completion. In manycases, the best \batch" plan (e.g. a merge join on sortedrelations based on the aggregation attributes) may be somuch faster than the best non-blocking plan (e.g. a nestedloops join on these relations) that the \batch" behavior maybe preferable even in an online environment. The point atwhich this tradeo� happens is clearly dependent on a user'sdesires. An interesting direction that we intend to explorein future work is to devise natural controls that allow rel-atively naive users to set their preferences in this regard.Running multiple versions of a query as in Rdb [AZ96] is anatural way to make this decision on the y, at the expenseof wasted computing resources.

3.2.6 Aggregate FunctionsIn order to produce running aggregates, the standard setof aggregate functions must be extended. First, aggregatefunctions must be written that provide running estimates.For single-table queries, running computation of SUM, COUNT,and AVG aggregates is straightforward, and running compu-tation of VAR and STD DEV aggregates can be accomplishedusing numerically stable algorithms as in Chan, Golub, andLeVeque [CGL83]. In addition, new aggregate functionsmust be de�ned that return running con�dence intervalsfor these estimates. We provide formulae for a variety ofsuch con�dence intervals in Section 4 and in the Appendix.Extensible systems like postgres make implementation ofthese database extensions relatively easy, since new aggre-gate functions can be added by users. Finally, the query ex-ecutor must be modi�ed to provide running aggregate valuesas needed for display, and an api must be provided to con-trol the rate at which the values are provided. We discussthis issue next.3.2.7 APIThe traditional SQL cursor interface is not su�ciently ro-bust to support the kinds of feedback we wish to pass fromthe user interface to the database server. In an extensibledbms like postgres, one can circumvent this problem bysubmitting additional queries, which call user-de�ned func-tions, which in turn modify the processing in the dbms. Weintroduced four such functions in postgres. The �rst threeare stopGroup, speedUpGroup, and slowDownGroup. Eachtakes as arguments a cursor and a group value, and is han-dled accordingly by the backend to stop, speed up, or slowdown processing on a group within a query (e.g. by chang-ing the round-robin schedule in an index stride). The fourthfunction, setSkipFactor, takes a cursor name and an inte-ger as arguments, and sets a skip factor for the cursor. Ifthe skip factor is set to k, then the dbms only ships an up-date to the user interface after k input tuples have beenprocessed by the aggregate. This update frequency cana�ect both the readability and the performance of the userinterface, particularly if the user interface is running on adi�erent machine than the dbms. Our full user interfacefor postgres includes a control for the skip factor, and isshown in Figure 4. All the functionality of this interface hasbeen implemented in postgres. The window of the inter-face grows dynamically as new groups are discovered duringprocessing.We emphasize that this user interface is merely an ex-ample of what can be done with an appropriate system andapi. Our solution of using queries with user-de�ned func-tions was a (rather inelegant) workaround for the insu�cientapi provided by SQL. A subsidiary goal of this work is topush for extensions to the SQL api to support interfaces foronline control of queries.4 Running Con�dence IntervalsThe precision of a running aggregate can be indicated bymeans of an associated running con�dence interval. Sup-pose that n records have been retrieved in random orderand a running aggregate Yn has been computed. For a pre-speci�ed con�dence parameter p 2 (0; 1), the idea, as shownin the examples above, is to display a precision parameter �nsuch that Yn is within ��n of the �nal answer � with prob-ability approximately equal to p. Equivalently, the random6

Figure 4: The full postgres online aggregation interface.interval [Yn��n; Yn+�n] contains � with probability approxi-mately equal to p. (In the previous examples of the interface,the con�dence parameter p is labeled Confidence and theprecision parameter �n is labeled Interval.) A large valueof �n serves to warn the user that the records seen so far maynot be su�ciently representative of the entire database, andhence the current estimate of the query result may be farfrom the �nal result. Moreover, as discussed above, the usercan terminate processing of the aggregation query when �ndecreases to a desired level.A running con�dence interval is statistically meaningfulprovided that records are retrieved in random order. Underthis assumption, we can view the records retrieved so faras a random sample drawn uniformly without replacementfrom the set of all records in the database.There are several types of running con�dence intervalsthat can be constructed from n retrieved records:(i) Conservative con�dence intervals contain the �nal an-swer � with a probability that is guaranteed to begreater than or equal to p. Such intervals can bebased on Hoe�ding's inequality [Hoe63] or recent ex-tensions [Haa96a] of this inequality and are valid forall n � 1.(ii) Large-sample con�dence intervals contain the �nal an-swer � with a probability approximately equal to p andare based upon central limit theorems (clt's). Such in-tervals are appropriate when n is small enough so thatthe records retrieved so far can be viewed as a sampledrawn e�ectively with replacement but large enoughso that approximations based on clt's are accurate.When n is both small enough and large enough, wesay that the large-sample assumption holds. Such in-tervals must be used judiciously: the true probabilitythat a large-sample con�dence interval contains � canbe less (sometimes much less) than the nominal prob-ability p. The advantage of large-sample con�denceintervals is that, when applicable, they are typicallymuch shorter than conservative con�dence intervals.(iii) Deterministic con�dence intervals contain � with prob-ability 1. Such intervals are typically useful only whenn is very large. Unlike the other types of con�denceinterval, a deterministic con�dence interval is typicallyof the form [Yn � �n; Yn + �n] with �n 6= �n.In practice, it may be desirable to dynamically adjust thetype of running con�dence interval that is displayed basedon the current value of n.

We illustrate the construction of conservative and large-sample con�dence intervals with a simple example. (Weconjecture that users typically will terminate an aggregationquery before enough records have been retrieved to form auseful deterministic con�dence interval; we therefore do notdiscuss such intervals further.) Let R be a relation contain-ing m tuples, denoted t1; t2; : : : ; tm, and consider a query ofthe formSELECT AVG(expression) FROM R;where expression is an arithmetic expression involving theattributes of R. A typical instance of such a query mightlook likeSELECT AVG(price * quantity) FROM inventory;Denote by v(i) (1 � i � m) the value of expression whenapplied to tuple ti. Let Li be the (random) index of theith tuple retrieved from R; that is, the ith tuple retrievedfrom R is tuple tLi . We assume that all retrieval orders areequally likely, so that P fLi = 1 g = P fLi = 2 g = � � � =P fLi =m g = 1=m for each i. After n tuples have beenretrieved (where 1 � n � m), the running aggregate for theabove AVG query is given by Y n = (1=n)Pni=1 v(Li).To obtain a conservative con�dence interval, we requirethat there exist constants a and b, known a priori , such thata � v(i) � b for 1 � i � m; such constants typically canbe obtained from the database system catalog. Denote by �the �nal answer to the query, that is, � = (1=m)Pmi=1 v(i).Hoe�ding's inequality [Hoe63] asserts thatP � jY n � �j � �	 � 1� 2e�2n�2=(b�a)2for � > 0. Setting the right side of the above inequality equalto p and solving for �, we see that with probability � p therunning average Y n is within ��n of the �nal answer �,where �n = (b� a)� 12n ln� 21� p��1=2 : (1)To obtain a large-sample con�dence interval, we do notrequire a priori bounds on the function v, but rather that thelarge-sample assumption hold. Since n is \small enough,"the random indices fLi : 1 � i � n g can be viewed as asequence of independent and identically distributed (i.i.d.)random variables. Set �2 = (1=m)Pmi=1�v(i)���2. Since nis \large enough," it follows from the standard clt for i.i.d.random variables that pn(Y n��)=� is distributed approx-imately as a standardized (mean 0, variance 1) normal ran-dom variable. By a standard \continuous mapping" argu-ment [Bil86, Section 25], this assertion also holds when �2 isreplaced by the estimator Tn;2(v) = (n�1)�1Pni=1�v(Li)�Y n�2. It follows thatP � jY n � �j � �	 = P (�����pn(Y n � �)T 1=2n;2 (v) ����� � �pnT 1=2n;2 (v))� 2� �pnT 1=2n;2 (v)!� 1 (2)for � > 0, where � is the cumulative distribution functionof a standardized normal random variable. Let zp be the(p+ 1)=2 quantile of this distribution, so that �(zp) = (p+1)=2. Then, setting the rightmost term in (2) equal to p and7

solving for �, we see that a large-sample (100p)% con�denceinterval is obtained by choosing�n = �z2pTn;2(v)n �1=2 : (3)The above example is relatively simple and utilizes well-known results from probability theory. Often, however, theaggregation query consists of the AVG, SUM, COUNT, VARIANCE,or STD DEV operator applied not to all the tuples in a givenbase relation, but to the tuples in a result relation that isspeci�ed using standard selection, join, and projection op-erators. Recent generalizations [Haa96a, Haa96b] of Hoe�d-ing's inequality and the standard clt permit development ofcon�dence-interval formulas for many of these more complexqueries. These formulas are summarized in the Appendix.5 Performance IssuesIn this section, we present initial results from an implemen-tation of online aggregation in postgres; these result illus-trate the functionality of the system as well as some perfor-mance issues. Our implementation is based on the publiclyavailable Postgres95 distribution [Pos95], Version 1.3. Ourmeasurements were performed with the postgres serverrunning on a DEC3000-M400 with 96Mb main memory, a1Gb disk, and the DEC OSF/1 V3.2 operating system. Theclient application, written in Tcl/Tk, was run on an HPPA-RISC 715/80 workstation on the same local network.For these experiments we used enrollment data from theUniversity of Wisconsin, which represents the enrollmenthistory of students over a three-year period. We focus ona single table, enroll, which records information about astudent's enrollment in a particular class. The table has1,547,606 rows, and in postgres occupies about 316.6 Mbon disk.Our �rst experiment's query simply �nds the averagegrade of all enrollments in the table:Query 4:SELECT AVG(grade), 0.99 as Confidence,consAvgInterval(0.99) as IntervalFROM enroll;In addition to the average grade, this query also returns aconservative con�dence interval for the average grade; thisinterval contains the �nal answer with probability at least99%. The function consAvgInterval is based on the formulafor �n given in (1). Both AVG and consAvgInterval areaggregate functions registered with postgres, and providerunning output during the online aggregation.Figure 5 shows the results of running the query in var-ious con�gurations of the system. The vertical bar at 642seconds represents the time taken for postgres to do tra-ditional \batch" processing. Each of the curves representsthe half-width (�n) of a running interval with 99% con�-dence, based on a sequential scan of the enroll table. Ineach experiment we varied the \skip factor" described inSection 3.2.7 between 10 and 10000.The �rst point to note is that online aggregation is ex-tremely useful: reasonable estimates are available quickly.In addition, these experiments illustrate the need for settingthe skip factor intelligently. Our client application is writtenin Tcl/Tk, an interpreted (and hence rather slow) language;for our experiments it also produces an output trace pertuple displayed. As the skip factor is reduced, the clientapplication becomes overburdened and requests tuples at a

0 200 400 600
seconds

0.0

0.2

0.4

0.6

0.8

ha
lf

-i
nt

er
va

l a
t

99
%

 c
on

fi
de

nc
e

skip10
skip100
skip1000
skip10000

Figure 5: Half-width (�n) of conservative con�dence intervalfor Query 4.much slower rate than they can be delivered by the server;note that the con�dence intervals for \skip10" are aboutan order of magnitude wider than those for \skip1000" and\skip10000". A naive implementation of online aggregation,as suggested in Section 3.1, would correspond to a skip-factor setting of 1. Such an implementation would have verypoor performance, shipping and displaying as many rows asthere are in enroll.Our second experiment uses a similar query, which re-quests the average grade per \college" in the university.Query 5:SELECT college, AVG(grade),0.95 as Confidence,consAvgInterval(0.95) as Interval,FROM enrollGROUP BY college;Note that in this query we choose a lower con�dence(95%), which allows us to get smaller intervals somewhatmore quickly. There are 16 values in the college column.In Figure 6 we present performance for a large group (col-lege=L, 925596 tuples), and for a small group (college=S,15619 tuples), using a variety of query plans. In each graph,we measure the half-width of the con�dence interval overtime for (1) a sequential scan, (2) a clustered index stride,(3) an unclustered index stride, and (4) a clustered indexstride in which all groups but the one measured are stoppedearly by pressing the \stop-sign" button soon after the querybegins running (\L only" and \S only" in Figures 6 and 7).Clearly, index stride is faster for clustered indices thanfor unclustered ones, since the number of heap-�le I/Os isreduced by clustering. More interestingly, note that whensome groups are stopped during index striding, the groupsthat remain are computed faster; this is reected in thesteeper decline of \clustered: L only" and \clustered: Sonly" relative to the corresponding \clustered" curves. Per-haps the most interesting aspect of these graphs is the dif-ference between sequential scanning and index striding. Se-quential scanning retrieves tuples faster than index striding,at the cost of lack of control. For the large group (L), thesuperior speed of sequential scanning is reected in the rateat which the half-width of the con�dence interval decreases.However, for the smaller group (S), even the unclustered in-dex stride drops more steeply than sequential scan. This is8

0 200 400 600
seconds

0.1

0.2

ha
lf

-i
nt

er
va

l a
t

95
%

 c
on

fi
de

nc
e

unclustered: L
clustered: L
clustered: L only
sequential: L

Figure 6: Half-width (�n) of conservative con�dence intervalfor Query 5, large group.
0 200 400 600

seconds

0.05

0.10

0.15

0.20

ha
lf

-i
nt

er
va

l a
t

95
%

 c
on

fi
de

nc
e unclustered: S

clustered: S
clustered: S only
sequential: S

Figure 7: Half-width (�n) of conservative con�dence intervalfor Query 5, small group.due to the fact that tuples from group S appear fairly rarelyin the relation. Sequential scan provides these tuples onlyoccasionally, while index striding | even when no groupsare stopped | fetches tuples from S on a regular basis aspart of its round-robin schedule. This highlights an addi-tional advantage of index striding: it provides faster esti-mates for small groups than access methods that providerandom arrivals of tuples.These experiments provide some initial insights into ourtechniques for online aggregation, and serve as evidence thatour approach to online aggregation provides functionalityand performance that would not be available in naive solu-tions. There is clearly much additional work to be done inmeasuring the costs and bene�ts of the various techniquesproposed here. We reserve such issues for future study.6 Conclusion and Future WorkIn this paper we demonstrate the need for a new approach toaggregation that is interactive, intuitive, and user-controlla-ble. Supporting this online approach to aggregation requiressigni�cant extension to a relational database engine. As a

prototype implementation, we extended postgres with ag-gregates that produce running output, hash-based groupingand duplicate-elimination, index striding, minor optimiza-tion changes, new api's and user interfaces. Based on theseextensions we developed a relatively attractive system thatsatis�es many of the performance and usability goals we setout to solve.An important feature of a user interface for online aggre-gation is the ability to produce statistical con�dence inter-vals for running aggregates. This paper indicates how suchcon�dence intervals can be implemented in any dbms thatstores rudimentary statistics such as minimum and maxi-mum values per column.As we have noted, the usability and performance needsof online aggregation are not crisply de�ned, and there ismuch latitude in the solution space for the problem. We in-tend to visit more issues in more detail in our next phase ofdevelopment, which will be done in the context of a commer-cial parallel object-relational dbms. We conclude by listingsome directions we are considering for future work:� User Interface: Online aggregation is motivated bythe need for better user interfaces, and it is clear thatadditional work is needed in this area. One direc-tion we plan to pursue is to present running plotsof queries on a 2-dimensional canvas, as exempli�edby the (batch) visualization system Tioga DataSplash[ACSW96]. In such a system, one can view the screenas a \graphical aggregate" | many data items areaggregated into one progressively re�ned image. Tech-niques for storing and presenting progressive re�ne-ments of images are well understood [VU92] and ex-ploited by popular web browsers. It would be in-teresting to try to �nd common ground between thetechniques presented here, and the image compressiontechniques used for progressive network delivery.Another interface problem is to present \just enough"information on screen. In current OLAP systems, thisis typically handled by presenting the input data in asmall number of default aggregate groups, and then al-lowing \drill-down" and \roll-up" facilities. We hopeto combine this interface with online processing so thatdrill-down is available instantly, with super-aggregatesbeing continuously computed in the background whileusers drill into ad hoc sub-aggregates that are com-puted more quickly.� Nested Queries: An open question is how to provideonline execution of queries containing aggregations inboth subqueries and outer-level queries: the runningresults at the top level depend on the running resultsat lower levels. Traditional block-at-a-time process-ing requires the lower query blocks to be processedbefore the higher ones, but this is a blocking execu-tion model,2 and hence violates our performance goals.Any non-blocking approach would lead to signi�cantstatistical problems in terms of con�dence intervals,in addition to complicating other performance and us-ability issues. An additional question is how processingis best time-sliced across the various query blocks, inboth uniprocessor and parallel con�gurations.� Control Without Indices: As of now, we can pro-vide maximal user control only when we have an ap-propriate index to support index striding. We are con-sidering techniques for providing this control in other2No pun intended.9

scenarios as well. For example, in order to providepartiality in aggregates over joins, it may be bene�cialto e�ectively scan base relations multiple times, eachtime providing a di�erent subset of the relation for joinprocessing; the early subsets can contain a preponder-ance of tuples from the preferred groups. The function-ality of multiple scans can be e�ciently achieved via\piggy-back" schemes which allow more than one cur-sor to share a single physical scan of the data. Anotherpossibility is to recluster heaps on the y to supportmore desirable access orders on subsequent rescans.� Checkpointing and Continuation: Aggregationqueries that bene�t from online techniques will typ-ically be long-running operations. As a result theyshould be checkpointed, so that computation can besaved across system crashes, power failures, and opera-tor errors. This is particularly natural for online aggre-gation queries: users should be allowed to \continue"queries (or pieces of queries) that they have previouslystopped. Checkpoints of partially computed queriescan also be used as materialized sample views [Olk93].� Tracking Online Queries: Although users may of-ten stop aggregation processing early, they may alsowant to make use of the actual tuples used to computethe partial aggregate. This is a common request in thecontext of, for example, �nancial auditing or statisticalquality control: an unusual value of an online aggre-gate produced from a sample population may indicatethe need to study that population in more detail. In or-der to support such query tracking, one must generatea relation, RID-list, or view while processing the ag-gregation online. Techniques for doing this e�cientlywill depend on the query.� Extensions of Statistical Results: We are activelyworking on con�dence intervals for additional aggre-gate functions. In addition, we are developing tech-niques to provide \simultaneous" con�dence intervals,which can describe the statistical accuracy of the es-timations for all groups at once, complementing thecon�dence interval per group. Finally, the statisti-cal techniques in this paper assume accurate statis-tical information in the system catalogs, particularlyregarding the cardinalities of relations. An extensionwe are pursuing is to provide con�dence intervals thatcan tolerate a certain amount of error in these storedstatistics.7 AcknowledgmentsIndex Striding was inspired by a comment made by MikeStonebraker. Andrew MacBride implemented the Postgres95Online Aggregation Interface. Thanks are due to Je� Naugh-ton, Praveen Seshadri, Donald Kossman, and Margo Seltzerfor interesting discussion of this work. Thanks also to thefollowing for their editorial suggestions: Alex Aiken, MikeCarey, Alice Ford, Wei Hong, Navin Kabra, Marcel Kor-nacker, Bruce Lindsay, Adam Sah, Sunita Sarawagi, ouranonymous reviewers, and the students of CS286, UC Berke-ley, Spring 1996. The Wisconsin course dataset was gra-ciously provided by Bob Nolan of UW-Madison's Depart-ment of Information Technology (DoIT). Hellerstein andWang were partially funded by a grant from Informix Cor-poration.

References[AAD+96] A. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta,J. F. Naughton, R. Ramakrishnan, and S. Sarawagi. Onthe computation of multidimensional aggregates. In Proc.22nd Intl. Conf. Very Large Data Bases, Mumbai(Bombay),September 1996.[ACSW96] A. Aiken, J. Chen, M. Stonebraker, and A. Woodru�.Tioga-2: A direct manipulationdatabase visualizationenviron-ment. In Proc. of the 12th Intl. Conf. Data Engineering, pages208{217, New Orleans, February 1996.[AZ96] G. Antoshenkov and M Ziauddin. Query processing andoptimization in Oracle Rdb. VLDB Journal, 5(4):229{237,1996.[Bil86] P. Billingsley. Probability and Measure. Wiley, New York,second edition, 1986.[BM96] R. J. Bayardo, Jr. and D. P. Miranker. Processing queriesfor �rst-few answers. In Fifth Intl. Conf. Information andKnowledge Management, pages 45{52, Rockville, Maryland,1996.[Bra84] K. Bratbergsengen. Hashing methods and relational al-gebra operations. In Proc. 10th Intl. Conf. Very Large DataBases, pages 323{333, Singapore, August 1984.[CCS93] E. F. Codd, S. B. Codd, and C. T. Sal-ley. Providing OLAP (on-line analytical process-ing) to user-analysts: an IT mandate. URLhttp://www.arborsoft.com/papers/coddTOC.html., 1993.[CGL83] T. F. Chan, G. H. Golub, and R. J. LeVeque. Algo-rithms for computing the sample variance: Analysis and rec-ommendation. Amer. Statist., 37:242{247, 1983.[CS96] S. Chaudhuri and K. Shim. Optimizing queries with ag-gregate views. In P. M. G. Apers, M. Bouzeghoub, and G. Gar-darin, editors, Advances in Database Technology{ EDBT'965th Intl. Conf. on Extending Database Technology, volume1057 of Lecture Notes in Computer Science, pages 167{182.Springer-Verlag, New York, 1996.[DKO+84] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro,M. R. Stonebraker, and D. Wood. Implementation techniquesfor main memory database systems. In Proc. ACM-SIGMODIntl. Conf. Management of Data, pages 1{8, Boston, June1984.[GBLP96] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh.Data cube: A relational aggregation operator generalizingGroup-By, Cross-Tab, and Sub-Totals. In Proc. of the 12thIntl. Conf. Data Engineering, pages 152{159, 1996.[GHQ95] A. Gupta, V. Harinarayan, and D. Quass. Aggregate-query processing in data warehousing environments. In Proc.21st Intl. Conf. Very Large Data Bases, Zurich, September1995, pages 358{369.[Haa96a] P. J. Haas. Hoe�ding inequalities for join-selectivityestimation and online aggregation. IBM Research Report RJ10040, IBM Almaden Research Center, San Jose, CA, 1996.[Haa96b] P. J. Haas. Large-sample and deterministic con�denceintervals for online aggregation. IBM Research Report RJ10050, IBM Almaden Research Center, San Jose, CA, 1996.[HN96] J. M. Hellerstein and J. F. Naughton. Query executiontechniques for caching expensive methods. In Proc. ACM-SIGMOD Intl. Conf. Management of Data, Montreal, June1996, pages 423{424.[HNSS96] P. J. Haas, J. F. Naughton, S. Seshadri, and A. N.Swami. Selectivity and cost estimation for joins based on ran-dom sampling. J. Comput. System Sci., 52:550{569, 1996.10

[HOD91] W.-C. Hou, G. Ozsoyoglu, and E. Dogdu. Error-constrained count query evaluation in relational databases. InProceedings, 1991 ACM-SIGMOD Intl. Conf. Managment ofData, pages 278{287. ACM Press, 1991.[Hoe63] W. Hoe�ding. Probability inequalities for sums ofbounded random variables. J. Amer. Statist. Assoc., 58:13{30, 1963.[HOT88] W.-C. Hou, G. Ozsoyoglu, and B. K. Taneja. Statisti-cal estimators for relational algebra expressions. In Proc. 7thACM SIGACT-SIGMOD-SIGART Symposium on Principlesof Database Systems, pages 276{287, Austin, March 1988.[HOT89] W.-C. Hou, G. Ozsoyoglu, and B. K. Taneja. Processingaggregate relational queries with hard time constraints. InProc. ACM-SIGMOD Intl. Conf. Management of Data, pages68{77, Portland, May-June 1989.[LNSS93] R. J. Lipton, J. F. Naughton, D. A. Schneider,and S. Seshadri. E�cient sampling strategies for relationaldatabase operations. Theoretical Computer Science, 116:195{226, 1993.[Mye85] B. A. Myers. The importance of percent-done progressindicators for computer-human interfaces. In Proc. SIGCHI'85: Human Factors in Computing Systems, pages 11{17,April 1985.[Olk93] F. Olken. Random Sampling from Databases. PhD thesis,University of California, Berkeley, 1993.[Pos95] Postgres95 home page, 1995. URLhttp://www.ki.net/postgres95.[SAC+79] P. G. Selinger, M. Astrahan, D. Chamberlin, R. Lorie,and T. Price. Access path selection in a relational databasemanagement system. In Proc. ACM-SIGMOD Intl. Conf.Management of Data, pages 22{34, Boston, June 1979.[SHP+96] P. Seshadri, J. M. Hellerstein, H. Pirahesh, T. C. Le-ung, R. Ramakrishnan, D. Srivastava, P. J. Stuckey, and S. Su-darshan. Cost-based optimization for magic: Algebra and im-plementation. In Proc. ACM-SIGMOD Intl. Conf. Manage-ment of Data, Montreal, June 1996, pages 435{446.[SPL96] P. Seshadri, H. Pirahesh, and T. C. Leung. Complexquery decorrelation. In Proc. 12th IEEE Intl. Conf. Data En-gineering, New Orleans, February 1996.[VU92] M. Vetterli and K. M. Uz. Multiresolution coding tech-niques for digital video: A review. Multidimensional Systemsand Signal Processing, 3:161{187, 1992.[VL93] S. V. Vrbsky and J. W. S. Liu. APPROXIMATE | Aquery processor that produces monotonically improving ap-proximate answers. IEEE Transactions on Knowledge andData Engineering, 5(6):1056{1068, 1993.[WA91] A. Wilschut and P. Apers. Dataow query execution in aparallel main-memory environment. In Proc. First Intl. Conf.Parallel and Distributed Information Systems, pages 68{77,Dec 1991.[YL95] W. P. Yan and P.-A. Larson. Eager aggregation and lazyaggregation. In Proc. 21st Intl. Conf. Very Large Data Bases,Zurich, September 1995, pages 345{357.Appendix: Formulas for Running Con�dence IntervalsIn this appendixwe provide formulas that can be used to computeconservative and large-sample con�dence intervals for a variety ofaggregation queries encountered in practice. Throughout, we �xthe con�dence parameter p and give formulas for the precisionparameter �n.We �rst consider queries of the form

SELECT op(expression) FROM R WHERE predicate;where op is one of COUNT, SUM, AVG, VARIANCE, or STD DEV, ex-pression is an arithmetic expression as before, and predicate isan arbitrary predicate involving the attributes of R. When op isequal to COUNT, we assume for simplicity that expression is equalto *, that is, the \value" of the expression is equal to 1 for alltuples. (Null values can be handled by modifying predicate, andcounts of distinct values can be handled as described below.) Asin Section 4, relation R consists of tuples t1; t2; : : : ; tm.If op is equal to COUNT or SUM, the formulas in (1) and (3) apply,provided we take v(i) equal to m times the value of expressionwhen applied to tuple ti if tuple ti satis�es predicate and v(i) = 0otherwise.To handle the remaining operators, namely AVG, VARIANCE,and STD DEV, we proceed as follows. As in Section 4, let v(i) bethe value of expression when applied to tuple ti, Li be the randomindex of the ith tuple retrieved fromR, and a; b be a priori boundson the function v. Denote by S (� R) the set of tuples that satisfypredicate, and set u(i) = 1 if ti 2 S and u(i) = 0 otherwise. Aftern tuples have been retrieved, the running aggregates for an AVG,VARIANCE, and STD DEV query are given byY n(S) = 1In nXi=1 uv(Li);Zn(S) = 1In � 1 nXi=1 u(Li) �v(Li)� Y n(S)�2 ;andpZn(S), respectively, where In =Pni=1 u(Li) and the func-tion uv is de�ned by uv(i) = u(i)v(i). We assume throughoutthat In > 1.Set �0(a; b) = (jaj _ b��jaj+ b�� 0:25�jaj _ b�2,�(a; b) = 8>>><>>>: 8(b� a)4 if 0 � a < b or a < b � 0;max� 8(b� a)4 ; 2�20(a; b)� if a < 0 < b;and Bn = 1�(a; b)bIn=2c ln� 21� p�;where x_y = max(x; y) and bxc is the greatest integer� x. Alsoset Tn(f) = (1=n)Pni=1 f(Li),Tn;q(f) = 1n� 1 nXi=1�f(Li)� Tn(f)�qandTn;q;r(f; g) = 1n� 1 nXi=1�f(Li)� Tn(f)�q�g(Li)� Tn(g)�r;where f and g are arbitrary real-valued functions de�ned onf 1;2; : : : ;m g. Finally, setGn = Tn;2(uv)� 2Rn;2Tn;1;1(uv; u) +R2n;2Tn;2(u)andG0n = Tn;2(uv2)� 4Rn;2Tn;1;1(uv2; uv)+ (4R2n;2 � 2Rn;1)Tn;1;1(uv2; u) + 4R2n;2Tn;2(uv)+ (4Rn;1Rn;2 � 8R3n;2)Tn;1;1(uv; u) + (2R2n;2 �Rn;1)2Tn;2(u);where Rn;1 = Tn(uv2)=Tn(u), Rn;2 = Tn(uv)=Tn(u), anduv2(i) = u(i)�v(i)�2.Using this notation, Table 1 gives formulas for the precisionconstant �n in conservative and large-sample con�dence intervals;these formulas are derived in [Haa96a, Haa96b]. The quantity sthat appears in the formulas is a lower bound for the (unknown)11

type AVG VARIANCE STD DEVconserv. (b� a)� 12In ln� 21� p��1=2 s(b� a)24(s� 1)2 + sB1=2ns� 1 s(b� a)24(s� 1)2 + sB1=4ns� 1lg-sample z2pGnnT 2n(u)!1=2 z2pG0nnT 2n(u)!1=2 z2pG0n4nZn(S)T 2n(u)!1=2Table 1: Formulas for the precision parameters �n: one table.quantity jSj; the larger the lower bound s, the narrower the re-sulting conservative con�dence interval. Note that we can sets = In if In is su�ciently large. When predicate is empty, so thatu(i) = 1 for 1 � i � M , then s can be taken as n in the secondand third entries in the �rst row of the table. Moreover, in eachof these entries the �rst term in the sum can be discarded.The formulas in Table 1 also apply to queries of the formSELECT op(expression) FROM R WHERE predicateGROUP BY attributesFor the group with attribute value equal to x, use these formulaswith u(i) = 1 if tuple ti satis�es predicate and ti.attribute = x,and u(i) = 0 otherwise. The formulas also can easily be modi�edto handle queries of the formSELECT op(DISTINCT expression) FROM R WHERE predicate;The idea is to set U 0i = 1 if tLi 2 S and v(Li) 6= v(Lj) for1 � j � i � 1; otherwise, set U 0i = 0. The formulas in Table 1then hold with u(Li) replaced by U 0i , uv(Li) replaced by U 0iv(Li),and In replaced by I 0n =Pni=1 U 0i.We next consider queries of the formSELECT op(expression) FROM R1; R2; : : : ; RKWHERE predicate;where K > 1, op is one of COUNT, SUM, or AVG, expression is anarithmetic expression, and predicate is an arbitrary predicate in-volving the attributes of input relations R1 through RK. Asbefore, expression is always equal to * when op is equal to COUNT.Usually, predicate is a conjunctionof join and selection predicates.A typical instance of such a query might look likeSELECT SUM(supplier.price * inventory.quantity)FROM supplier, inventoryWHERE supplier.part_number = inventory.part_numberAND inventory.location = 'San Jose';For 1 � k � K, denote the tuples in Rk by tk;1; tk;2; : : : ;tk;mk , where mk is the number of tuples in Rk. Set v(i1; i2;: : : ; iK) equal to � times the value of expression when applied totuples t1;i1 ; t2;i2 ; : : : ; tK;iK , where � = 1 if op is equal to AVG and� = m1m2 � � �mK if op is equal to COUNT or SUM. Denote by S thesubset of R1�R2�� � ��RK such that (t1;i1 ; t2;i2 ; : : : ; tK;iK) 2 Sif and only if these tuples jointly satisfy predicate. Set u(i1; i2;: : : ; iK) = 1 if (t1;i1 ; t2;i2 ; : : : ; tK;iK) 2 S and u(i1; i2; : : : ; iK) =0 otherwise. As before, let a; b be a priori bounds on the functionv. For each relation Rk, we assume that tuples are retrievedin random order, independently of the retrieval order for theother relations. Denote by Lk;i the random index of the ithtuple retrieved from relation Rk. Suppose that n tuples havebeen retrieved from relation Rk for 1 � k � K, where 1 � n �min1�k�Kmk . (See [Haa96a, Haa96b] for extensions to the casein which nk tuples are retrieved from Rk for 1 � k � K andnk 6= nk0 for some k; k0.) The running aggregate for a COUNT orSUM query is given by ~Y n = ~Tn(uv), where~Tn(f) = 1nK nXi1=1 nXi2=1 � � � nXiK=1 f(L1;i1 ;L2;i2 ; : : : ; LK;iK)

type SUM/COUNT AVGconserv. (b� a)� 12n ln� 21� p ��1=2 �lg-sample z2p ~Tn;2(uv)n !1=2 z2p ~Gnn ~T 2n(u)!1=2Table 2: Formulas for the precision parameter �n: K tables.and the de�nition of the function uv is analogous to the de�nitionfor the single-table case. The running aggregate for an AVG queryis given by ~Y n(S) = ~Tn(uv)= ~Tn(u).Set~Tn(f ;k; j) = 1nK�1 nXi1=1 � � � nXik�1=1 nXik+1=1 � � �nXiK=1L1;i1 ; : : : ;Lk�1;ik�1 ;Lk;j ; Lk+1;ik+1 ; : : : ; LK;iK);~Tn;q(f) = KXk=1 1(n� 1) nXj=1� ~Tn(f ;k; j)� ~Tn(f)�q!;and~Tn;q;r (f; g) = KXk=1 1(n� 1) nXj=1� ~Tn(f ;k; j)� ~Tn(f)�q� ~Tn(g; k; j)� ~Tn(g)�r!:Also set ~Rn = ~Tn(uv)= ~Tn(u) and~Gn = ~Tn;2(uv)� 2 ~Rn ~Tn;1;1(uv; u) + ~R2n ~Tn;2(u):Using this notation, Table 2 gives formulas for the precision con-stant �n in conservative and large-sample con�dence intervals.As above, the formulas are derived in [Haa96a, Haa96b]. As canbe seen, there is currently no formula available for conservativecon�dence intervals corresponding to AVG queries with selectionpredicates. (Actually, when there are no predicates, so that theaverage is being taken over a cross-product of the input relations,the formula in Table 2 for COUNT and SUM queries applies.This case is uncommon in practice, however.)12

