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Abstract

In many recent applications, data are continuously being
disseminated from a source to a set of servers. These servers
are typically organized into one or more dissemination trees
to enhance the dissemination efficiency. In this paper, we pro-
pose a cost-based approach to construct dissemination trees
to minimize the average loss of fidelity of the system. Our cost
model takes into account both the processing cost and the
communication cost. To adapt to inaccurate statistics, run-
time fluctuations of data characteristics, server workloads,
and network conditions etc., we propose a runtime adaptive
scheme to incrementally transform a dissemination tree to a
more cost-effective one. This scheme employs distributed de-
cisions made by servers independently and is based on lo-
calized statistics collected by each server at runtime. The
cost model is also extended to incorporate the adaptation
overhead. Given apriori statistics of the system, we propose
two algorithms to construct a dissemination tree for relatively
static environments. These static trees can also be used as ini-
tial trees in a dynamic environment. The performance study
shows that the adaptive mechanisms are effective in a dy-
namic context and the proposed static tree construction al-
gorithms perform close to optimal in a static environment.

1. Introduction

In many emerging monitoring applications (e.g. stock
tickers, financial monitoring, network management, sensor
networks, traffic control etc.), data occurs naturally in the
form of active continuous data streams. These applications
stimulate an interest in developing techniques to disseminate
data at a very fast rate to a large number of users. Examples
of these applications include fast changing data object dis-
semination [17, 16], streaming XML messages dissemination
[10], and publish/subscribe systems [11]. Thus, it is critical
and challenging to design an effective, efficient and scalable
dissemination system.

In this paper, we look at the design of an adaptive dis-
tributed dissemination system, where a data source contin-
uously disseminates fast changing data objects (e.g., sen-
sor data, stock prices and sport scores) to clients via a set
of servers. In such a system, clients would submit queries

(e.g., continuous queries monitoring the streams or ad hoc
queries on the historical and current status) to the servers
with their own preferences on data coherency requirements.
Based on the requirements of the running queries, each server
would have its own interesting object set as well as its co-
herency requirement of each interesting data object. Like
[17, 16], the servers are organized into one or more dissemi-
nation trees (with the data source being the root node) so that
data/messages are transmitted to each server through its an-
cestors in the dissemination tree. Each node of the tree would
selectively disseminate only interesting data to its child nodes
by filtering out the unnecessary ones.

The dissemination efficiency is evaluated using the metric
fidelity [17, 16]. It measures the portion of time that the val-
ues in the servers conform to their coherency requirements.
The loss of fidelity at each server is due to the dissemination
delay of the update messages, which includes the communi-
cation delay as well as the processing delay in its ancestor
servers. Interestingly, while it is important to design optimal
dissemination trees in this context, there is very little study on
this subject.

In this paper, we present a cost-based approach to adapt
dissemination trees in the midst of a dynamic changing envi-
ronment. Our contributions include:
• We formalize the problem by formally defining the met-

ric (fidelity) used to measure the effectiveness of the system
and the objective of the whole system (i.e., minimize the av-
erage loss of fidelity over all the servers).
• We propose a novel and thorough cost model which con-

siders both the processing cost in the dissemination servers as
well as the communication cost in the network links. With
the cost model, we can explore a larger solution space than
existing methods do to achieve a more cost-effective scheme.
• Based on the cost model, we propose an adaptive run-

time scheme that is robust to inaccurate statistics and runtime
changes in the data characteristics (e.g., data arrival rates) and
system parameters (e.g., workloads, bandwidths etc.). The
proposed scheme enables nodes to independently make deci-
sions based on localized statistics collected from neighbour-
ing nodes to transform a dissemination tree from one form to
a more cost-effective one. Furthermore, we extend the cost
model to incorporate the adaptation overhead. Given apriori
statistics of the system characteristics, we propose two static
optimization algorithms to build a dissemination tree for rel-
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Figure 1. The system architecture

atively static systems. These static trees can also be used as
initial trees in a dynamic environment.
• We conducted an extensive performance study which

shows that the proposed tree construction scheme performs
close to optimal, and the adaptive scheme is also robust to
changing conditions at runtime.

The rest of this paper is organized as follows. Section 2
presents the problem and motivations. In Sections 3 and 3.4,
we present our solution to the single object dissemination
problem, and its extension to the multi-object dissemination
problem respectively. A performance study is presented in
Section 4. We review related work in Section 5. Finally, we
conclude in Section 6.

2. Problem Formulation and Motivations

Figure 1 shows the overview of the architecture of our sys-
tem. In the system, there is a data source s that stores a
set of data objects O = {o1, o2, · · · , o|O|}, a set of servers
N = {n1, n2, · · · , n|N |}, and a large number of clients. Each
server ni is a continuous stream processing system, such as
TelegraphCQ, Aurora and STREAM etc. Each client submits
queries involving a subset of data objects through a server (or
the data source), and specifies a preference on the coherency
on each data object. In this paper, a user’s coherency require-
ment (cr) on a data object is specified as the maximum toler-
able deviation from its exact value. From the system’s point
of view, each server ni can be viewed as a super-client that
requests a subset of data objects Oi from the source, which
should be the union of the objects that are requested by the
queries running on ni, and the coherency requirement cri,x

of ni on object ox is equal to the most stringent requirement
of its queries that involve ox.

To ensure scalability, we model a generic dissemination
scheme as follows. The servers N together with the source s
compose an overlay network which can be modeled as a di-
rected complete graph G = (V,E), where V = N ∪ {s} and
E consists of the directed arcs connecting each pair of nodes
in V . To build an efficient dissemination scheme, the nodes
in V are organized into one or more overlay dissemination
tree T . Each T is composed by s, a set of nodes V ′ ∈ N and
arcs E′ ∈ E. The root of all the trees is the source s. Once
new values of the data objects at s arrive, s would initiate the
messages and disseminate only the necessary ones to each of
its child servers in all the dissemination trees. Upon receiv-
ing a message, a server would also selectively disseminate it
to its child servers. This process happens in each server until
the messages reach the leaf servers. Since it is possible for a
server’s coherency requirement to be less stringent than that
of its descendants, every server ni has an effective coherency

requirement crm
i,x on an object ox which corresponds to the

most stringent one among all the cri,xs of the subtree rooted
at ni. A parent performs the filtering of messages based on
the crm

i,x values of its children. In addition to disseminating
messages to the child servers, a server that receives a mes-
sage also has to check whether any of its clients’ coherency
requirements are violated. If so it would update the results of
the query submitted by those clients. In this paper, we assume
that clients are pre-allocated to certain servers, and focus on
the construction of dissemination trees composed only by the
servers and the source. Henceforth we would use “server”
and “node” interchangeably and would only consider the dis-
semination within the dissemination trees.

Following [17, 16], we adopt the notion of fidelity as a
measure of the performance of a dissemination system. In-
formally, the fidelity on a data object at a node during an ob-
servation period is defined as the percentage of time that the
data value at that node conforms to the coherency require-
ment. To build our cost model, we formulate this metric in a
formal way as follows. Let the value of a data object ox at
time t at the source and a node ni be ox(s, t) and ox(ni, t)
respectively, and the coherency requirement of ni on ox be
cri,x. Then the fidelity of ni on data object ox at time t is
defined as:

f(ni, ox, t) =
{

1 : |ox(s, t)− ox(ni, t)| < cri,x

0 : |ox(s, t)− ox(ni, t)| ≥ cri,x
(1)

And the fidelity of ni on ox during the observation period
[t1, t2] can be computed as

F (ni, ox, t1, t2) =

∫ t2

t1
f(ni, ox, t)
t2− t1

.

If our observation period is the whole life of the system, it can
be rewritten as F (ni, ox). Furthermore, the average fidelity
at node ni is computed as

F (ni) =
1
|Oi|

∑
∀ox∈Oi

F (ni, ox).

The loss of fidelity (LF) is defined as the complement of fi-
delity, which is LF (ni) = 1 − F (ni). Our objective is to
minimize the average loss of fidelity over all nodes

AvgLF =
1
|N |

|N |∑
i=1

LF (ni).

Since the loss of fidelity is due to the delay of the messages,
we adopt an eager approach: the source node continuously
pushes update messages to child servers as soon as the cor-
responding coherency requirements are violated, and each
server, upon receiving any update messages, also pushes the
necessary ones to its children as soon as violations occur.

We define the Min-AvgLF problem formally as follows:
Given a source s, a set of data objects O, a set of servers
N , and the set of requesting data objects Oi of each server
ni as well as the coherency requirement cri,x of ni on each
ox ∈ Oi, construct/adapt one or more dissemination trees T
to minimize the average loss of fidelity (AvgLF ) of the sys-
tem.



By the celebrated Cayley’s theorem, the number of span-
ning tree of a complete graph is |V ||V |−1, where |V | is the
number of nodes in the graph. This means that brute-force
searching is prohibitive even for a moderate number of nodes
(e.g. 16 nodes). Even worse, a simpler problem is already
shown to be NP-Hard [5].

In view of the complexity of the problem, existing ap-
proaches such as DiTA [16] adopt two heuristics: (a) the co-
herency requirement of a parent node is at least as stringent
as its children; (b) Each server has an apriori constraint on
the fanout, i.e., the maximum number of child servers is pre-
determined. However, under these restrictions, the resulting
dissemination tree would be far from optimal. This is because
they ignore the differences of the servers in their capabilities
as well as their communication delays. For example, although
a server has a slow CPU, a low bandwidth or a high workload,
it would still be put at the upper level of the tree as long as its
coherency requirement is relatively stringent. However, all
its descendants suffer the long processing delay in the slow
server. This would result in severe loss of fidelity. To han-
dle these limitations and find out the tradeoffs, we believe a
cost-based approach that captures both communication and
processing cost is likely to lead to a more cost-effective dis-
semination tree.

Yet another challenge is that the optimality of a dissemi-
nation scheme is dependent on the current system parameters
(such as data arrival rates, system workloads etc.). However,
in a large scale distributed system, this information is hard
to estimate or collect beforehand. Moreover, these param-
eters would fluctuate over time. For example, users would
change their coherency requirements; a server’s workload
would change as the number of clients connected to it are
increased or decreased, or the message rate of each server
would also change due to the fluctuation of the data values.
Since the dissemination system runs continuously, it can ex-
perience these changes at runtime, which would make the pre-
viously optimal scheme suboptimal. The problem of adapt-
ing to inaccurate statistics and system changes has been ex-
tensively explored in other problems such as query process-
ing [15][2]. Unfortunately, few efforts have been devoted
to adapting the structure of a dissemination tree at runtime.
Moreover, a decentralized scheme is highly preferable due to
scalability and reliability problems.

3. Coherency-Preserving Dissemination Tree

In this section, we look at the scheme to construct a tree
T to disseminate data objects. We note that T is a spanning
tree of the overlay graph G. We first focus on single object
dissemination and present the cost model to evaluate the LF
of a tree T , then describe the runtime adaptation scheme and
present the two static tree construction schemes. All the algo-
rithms proposed do not place any restriction on the maximum
fanout allowed; neither does it require the internal nodes to be
more stringent in the coherency requirements than its child
nodes. Finally the techniques are extended to multi-object
dissemination.

3.1. Cost Model

In a cost-based approach, a cost function is used to evalu-
ate the goodness of a potential solution. In our case, we pro-
pose a novel cost model to measure the LF of a dissemination
tree. In the cost model, we make the following assumptions
and simplifications:

1. A message sent from ni to nj incurs a communication
delay, whose expected value is denoted as d(ni, nj).

2. The messages received by a node are processed in a
FIFO manner. Upon receiving a message, ni would check
every child to see whether the message should be dissemi-
nated to it. The processing order of the children is assumed to
be random. Let the time to perform the filtering be tpi and the
time to perform the transmission be tci . tci includes the time
to package the message and the time to send out the pack-
ages. The latter part is inversely proportional to the available
bandwidth of ni.

3. Each node would assign a portion of its resources (e.g.
CPU, bandwidth, etc.) to perform the task of disseminating
data to its child nodes. This portion of resources might be ad-
justed periodically. However, within each period, we assume
it is fixed. Furthermore, the workload of a node is defined as
the fraction of time that the node is busy.

Given these assumptions, now let us see how to estimate
the loss of fidelity of a node ni. The LF of ni arises because
of the delay of an update message. If the number of messages
per unit time (i.e., the average message arrival rate) for ni is ri

and the average delay of each update message is Di, then the
average LF of ni is LF (ni) = ri ·Di. ri is related to the data
characteristics and the coherency requirement of ni. Now we
need to estimate Di. At a closer look, Di includes the com-
munication delay in all the links and the processing delay in
all the nodes along the path from the root to ni. To compute
the communication delay, we define D(nj , ni) as the com-
munication delay from nj to ni in the dissemination tree T .
It is obvious that D(nj , ni) is the sum of the communication
delay of the overlay edges in the unique path from nj to ni.
Hence the total communication delay of a message from s to
ni is D(s, ni). In the following paragraphs, we present how
to estimate the second part of the delay: the processing delay.

The processing delay of a message for ni in each of its
ancestor nk can be divided into the queueing time and the
processing time. Let us estimate them one by one.

1. Queueing time. In our model, each node is a queueing
system. From basic queueing theory, the expected queueing
time of a message in a M/M/1 system is equal to ρ

1−ρ t where
ρ is the workload of the system and t is the expected process-
ing time of a message. The workload of the system is equal to
the message arrival rate times the expected per-message pro-
cess time t. Hence to estimate the queueing time, we have to
estimate the expected per-message processing time. Note that
our tree construction scheme does not require the coherency
requirement of a parent node to be more stringent than that
of its descendant nodes. Thus, every node has an effective
coherency requirement crm

i , which should be the most strin-
gent crs within the subtree rooted at ni. Consequently, there



is an effective message arrival rate rm
i for ni, which should

be equal to the maximum message arrival rate within the sub-
tree rooted at ni. For each message arrived at a node nk, the
probability that it is sent to a child nj is rm

j /rm
k . Hence the

expected processing time of a message in nk for each of its
children nj is

tkj = tpk + tck
rm
j

rm
k

. (2)

Therefore, if we denote the set of child nodes of nk as Ck,
then the expected processing time of a message in nk can be
estimated as:

tk =
∑

nj∈Ck

tkj . (3)

Given tk, the average processing time of a message, we can
derive that the workload of nk is ρk = rm

k tk. Hence the
queueing time of a message in node nk is ρk

1−ρk
tk. Note that

this covers both the queuing times for processing and trans-
ferring a message.

2. Processing time in nk for a message received by nj .
Since the children are processed in random order, before
checking a child node nj , there are on average (|Ck| − 1)/2
other children that have been processed. The expected length
of this time is equal to (1/2)(tk−tkj). Then it takes a tpk time
to check for nj and then takes another tck time to transmit the
message to nj . This means that the expected processing time
in nk for a message received by nj is (1/2)(tk−tkj)+tpk+tck.

Summing up the queueing time and the processing time,
we can derive the processing delay in nk for a message re-
ceived by nj as

g(nk, nj) =
1 + ρk

2(1− ρk)
tk + tpk + tck −

1
2
tkj . (4)

This function can accurately estimate the processing delay.
However, it distinguishes the delays for different children,
which will bring higher cost in our algorithm. Hence we pro-
pose an approximation, where we use the average processing
delay over all the children, to approximate the delay for each
of them. Simple calculations can derive that this processing
delay is

g(nk) =
1
|Ck|

∑
nj∈Ck

g(nk, nj)

=
1 + ρk

2(1− ρk)
tk + tpk + tck −

1
2|Ck|

tk (5)

Now, we would derive the cost function to estimate the
loss of fidelity for a node ni as

LF (ni) = ri × [D(s, ni) + g(p(ni)) + g(p(p(ni)))
+ · · ·+ g(s)] (6)

where p(ni) denotes the parent of ni.

3.2. Adaptive Reorganization of Dissemination Tree

In this subsection, we present our runtime scheme that
adaptively reorganizes a given dissemination tree to a more
cost-effective one. The algorithm is a distributed local search
scheme. At each state, distributed nodes would search the
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Figure 2. Local Transformation Rules

neighbor states that can improve the current state. Neigh-
bouring states are generated based on a set of transformation
rules extended from [4]. In the following subsections, we
first present the local transformation rules that specify how
the states could be transformed and how to estimate the bene-
fit of the transformations. Then we present how to efficiently
make adaptation decisions. Finally we summarize the set of
information that has to be collected at runtime to support the
adaptive scheme and present how to extend the cost model to
incorporate the adaptation cost.

3.2.1. Local Transformation Rules. In this section we define
several local transformation rules that transform a scheme
into its neighbor schemes. We have identified six rules. In all
these rules, when a node is moved, all its descendants would
be moved along with it.

1. Node Promotion: Promote a node ni to its parent’s
sibling. Figure 2(a) shows an example of this transformation.
In the example, ni is promoted to a sibling of its previous par-
ent nj . This transformation might be beneficial, for example,
when the workload of nk is reduced as a result of a decrease
in the number of its clients and hence more of its resources
are assigned to the dissemination task. Promoting ni can re-
duce the communication delay of messages sent to ni and all
its descendants if d(nk, nj) + d(nj , ni) > d(nk, ni). This
would also be helpful if we underestimate the capacity of nk

when building the initial dissemination tree.
2. Node Demotion: Demote a node ni to a child of one

of its siblings. In the example shown in Figure 2(b), ni is
demoted to the child of its prior sibling nj . This transforma-
tion may be beneficial, for example, when nk’s workload is
increased and hence less resources are assigned to the dissem-
ination task. Demoting ni can reduce the dissemination load
of nk and hence reduce the processing delay of messages to
be sent to the descendants of nk. In addition, it also helps to



handle any overestimation of the capacity of nk in the initial
tree building.

3. Parent-Child Swap: Swap the positions of ni and its
parent. In Figure 2(c), the positions of ni and its parent nj

are swapped.
4. Cousin Swap: Swap the position of two nodes ni and

nj which have the same grandparent nk. Figure 2(d) shows
an example.

5. Nephew Adoption: A node nh adopts its nephew ni

and adds it as its own child. As shown in Figure 2(e), ni’s
grandparent is the parent of nh. In this transformation, ni is
added as a child of nh.

6. Uncle-Nephew Swap: Swap the positions of nh with
its nephew ni. Figure 2(f) depicts an example.

Actually the first two basic transformation rules are com-
plete, i.e. any other transformations can be composed based
on these two transformations. For example, Nephew Adop-
tion can be composed by first promoting ni and then demot-
ing it to a child of nh. However, using composite transforma-
tions directly may help avoid being stuck in a local optimum.
The four composite transformations that follow are proposed
based on this intuition. While the composite transformations
can be extended to involve arbitrary nodes, we only consider
these transformations because the runtime adaptation scheme
can be relatively simple and less costly.

Based on our cost model, we can recompute the cost of the
dissemination tree after the transformations, which will take
O(|N |) time. But since the transformations only affect part
of the tree, rather than computing the cost from scratch, we
can compute the change of the cost in constant time. Here we
would use Node Promotion to illustrate. The computation of
the other transformations can be found in the full version [19].

As depicted in Figure 2(a), node ni is to be promoted, and
nj and nk are the parent and grandparent of ni respectively
prior to the transformation. After the transformation, the mes-
sages to be sent to ni would no longer experience the trans-
mission delays d(nk, nj) and d(nj , ni), and the processing
delay in nj . However it would experience the new transmis-
sion delay d(nk, ni). This would also affect all the nodes
below ni. Hence this results in the change of AvgLF which
is

∆AvgLF1 =
1
|N |

rc
i [d(nk, ni)− d(nk, nj)

− d(nj , ni)− g(nj)],

where rc
i is the aggregated message rate over all nodes in the

subtree Ti rooted at ni, i.e. rc
i =

∑
np∈Ti

rp. Furthermore,
the load in nk and nj would be changed after the transforma-
tion. Hence all the nodes below them would experience the
change of the cost due to the load changes. This results in the
change of AvgLF which is

∆AvgLF2 =
1
|N |

{
(rc

j − rj)[g′(nj)− g(nj)]

+(rc
k − rk)[g′(nk)− g(nk)]} ,

where g′(nj) and g′(nk) denote the estimated new processing
delay in nj and nk respectively if the transformation is to have

taken place. ∆AvgLF is equal to the sum of ∆AvgLF1 and
∆AvgLF2. Other transformations can be analyzed similarly.

3.2.2. Adaptation of Dissemination Tree. The adaptation
scheme works as follows: periodically, compute the benefit
(i.e., (−1) · ∆AvgLF ) of each possible transformation, and
then perform those that have positive benefits. To implement
this procedure, there are several choices. In one extreme,
we can select a server to act as a centralized controller to
make the adaptation decisions. However, as discussed, this
approach suffers from problems of scalability and reliabil-
ity. In another extreme, we can design a totally distributed
approach. In this approach, each node makes the decisions
independently and asynchronously. However, this totally un-
structured scheme would result in (a) Conflicting decisions
being made by different nodes, e.g., ni may determine to
promote itself and meanwhile its parent may want to swap
with it. Extra mechanisms have to be employed to resolve
this problem, potentially increasing the complexity of such a
scheme. (b) Wastage of computational resources as a result
of multiple nodes arriving at the same decisions, e.g., ni and
its parent determine to swap with each other at the same time.

To alleviate these problems, we propose a more structured
mechanism. The adaptation operates in rounds. The root
node initiates each round by creating a token. Only when a
node holds a token, could it make an adaptation attempt. Al-
gorithm 1 presents the operations to be executed in a node that
receives a token. Each node receives a token can make its own
decision independently without any synchronization with the
other nodes. Instead of allowing every node attempts to try
all kinds of transformations, we restrict that each node would
only consider the transformations involving its children and
grandchildren. These include promoting a grandchild (node
promotion), demoting a child (node demotion), swapping a
child and a grandchild (parent-child swap and uncle-nephew
swap), swapping two grandchildren (cousin swapping), and
moving a grandchild from one child to another child (nephew
adoption). A node sends reorganization requests (if any) to
the involved descendants: i.e. nj in both Fig. 2(a) and (b), ni

and nj in Fig. 2(c), ng and nh in both Fig. 2(d) and (e), ng in
Fig. 2(f). After the adaptation (if any) has been carried out, a
copy of the token is sent to each of its non-leaf children. The
next round of adaptation would initiated by the root node if
the adaptation interval is exceeded. If a node receives a to-
ken when it is still doing an adaptation, it would just ignore
the token. Furthermore, if a node receives a reorganization
request if it is holding a token then it would also ignore the
reorganization request to avoid any contradictions.

3.2.3. Information Collection. Given the adaptation scheme
described above, we now look at what information should be
collected at runtime. Since each node would only consider
transformations involving its children and grandchildren, it
would collect state information from its children and grand-
children. Hence a node contains at most the information of
O(C2) nodes, where C is the maximum out-degree of all
nodes. The information to be collected has to enable us to



Algorithm 1: AdaptationAttempt
begin

maxBenefit← 0; t← NULL;
for each possible transformations t1 involving the
children and grandchildren do

if maxBenefit < Benefit(t1) then
maxBenefit← Benefit(t1);
t← t1;

if t 6= NULL then Perform t;
for each child nj do

if nj is not a leave node then
Send one copy of the token to nj ;

end

calculate the benefit of the transformations. Specifically, the
information stored in a node ni is as follows:

1. The overlay paths from ni to its children and grand-
children. This information once obtained is not neces-
sary to be collected at runtime. Because any change in
the structure in this part is determined by ni itself and ni

updates the information itself.
2. The values of rm

j , rc
j , as well as tcj and tpj of each of its

children and its grand-children.
3. The value of rc

i . Actually, rc
i can be computed based

on the rc
j value stored in each child node nj , i.e. rc

i =
(
∑

nj∈Ci
rc
j) + ri.

4. The physical communication delay between ni and each
of its children or grand-children, and those between each
of its children and each of its grand-children.

The information collection scheme is also a window-based
scheme. Each node asynchronously maintains its own in-
formation collection window. At the end of each window,
a node would measure the necessary information. If it detects
that the new value is increased to (1+τ ) times or decreased
to 1/(1+τ ) times of its previous value, it would send the new
value to its parent. In our experiments, we set τ to be 0.2.

3.3. Static Tree Construction Algorithms

In this subsection, we present two static tree construction
algorithms: a greedy algorithm and a randomized algorithm
based on Simulated Annealing[14]. Given apriori statistics
on the system parameters, the two algorithms can generate a
good dissemination tree. Such a tree can be used in environ-
ments that are static and not subject to runtime changes. For a
highly dynamic environment, the algorithms provide a good
initial scheme (as compared to a randomly generated dissem-
ination tree) that can speed up the convergence to the optimal
scheme as dissemination trees are refined adaptively based on
the runtime characteristics.

3.3.1. Greedy Algorithm. The algorithm is presented in Al-
gorithm 2. It adopts a greedy heuristic. The algorithm sorts
the nodes in ascending order of d(s, ni)+tpi +tci . Then it adds
the nodes into the dissemination tree one by one in the sorted
order. The partially built dissemination tree T is represented
as the set of nodes and edges in the tree. For each new node

N [i], it selects one node nj within the partially built tree to
act as the parent of N [i] so that the average loss of fidelity
AvgLF of the new tree T ∪ {N [i], e(nj , ni)} is minimized.
The estimation of AvgLF is based on Equations (3), (5) and
(6). To save the computational time, simple techniques can be
employed to compute the new AvgLF value incrementally
based on the current AvgLF of the partial tree. Due to space
limit, we do not present the details here. Given each poten-
tial parent, it takes log |N | time to estimate the new AvgLF .
Therefore, the computational complexity of Algorithm 2 is
O(|N |2 log |N |).

Algorithm 2: Greedy
begin

Add s to T ;
N [0]← s;
N [1 · · · |N | − 1]← Sort the other nodes in ascending
order of value d(s, ni) + tp

i + tc
i ;

for i = 1; i < |N |; i + + do
e← arg min0≤j<i AvgLF (T ∪ {N [i], e(nj , ni)});
Add N [i] and e to T ;

return T;
end

The dissemination tree built by using this algorithm has
the following property:

Theorem 1 If the height of the tree is h, and the delay be-
tween pairs of nodes satisfy the triangle inequality1, then the
communication delay of a message received by ni is at most
2di ·h where di = d(s, ni)+ tpi + tci . Further assume that the
fanout of each node is at most C and the maximum message
rate over all nodes is at most r, then the processing delay of
a message received by ni is at most

h · ( 1 + r · C · di

2(1− r · C · di)
C · di + di)

The proof can be found in the full version of this paper[19].

3.3.2. Simulated Annealing. Since the Min-AvgLF prob-
lem is NP-Hard, we use a probabilistic approach, Simulated
Annealing[14](SA), to approximate an optimal solution. This
approach has been shown to generate very efficient solu-
tions for hard problems, such as large join query optimiza-
tions [12]. The algorithm is illustrated in Algorithm 3. It
starts from a random scheme S0 and an initial temperature
T0. In the inner loop, a new scheme newS is chosen ran-
domly from the neighbors of the current scheme S. If the
cost of newS is smaller than that of S, the transition will
happen. Otherwise, the transition will take place with prob-
ability of e−∆C/T . (With the decrease of T this probability
would be reduced.) Meanwhile, it also records the minimum-
cost scheme that has been visited. Whenever it exits the in-
ner loop, the current temperature would be reduced. Based
on our experimental tuning and past experiences[13][12],

1If every non-leaf node has at least 2 children, then h ≤ log |N |. In
addition, some studies [18] have shown that violations of triangle inequality
is not very frequent, which is only about 1.4% ∼ 6.7%.



we select the parameters as follows: (1) T0: 2 ∗ cost(S0);
(2) frozen: T < 0.001 and minS unchanged for 10 iter-
ations; (3) equilibrium: 64 × #nodes; (4) reduceTemp:
T ← 0.95T ; (5) RandomNeighbor: randomly choose one
of the transformations listed in Section 3.2. The cost of the
new scheme can be computed using the incremental cost com-
putation presented in Section 3.2. Given a static environment
and accurate system parameters, we believe this algorithm
can derive the best dissemination scheme over all the other
algorithms. However, its optimization overhead may be high.
Moreover, such a centralized scheme will incur too large a
communication overhead in a dynamic context.

Algorithm 3: Simulated Annealing
begin

S ← S0; T ← T0; minS ← S;
while !frozen do

while !equilibrium do
newS ← RandomNeighbor(S);
∆C ← cost(newS)− cost(S);
if ∆C ≤ 0 then S ← newS;
else S ← newS with probability e−∆C/T ;
if cost(S) < cost(minS) then minS ← S;

T ← reduceTemp(T );
return minS;

end

3.4. Multi-Object Dissemination

In the above discussion, we only consider single object
dissemination. To disseminate multiple objects, there are two
possible solutions: (a) the multiple tree approach (to build
one dissemination tree for each data object), and (b) the sin-
gle tree approach (to build one tree for multiple data objects).
However the multiple tree approach would consume more re-
sources and incur higher maintenance cost. Hence we would
focus on the single tree approach in this paper and postpone
the multiple tree approach as our future work. In the single
tree approach, a single dissemination tree T is built to dis-
seminate a set of objects. Note that if an object of interest to
a child is not requested by the parent itself, the parent’s re-
questing object set would be enlarged to include this object.
Hence there is an effective object set Om

i for a node ni which
is the union of all the interesting objects of the nodes in the
subtree rooted at ni.

Due to the space constraint, here we only briefly present
how the above techniques can be extended to the multi-object
case. We refer the readers to the full version [19] for more de-
tails. First, we need to extend the the cost model. The deriva-
tion process of the cost model is similar to the single object
case, except that we have to deal with more than one object.
As in the single object case, we also need to design an adap-
tive scheme and a static scheme. For the adaptive scheme, the
transformation rules as well as the adaptation mechanism are
also the same as the single object case. However, we need to
extend the information collection strategy to include the new
information that are required by the new cost model. Both

the Greedy and SA Algorithm can be used here by employing
the new cost model. The complexity of Algorithm 2 becomes
O(|O| · |N |2 · log |N |). Theorem 1 can also be applied to this
scheme. Note that, in this case, the parameter r in the theo-
rem would be the sum of the maximum message rate among
all the nodes for each data objects.

4. Experiments

In this section, we present a performance study of the pro-
posed techniques, and report our findings. The simulator is
implemented using ns-2, a popular discrete-event simulator
for networking research. The topology is generated using the
GT-ITM topology generator. The Transit-Stub model, which
resembles the Internet structure, is used. We generate a net-
work topology with 1500 nodes, of which one node is chosen
as the source, 256 nodes are selected as the dissemination
servers, and the remaining nodes act as routers. The aver-
age communication delay between any two servers is about
20ms. The expected filtering time and transmission time of
each node is derived by using two respective uniform distri-
bution. In our basic configuration, we set the average val-
ues of these times as 5ms and 1ms respectively (which may
vary in our experiments), and set the minimum values as 1ms
and 0.125ms respectively. The source server’s expected fil-
tering time and transmission time are always set to the min-
imum value to model an enterprise class server. Given the
expected filtering time tpi and transmission time tci for a node,
the exact filtering time and transmission time of each message
are drawn from two respective exponential random variable
with expected values as tpi and tci respectively. Recall that
each server in our system has to process local user queries
(probably complex queries) and disseminate data to the child
servers, and only a limited resource can be allocated for the
dissemination task. Hence we use a relatively long filtering
time and transmission time which captures the load of pro-
cessing user queries in the servers. In addition, the adaptation
interval of our adaptive scheme is set to 200 seconds and the
information update window is set to 50 seconds. We model
the time used to transmit the statistical information to be the
same as tci . All the experiments are conducted in a Linux
server with an Intel 2.8GHz CPU. We also implemented the
optimization algorithms and the adaptation functions in C to
study their performance. To examine the cost of making adap-
tation decisions, we use a node that serves 100 objects and try
estimating 100 possible decisions. We found that tdk ≈ 0.6µs.
The cost of collecting information is analyzed similarly. In
the following experiments, we set both cost as 1µs in the sim-
ulation.

To evaluate the performance of the proposed techniques,
we compare them with the following approaches:

1. DiTA[16]. In DiTA, a tree is constructed for each data
object. Fanout constraint is set for each server to avoid over-
loading. In our experiments, this is done by trial-and-error
by repeatedly trying with different parameters and to pick the
set that gives the optimal performance.(We find that this is
the only way to find good fanout constraints and we believe



this is a disadvantage of schemes relying on predetermined
fanout constraints.) Furthermore, we use a centralized ver-
sion of DiTA biased towards DiTA. It first sorts the nodes in
ascending order of the values of their coherency requirements
and then adds them one by one into the tree in the sorted or-
der. When adding ni, a node within the partial tree, which has
the smallest communication delay to ni and still has available
fanout degree, is selected as the parent of ni.

2. Source-Based Approach. The distributed servers do
not cooperate and all the servers are connected to the source.
This provides a base line to evaluate all the schemes.

3. Random Tree. The nodes are added in random order.
For each joining node, randomly select a node to act as its
parent. This scheme provides a base line to evaluate all the
tree-based schemes.

Furthermore, in the experiments, we use two types of
datasets: synthetic data and real data. In the synthetic dataset,
we set a specific expected message rate ri,x for each node on
every object based on a uniform distribution. The source is
of the largest ri,x for all the objects. Given the rs,x of the
source, the interval of each update message is an exponential
distributed variable with an average value of 1/rs,x. The syn-
thetic data set provides relatively steady message rates, which
offers opportunities for us to study the properties of the dif-
ferent algorithms. For the real dataset, we continuously poll
stock traces from http://finance.yahoo.com. The
polling is done in an interval of one second. In the experi-
ments, we use 100-500 traces as our basic dataset.

4.1. Static Environment

In this section, we will study how the various algorithms
perform in a static environment.

In the first set of experiments, we examine the algorithms
in a single object dissemination situation. We utilize the syn-
thetic dataset. The expected message rate of each node is
selected from a uniform distribution with the average value
of 1 messages/second and a minimum value of 0.5 mes-
sages/second. (Note that the message rate models the co-
herency requirement at each node - a small coherency require-
ment implies a high message rate, and vice versa.) We vary
the average filtering time and transmission time by multiply-
ing them with a parameter load. The parameter load ranges
from 1 to 5 in our simulation. The minimum values of filter-
ing time and transmission time are not changed. This models
two effects: (1) Various load conditions of the whole system.
When more clients are connected or more queries are sub-
mitted to a node, its load would become higher and hence
it takes a longer time to disseminate messages to its child
nodes. The filtering and transmission times of these nodes
would be increased. (2) Various degrees of heterogeneity of
the system. With a higher value of load, the filtering time and
transmission time of the nodes would differ to a higher de-
gree. No matter which is the case, nodes with higher filtering
and transmission time would be deemed as less capable nodes
and hence a good plan should be able to identify this kind of
nodes and put them at a lower level of the dissemination tree.

We run each algorithm for 20, 000 seconds and record the av-
erage AvgLF over the whole simulation period as well as the
values within every 1, 000 seconds time window. To ease the
comparison, we normalize the AvgLF values of all the other
algorithms over that of the SA algorithm, which we believe
to be the best dissemination scheme.

Figure 3 shows the results of our experiment. From Fig-
ure 3(a), we can see that when load = 1, Greedy and the
adaptive counter-part (Greedy + Adaptive) perform as well
as SA, while the adaptive algorithm slightly improves over
the initial scheme. Due to the optimality of SA, the adaptive
scheme has few opportunities to further optimize the scheme.
On the other hand, DiTA has more than two times AvgLF
than SA. That is because it can neither differentiate the ca-
pabilities of the different nodes nor utilize information of the
communication delays between the nodes. The source-based
algorithm performs the worst. In this scheme, all nodes are
connected to the source node. Although the source node in
our settings is not overloaded, the messages would still expe-
rience very long delay in the source node because of the high
workload of the source. The random tree algorithm on the
contrary scatters the workload randomly over all the nodes,
and hence has a smaller AvgLF value. However, with the
increase of the load parameter, we can see from Figure 3(a)
that the relative performance of the source-based scheme im-
proves. This is because, in our study, increasing the load pa-
rameter increases the processing time of all the nodes except
the source node. Since the source-based approach dissemi-
nates the messages directly from the source, it is not influ-
enced by the load parameter. On the contrary, all the tree-
based schemes would suffer from the increase of load. Fur-
thermore, with the increase of load, DiTA and the random
tree scheme become much worse while our static algorithms
with/without adaptation scheme remains effective. This is be-
cause our scheme can identify the different capabilities of the
nodes and reorganize them in a more cost-effective way.

Although our static schemes work well as shown above,
they rely on accurate system statistics. To examine the per-
formance of our adaptive mechanisms without these statistics,
we use the random scheme to model an initial scheme that
would be generated without accurate statistics. Figure 3(b)
shows the result of this experiment. To ease viewing, we only
depict the results of load = 1 and load = 5 for the Ran-
dom+Adaptive and Greedy+Adaptive algorithms. The curves
of the other load values would be between these two cases.
It can be seen that when there are accurate system statistics,
Greedy would result in a good dissemination scheme that
works as well as SA. Hence there are not many opportuni-
ties for the adaptation scheme to improve. On the contrary,
the random scheme works far worse than SA. Our adaptation
algorithm iteratively improves this initial scheme. After about
30 adaptation periods, the random scheme has been improved
from more than 3 and 4 to only 1.3 times of the performance
of SA. And after more adaptation periods, the random scheme
is improved to the extent that it performs as well as SA. This
clearly shows the need for adaptive strategy, as well as the
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Figure 3. Performance on single object dissemination

effectiveness of our adaptive scheme.
Another type of load change of the system is the change

of message rates. With the increase of message rates, the dis-
semination load of the system is increased. In this experi-
ment, we fix the processing time of each node to its basic
value and multiply each node’s basic message rate with the
load parameter. The results are depicted in Figure 3(c). With
increasing message rate, Source-Based deteriorates rapidly.
This is because with a high message rate, the workload of the
source node largely increases due to its large number of chil-
dren, and this incurs long queueing time for the messages in
the source node. On the other hand, the relative performances
of all the tree-based algorithms are not sensitive to message
rate changes. This is due to the moderate number of child
nodes in a tree-based scheme. Furthermore, our schemes
steadily outperform the others under various message rates.

We also rerun the first two experiments on the multi-object
case using our collected stock traces. The results suggest
similar conclusions [19]. Furthermore, another experiment
is done to examine the sensitivity of the algorithms to dif-
ferent number of data objects. We vary the number of data
objects to be disseminated from 100 to 500. The results are
depicted in Figure 4. With different number of data objects,
Greedy, Greedy+Adaptive and SA+Adaptive persistently out-
perform all the other algorithms. We can also see that the rel-
ative performance of the Source-Based algorithm deteriorates
with increasing number of data objects. This is because the
source’s workload largely increases with increasing number
of data objects and hence its processing delay increases. Fur-
thermore, the absolute values of the AvgLF s of all the other
tree-based algorithms only increase by around 15% when the
number of objects is increased from 100 to 500. However, for
the AvgLF of Source-Based, the increase is around 200%.
This shows that the tree-based approaches have better scala-
bility to the number of objects.

4.2. Dynamic Environment

In this subsection, we study our adaptive algorithm un-
der a dynamic environment. In the experiments, we study
how the algorithms perform when the workloads of servers
are changed. The first experiment studies the single object
dissemination schemes using the synthetic dataset. The pa-
rameters are set as in the first experiment in the last subsec-
tion where load = 1. Since Source-Based and Random have

been shown to work worse than the others in this situation, we
only examine the results of the other algorithms. We run the
system for 20, 000 seconds, and at the 10, 000th second, we
increase the processing time of 10 nodes that are the first 10
nodes (except the source node) in a breadth-first search of the
dissemination tree. These nodes are at the top of the dissem-
ination tree. Their filtering time and transmission time are
increased to 10 times of the previous values. This models the
situation that the workloads of some nodes at the higher level
of the tree increase as more clients are connected or more
queries are submitted. The result is depicted in Figure 5(a).
In order to examine the optimality of the algorithms before
and after the state transitions, we run the SA algorithm un-
der both conditions. We then normalized the AvgLF value
of each algorithm under each condition by the correspond-
ing AvgLF of the SA algorithm. We compute the average of
the normalized AvgLF values over a 1000 seconds window
and then report the 20 resulting values. In figure 5(a), one can
see that at the first 10, 000 seconds, SA and SA+Adaptive per-
form as well as SA, while DiTA is two times worse than them.
After the 10, 000th second, the AvgLF s of both DiTA and
SA drastically increase. That is because the 10 nodes whose
processing times are increased become the bottleneck of the
whole dissemination tree. Furthermore because they are at
the top of the tree, their processing delays dominate the de-
lays of the messages sent to all their descendant nodes. On the
other hand, our adaptive mechanism can detect this change
and hence reorganize the dissemination tree to adapt to the
new situation. Therefore, it only has a short term increase in
the AvgLF and then drops back to the original state. That is
because the highly loaded nodes have been put to lower lev-
els of the tree and then their high processing times have little
effect on the dissemination efficiency.

We also conducted a similar experiment on multiple ob-
ject dissemination to examine the adaptivity of our scheme.
Since DiTA builds one tree for each object and DiTA has
been shown above that it is not adaptable to system changes
for any one of its dissemination trees, we only compare the
SA and SA+Adaptive in this experiment. Again we use the
stock traces as our input dataset. The other settings are simi-
lar to the above experiment. At the 5, 000th second, we shift
the filtering time and transmission time of 10 nodes, which
are at the top of the dissemination tree, to 10 times of their
original values. The result is reported in Figure 5(b). We
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Figure 5. Performance in dynamic environment

can see that before the change, SA works slightly worse than
Adaptive. At the 5, 000th seconds, both SA and SA+Adaptive
increase in their AvgLF s. However, our adaptive mechanism
successfully detects the shift and then reorganizes the dissem-
ination tree to adapt to the new situation. Hence SA+Adaptive
restores back to its original state in terms of AvgLF while
the bad performance of SA persists. We also performed ex-
periments on runtime change of transmission delays and co-
herency requirements. The results show that our adaptive
scheme can also adapt to these changes and reoptimize the
scheme incrementally.

5. Related Work

In [17, 16], the authors proposed an interesting problem:
disseminations streaming data with coherency preserving and
two techniques to construct a dissemination tree/graph: LeLA
(Level by Level Algorithm)[17] and DiTA (Data item at a
Time Algorithm)[16]. DiTA is reported to be much better
than LeLA. However, the authors do not provide a cost model.
Hence the factors that affect the system performance is un-
clear and it is hard to measure the optimality of a construction
scheme. Furthermore, adaptivity is not addressed.

Application-layer multicast is shown to be much easier to
deploy than IP layer multicast with only little penalties in
performance [8]. More recently, optimization of application-
layer multicast tree is studied in a few pieces of work [4, 6].
However, these systems assume all data would be transferred
to every node in the multicast tree and the effect of filterings
in the middle of the disseminations is not considered. As can
be seen in our cost model, the filtering has very significant
effect on the cost of the dissemination tree. Ignoring the fil-
tering effect will result in a scheme far from optimal. Hence
they are not adequate for our problem.

Authors in [10] presented the design of a large scale dis-
tributed XML dissemination system. Distributed content-
based pub/sub systems have also been studied in the network-
ing community [1, 3, 7, 9]. However, most of these efforts fo-
cus on how to efficiently filter and route contents to the clients
based on the clients’ interests. The organization of dissemi-
nation servers are not considered.

6. Conclusion

In this paper, we reexamined the problem of designing a
scalable dissemination system. We proposed a cost-based ap-

proach to construct dissemination trees to minimize the aver-
age loss of fidelity of the system. Based on our cost model,
a novel adaptation scheme is proposed and is experimentally
shown to be able to adapt to inaccurate statistics and changes
of system states. Two static algorithms: Greedy and SA, have
also been proposed for relatively static envrionments and for
constructing initial trees under dynamic environments. Al-
though we present our techniques in the context of streaming
object dissemination, they can be generalized to other stream-
ing data disseminatoin problems by revising the cost model.
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