State if the following statements are TRUE (T) or FALSE (F)

1. Two concurrent global transactions, T1 and T2, consist of the following:
 \[T1 = [r1(x1), w1(x1), r1(y1), w1(y1)] \]
 \[T2 = [r2(x2), w2(x2), r2(y2), w2(y2)] \]
where \(ri(x) \) and \(wi(x) \) denote a read and a write operation by transaction \(i \) on data item \(x \); data items \(x1 \) and \(x2 \) are stored at site A, while \(y1 \) and \(y2 \) are stored at site B; and \(y1 \) is a replica of \(x1 \), and \(y2 \) is a replica of \(x2 \). In addition, there are two local transactions, L3 and L4:
 \[L3 = [r3(x1), r3(x2)] \]
 \[L4 = [r4(y1), r4(y2)] \]
executing concurrently with \(T1 \) and \(T2 \).
Consider the following two schedules produced by the local schedulers at Site A:
 \[SA1 = [r1(x1), r3(x1), r2(x2), w1(x1), w2(x2), r3(x2)] \]
 \[SA2 = [r1(x1), w1(x1), r3(x1), r2(x2), r3(x2), w2(x2)] \]
Consider the following two schedules produced by the local schedulers at Site B:
 \[SB1 = [r4(y1), r2(y2), r1(y1), w1(y1), w2(y2), r4(y2)] \]
 \[SB2 = [r1(y1), w1(y1), r2(y2), r4(y1), r4(y2), w2(y2)] \]

a) SA1 is locally serializable. [T]
b) SB1 is locally serializable. [T]
c) SA2 and SB1 will produce a globally serializable schedule. [F]

2. Consider hierarchical 2PC with the hierarchy shown in the figure below. Here, node 1 acts as global coordinator; node 2 acts as local coordinator for nodes 4-6, and as participant for node 1; node 3 acts as local coordinator for nodes 7 and 8, and as participant for node 1.

 ![Diagram](image)

Count the number of messages and rounds needed to commit a transaction (ignore DONE messages). Number of messages = 14; number of rounds = 2. [F]
3. In a hierarchical deadlock detector, each deadlock will only be detected at one detector.

4. It is possible to detect a false deadlock in distributed deadlock detection scheme (i.e., a deadlock is detected at a site, but it turns out to be otherwise.)

5. Given the following wait-for information:

 Local wait-for graphs:

 Site A: \(T_1 \rightarrow T_2 \)
 Site B: \(T_4 \rightarrow T_2 \)
 Site C: \(T_3 \rightarrow T_4 \)
 \(T_2 \rightarrow T_3 \)
 \(T_6 \rightarrow T_4 \)
 \(T_5 \rightarrow T_3 \)
 \(T_7 \rightarrow T_8 \)
 \(T_8 \rightarrow T_7 \)

 Intersite wait-for graphs (:\(T_3^A \) means sub-transactions of \(T_3 \) at site A, etc) :

 \(T_3^A \rightarrow T_3^C \)
 \(T_2^B \rightarrow T_2^A \)
 \(T_7^C \rightarrow T_7^B \)
 \(T_4^C \rightarrow T_4^B \)
 \(T_8^B \rightarrow T_8^C \)

 a) There are 3 cycles in the global wait-for graphs.
 b) To break any of the deadlocks, you should not roll-back \(T_5 \).

6. To generate tasks using the symmetric fragment-and-replicate strategy for parallel join processing, we must always range-partition the two participating relations in the same manner, i.e., if \(a_1, a_2, \ldots, a_n \) is the partitioning vector for relation \(R \), then relation \(S \) must also use the same partitioning vector.

7. Attribute value skew may give rise to load imbalance in parallel join processing. Absolutely nothing can be done to handle such skew.