
chapter20.ppt September 98

1

CS5225 Distributed Commit 1

Distributed Commit

CS5225 Distributed Commit 2

Distributed Recovery Control

• DDBMS is highly dependent on ability of
all sites to be able to communicate
reliably with one another.

• Sites may fail
• Communication failures can result in

network becoming split into two or more
partitions.

chapter20.ppt September 98

2

CS5225 Distributed Commit 3

.

Distributed commit problem

Action:
a1,a2

Action:
a3

Action:
a4,a5

Transaction T

Commit must be atomic

CS5225 Distributed Commit 4

Two-Phase Commit (2PC)
• Two phases: a voting phase and a decision

phase.
• Coordinator asks all participants whether

they are prepared to commit transaction.
– If one participant votes abort, or fails to respond within

a timeout period, coordinator instructs all participants
to abort transaction.

– If all vote commit, coordinator instructs all participants
to commit.

– Once voted, cannot change the vote.

• All participants must adopt global decision.

chapter20.ppt September 98

3

CS5225 Distributed Commit 5

Two-Phase Commit (2PC)

• If participant votes abort, free to abort
transaction immediately (unilateral abort)

• If participant votes commit, must wait for
coordinator to broadcast global-commit or
global-abort message.

• Protocol assumes each site has its own local log
and can rollback or commit transaction reliably.

• If participant fails to vote, abort is assumed.
• If participant gets no vote instruction from

coordinator, can abort.

CS5225 Distributed Commit 6

Co
or

di
na

to
r

Pa
rt

ic
ip

an
t

REQUEST-TO-PREPARE

PREPARED

COMMIT

DONE

chapter20.ppt September 98

4

CS5225 Distributed Commit 7

Co
or

di
na

to
r

Pa
rt

ic
ip

an
t

REQUEST-TO-PREPARE

NO

ABORT

DONE

CS5225 Distributed Commit 8

Centralized two-phase commit

Coordinator Participant

I

W

C

A

I

W

C

A

commit-request
request-prepare*

no
abort*

prepared*
Commit*

commit
done

request-prepare
prepared

request-prepare
no

abort
done

F
done*

done*

chapter20.ppt September 98

5

CS5225 Distributed Commit 9

• Notation: Incoming message
Outgoing message

(* = everyone)
• When participant enters “W” state:

– it must have acquired all resources
– it can only abort or commit if so instructedby a

coordinator
• Coordinator only enters “C” state if all

participants are in “W”, i.e., it is certain that
all will eventually commit

• After coordinator receives DONE message, it
can forget about the transaction (clean up
control structures).

CS5225 Distributed Commit 10

Handling failures

• Types of failures
– Node failure
– Timeout waiting for expected message
– Communication failure???

chapter20.ppt September 98

6

CS5225 Distributed Commit 11

Handling node failures

• Coordinator and participant logs are
used to reconstruct state before failure

• State transitions must be logged

CS5225 Distributed Commit 12

Coordinator Participant

REQUEST-PREPARE*Log start-2PC record
(participant list)

COMMIT*Log commit record
(state C)

Log done record
(end-2PC)

PREPARED*
Log prepared record
(state W)

DONE*
Log committed record
(state C)

chapter20.ppt September 98

7

CS5225 Distributed Commit 13

2PC Protocol Actions

CS5225 Distributed Commit 14

Handling Failures

• Termination protocols
– How operational nodes react

• Recovery protocols
– How failed nodes behave

chapter20.ppt September 98

8

CS5225 Distributed Commit 15

Termination Protocols

• Invoked whenever a coordinator or participant fails to
receive an expected message and times out.

Coordinator
• Timeout in WAITING state

– Globally abort the transaction.

• Timeout in COMMIT/ABORT state
– Send global decision again to sites that have not

acknowledged.

CS5225 Distributed Commit 16

Coordinator

I

W

C

A

F

commit-request
request-prepare*

done*
-

done*
-

t
abort

any
abort

any
commit

t
commit

t
abort*

no
abort*

prepared*
commit*

t=timeout

chapter20.ppt September 98

9

CS5225 Distributed Commit 17

Termination Protocols - Participant

• Simplest termination protocol is to leave participant
blocked until communication with the coordinator is re-
established. Alternatively:

• Timeout in INITIAL state
– Unilaterally abort the transaction.

• Timeout in the WAITING state
– Without more information, participant blocked.
– Could resend vote to coordinator, and wait
– Could get decision from another participant
– Cannot unilaterally abort

CS5225 Distributed Commit 18

Participant

I

W

C

A

request-prepare
prepared

equivalent to finish
state

t
ping

abort
done

commit
done

request-prepare
no

commit
done

abort
done

chapter20.ppt September 98

10

CS5225 Distributed Commit 19

Recovery Protocols

• Action to be taken by operational site in event of
failure. Depends on what stage coordinator or
participant had reached.

Coordinator Failure
• Failure in INITIAL state

– Recovery starts the commit procedure.
• Failure in WAITING state

– Recovery restarts the commit procedure.

CS5225 Distributed Commit 20

2PC - Coordinator Failure
• Failure in COMMIT/ABORT state

– On restart, if coordinator has received all
acknowledgements, it can complete successfully.
Otherwise, has to initiate termination protocol
discussed above.

chapter20.ppt September 98

11

CS5225 Distributed Commit 21

Coordinator

Start-2PC record
(participant list)

Commit/Abort record
(state C/A)

Done record

Failure scenarios

I

W

C

A

commit-request
request-prepare*

no
abort*

prepared*
Commit*

F
done*

done*

CS5225 Distributed Commit 22

2PC - Participant Failure
• Objective to ensure that participant on restart

performs same action as all other participants and
that this restart can be performed independently.

• Failure in INITIAL state
– Unilaterally abort the transaction.

• Failure in WAITING state
– Recovery via termination protocol above.

• Failure in ABORT/COMMIT states
– On restart, no further action is necessary.

chapter20.ppt September 98

12

CS5225 Distributed Commit 23

Participant

Prepared record
(state W)

Commit/Abort record
(state C)

I

W

C

A
commit
done

request-prepare
prepared

request-prepare
no

abort
done

CS5225 Distributed Commit 24

Complexity analysis

• Count number of messages, rounds
– N participants

• Centralized 2PC
– Ignore DONE messages
– If there are no failures:

chapter20.ppt September 98

13

CS5225 Distributed Commit 25

Variants of 2PC

• Linear
Coord

• Hierarchical

ok ok ok

commit commit commit

CS5225 Distributed Commit 26

• Distributed

– Nodes broadcast all messages
– Every node knows when to commit

Variants of 2PC

chapter20.ppt September 98

14

CS5225 Distributed Commit 27

Exercise

• Compare 2PC variants in terms of
– Number of rounds
– Number of messages

CS5225 Distributed Commit 28

2PC is a blocking protocol.
Is there a non-blocking

protocol?

chapter20.ppt September 98

15

CS5225 Distributed Commit 29

Three-Phase Commit

Sample scenario:
Coord P2

W
P1 P3

W
P4

W

CS5225 Distributed Commit 30

Co
or

di
na

to
r

Pa
rt

ic
ip

an
t

REQUEST-TO-PREPARE

PREPARED

COMMIT/ABORT

DONE

Uncertainty
period

chapter20.ppt September 98

16

CS5225 Distributed Commit 31

3PC Principle
• Ensures the following non-blocking property:

– If ANY operational site is in the “uncertain” state, NO
site (operational or failed) could have decided to
commit

• If all operational sites are uncertain, then they can simply
decide abort, i.e., they don’t have to block for other sites to
become operational.

• Main Idea:
– Send (with ack) a PRE-COMMIT to all participants

before sending COMMIT.
– This ensures that decision is commit only if all sites

have first received PRE-COMMIT (and are not
uncertain).

• Reminder: Assume reliable network

CS5225 Distributed Commit 32

Basic 3PC Protocol
– Phase 1:

• The coordinator sends VOTE_REQ to all participants.
• When a participant receives VOTE_REQ, it responds with YES

or NO, depending on its vote. If a participant votes NO, it
decides abort and stops.

– Phase 2:
• The coordinator collects all votes. If any vote was NO, then the

coordinator decides abort, sends ABORT to all participants that
voted YES, and stops. Otherwise, the coordinator sends
PRE_COMMIT messages to all participants.

• A participant that votes YES waits for a PRE_COMMIT or
ABORT message from the coordinator. If it receives a
PRE_COMMIT, then it responds with an ACK message.

chapter20.ppt September 98

17

CS5225 Distributed Commit 33

Basic 3PC Protocol
– Phase 3:

• The coordinator collects the ACKs. When they
have all been received, it decides commit, sends
COMMITs to all participants, and stops.

• A participant waits for a COMMIT from the
coordinator. When it receives that message, it
decides commit and stops.

CS5225 Distributed Commit 34

• 2PC FSM

• Introduction of another Phase

chapter20.ppt September 98

18

CS5225 Distributed Commit 35

Co
or

di
na

to
r

Pa
rt

ic
ip

an
t

REQUEST-TO-PREPARE

PREPARED

COMMIT

DONE

PRECOMMIT

ACK

CS5225 Distributed Commit 36

Co
or

di
na

to
r

Pa
rt

ic
ip

an
t

REQUEST-TO-PREPARE

NO

ABORT

DONE

chapter20.ppt September 98

19

CS5225 Distributed Commit 37

Coordinator Participant
Log start-3PC record
(participant list)

Log commit record
(state C)

Log prepared record
(state W)

Log committed record
(state C)

REQUEST-PREPARE

PREPARED

COMMIT

PRECOMMIT

ACK

CS5225 Distributed Commit 38

Coordinator Participant

REQUEST-PREPARE

PREPARED

COMMIT

PRECOMMIT

ACK

1. Timeout: Abort

2. Timeout: ignore

1. Timeout: abort

2. Timeout
Termination Protocol

3. Timeout
Termination Protocol

chapter20.ppt September 98

20

CS5225 Distributed Commit 39

Time-out Actions
– If the coordinator does not receive a vote, it

decides abort, sends ABORT message to YES
voters, and stops.

– If the coordinator times-out waiting for an ACK
(it knows that the participant is at least ready),
then it simply proceeds to send commit.

• When the process that owes the ACK recovers, it is
responsible for finding out the decision.

– In commit state? Ignore

CS5225 Distributed Commit 40

Time-out Actions
– If a participant does not receive a VOTE_REQ, it

decides abort and stops.
– If timeout occurs while a participant is waiting for

COMMIT, ABORT, or PRE_COMMIT from
coordinator, a new Termination Protocol is used.

– Process states, defined next, are used in the Termination
Protocol.

chapter20.ppt September 98

21

CS5225 Distributed Commit 41

Site categories

• Three categories
– Operational

• Process has been up since start of 3PC
– Failed

• Process has halted since start of 3PC, or is
recovering

– Recovered
• Process that failed and has completed recovery

CS5225 Distributed Commit 42

Site States
– Aborted: The process has not voted, has voted

NO, or has received an ABORT.
– Uncertain: The process is in its uncertainty

period.
– Committable: The process has received

PRE_COMMIT but not COMMIT.
• Note: PRE_COMMITs are not logged. So, if a

process that is committable fails, it will think it is
uncertain when it recovers.

– Committed: The process has received COMMIT.

chapter20.ppt September 98

22

CS5225 Distributed Commit 43

Coexistence of States
Aborted Uncertain Committable Committed

Aborted Y Y N N

Uncertain Y Y Y N

Committable N Y Y Y

Committed N N Y Y

For example, it’s impossible for one process to be Aborted and another Committable.

CS5225 Distributed Commit 44

Termination Protocol

Start
3PC

Coordinator
fails

Decision
reached

All sites
learn decision

• Only operational sites participate in termination
protocol.
• Recovered sites wait until decision is reached and

then learn decision

chapter20.ppt September 98

23

CS5225 Distributed Commit 45

Termination Protocol

• Elect new coordinator
– Use Election Protocol (coming soon…)

• New coordinator sends STATE-REQUEST
to participants

• Makes decision using termination rules
• Communicates to participants

CS5225 Distributed Commit 46

Termination Protocol

Participant 1

Log on disk

Coordinator

Log on disk
Participant 3

Log on disk

Participant 4

Log on disk

Participant 2

Log on disk

New
Coordinator

State_REQ

State_REQ

State_REQ

State_REQ

Failed

New coordinator is elected,
in a rather deterministic way.
It figures out the current state
and then broadcasts it to all
operational sites.

chapter20.ppt September 98

24

CS5225 Distributed Commit 47

Termination Protocol
• Elected coordinator collects states and

proceeds:
– TR1: If some sites aborted, then the coordinator decides

abort, sends ABORT, and stops.
– TR2: If some sites are committed, then the coordinator

decides commit, sends COMMIT, and stops.
– TR3: If all sites report their state as uncertain, then the

coordinator decides abort and informs participants.
– TR4: If some sites are committable but none is committed,

then the coordinator sends PRE_COMMIT to uncertain
processes, and waits for ACK before sending COMMIT
messages.

CS5225 Distributed Commit 48

Coordinator Participant

REQUEST-PREPARE

PREPARED

COMMIT

PRECOMMIT

ACK

Abortable (A)

Uncertain (U)

Precommitted (PC)

Committed (C)

chapter20.ppt September 98

25

CS5225 Distributed Commit 49

Co
or

di
na

to
r

Pa
rt

ic
ip

an
t

STATE-REQUEST*

ABORTABLE

ABORT*

CS5225 Distributed Commit 50

Co
or

di
na

to
r

Pa
rt

ic
ip

an
t

STATE-REQUEST*

COMMITTED

COMMIT*

chapter20.ppt September 98

26

CS5225 Distributed Commit 51

Co
or

di
na

to
r

Pa
rt

ic
ip

an
t

STATE-REQUEST*

UNCERTAIN*

ABORT*

CS5225 Distributed Commit 52

Co
or

di
na

to
r

Pa
rt

ic
ip

an
t

STATE-REQUEST*

PRECOMMITTED,
NO COMMITTED

COMMIT*

PRECOMMIT*

ACK*

chapter20.ppt September 98

27

CS5225 Distributed Commit 53

Failures during Termination Protocol

• Participant failures
– Detected by coordinator timeout
– Coordinator ignores failed sites

• Coordinator failure
– Some site times out
– Initiates election protocol to elect new

coordinator. So, there will be another
invocation of the TP.

• If there are many failures, many invocations may
be needed.

CS5225 Distributed Commit 54

Failures during Termination Protocol

• Recovered sites do not participate in
termination protocol

• Two possible outcomes
– All sites fail (Total Failure)
– Some coordinator reaches decision

chapter20.ppt September 98

28

CS5225 Distributed Commit 55

Recovered Sites (Partial Failure)
– If participant has decided or has not voted YES, it can

decide easily.
– If it voted YES but did not commit or abort (in log),

then it asks other participants for the decision.
– Assuming that only partial site failures occur, either

the decision has been made or is being made (non-
blocking). So, p will eventually receive a message
with the decision.

– Log entries are the same as in 2PC.
– But unlike 2PC, recovering uncertain sites do not

have to invoke the Termination Protocol (unless there
is a total site failure — see next).

CS5225 Distributed Commit 56

Total Failures
– In case of total failure, the recovering site p

must wait (block) until the last site to fail is up
or a decided site recovers.

– Note: The last site to fail may have reached a
decision (commit or abort) that no other
operational site knows about.

– If operational site q has decided, it simply
communicates its decision to p. If this doesn’t
happen, the Termination Protocol will be
invoked. All recovering sites will therefore
reach a consistent decision.

chapter20.ppt September 98

29

CS5225 Distributed Commit 57

Election Protocol

• Total ordering of processes
– Coordinator = 0, participants 1,…,n

• At any time, elect “smallest” operational
site coordinator

CS5225 Distributed Commit 58

Note: 3PC unsafe with communication failures!

W

W

W

P

P

chapter20.ppt September 98

30

CS5225 Distributed Commit 59

Is there a non-blocking protocol?

Theorem:
If communications failures or total site
failures (i.e., all sites fail) are possible,
then every atomic commit protocol can
cause participants to become blocked.

CS5225 Distributed Commit 60

Conclusion

• 2PC is practical and widely used.
• These schemes strongly exploit

– the fact that time-outs are sufficiently long,
– the fact that logs are stable, and
– the fact that abort is a suitable default

decision in many cases where the decision
isn’t obvious.

chapter20.ppt September 98

31

CS5225 Distributed Commit 61

T1: Read (A,t); t ← t×2
Write (A,t);
Read (B,t); t ← t×2
Write (B,t);
Output (A);
Output (B);

A: 8
B: 8 A: 8

B: 8

memory disk

16
16 16

failure!

Need atomicity: execute all actions of a transaction
or none at all

CS5225 Distributed Commit 62

T1: Read (A,t); t ← t×2 A=B
Write (A,t);
Read (B,t); t ← t×2
Write (B,t);
Output (A);
Output (B);

A:8
B:8

A:8
B:8

memory disk log

One Solution: Undo logging
(Immediate modification)

16
16

<T1, start>
<T1, A, 8>

<T1, commit>
16 <T1, B, 8>
16

