
1

CS5225 Query Optimization 1

Query Optimization
It is safer to accept any chance
that offers itself, and extemporize
a procedure to fit it, than to get a
good plan matured, and wait
for a chance of using it.

Thomas Hardy (1874)
in Far from the Madding Crowd

CS5225 Query Optimization 2

Query optimization

Generate query
plans

Estimate size of
intermediate results

Estimate cost of
plan ($,time,…)

P1 P2 P3 Pn

CnC3C2C1

pick minimum

Q

CS5225 Query Optimization 3

Query Optimization

• Query: R1 R2 R3
• R1@Site1, R2@Site2, R3@Site3
• Result@Site1
• Possible plans

– Plan 1: Send R2 and R3 to Site1. Perform query at
Site 1

– Plan 2: Send R3 to Site2; Evaluate I = R2 R3;
send I to Site1; Evaluate result = I R1

– Many other plans …(including types of joins, number
of sites, semijoins, etc)

CS5225 Query Optimization 4

Cost estimation
As in centralized system: estimate

result sizes
But: # IOs may not be best metric

e.g., Transmission time may dominate
work work answer
at site at site

T1 T2

>>>---------TIME--------->
or $

CS5225 Query Optimization 5

Another reason why plain IOs not
enough: Parallelism

Plan A Plan B

site 1 50 IOs
100 IOs site 2 70 IOs

site 3 50 IOs

CS5225 Query Optimization 6

• Cost metrics
– IOs, Bytes transmitted, $, …
– Can add together

• Response time metric
– cannot add
– need scheduling and

dependency info
– skew important

Task 1

Task 2

Task 3

2

CS5225 Query Optimization 7

Take into account:
(in parallel/distributed system)

• Start up costs (for parallel operation)
• Data distribution costs/time
• Contention

– memory, disk, network,…
• Assembling result

CS5225 Query Optimization 8

Example: Response time

Site 1
Site 2
Site 3
Site 4

Startup Distri- Searching Final
bution +send results proc.

CS5225 Query Optimization 9

Query Optimizer

• Cost model
• Plan space

– Deep tree vs bushy tree
• Enumeration/Search strategy

– Exhaustive (with pruning)
– Hill climbing (greedy)
– Query separation
– SDD-1 (semi-join based)

CS5225 Query Optimization 10

(1) Exhaustive
- consider “all” query plans

with a set of techniques
- prune some plans (heuristics)

CS5225 Query Optimization 11

R S T
R S R×T S R S T T S T×R

(S R) T (T S) R
ship S semi ship T semi
to R join to S join

Heuristics:
1 Prune because cross-product not necessary
2 Prune because larger relation first

Example: |R|>|S|>|T|
R S T

A B

2 1 2 1

CS5225 Query Optimization 12

In generating plans, keep goal
in mind:

e.g.: Goal is parallelism in system with fast
net, consider partitioning relation(s)
first

e.g.: Goal is reduction of net traffic,
consider semi-joins

3

CS5225 Query Optimization 13

(2) Hill climbing
Better
plans

Worse
plans

x Initial plan
1

2

CS5225 Query Optimization 14

Step 1: Do initial processing
Step 2: Select initial feasible solution (P0)

2.1 Determine the candidate result sites - sites where a relation
referenced in the query exist

2.2 Compute the cost of transferring all the other
referenced relations to each candidate site

2.3 P0 = candidate site with minimum cost

Step 3: Determine candidate splits of P0 into
P1 = {P1a, P1b}
3.1 P1a consists of sending one of the relations to the other

relation's site
3.2 P1b consists of sending the join of the relations to the final

result site

Hill Climbing Algorithm

CS5225 Query Optimization 15

Step 4: Replace P0 with P1 that gives

cost(P1a) + cost(local join) + cost(P1b) < cost(P0)

Step 5: Recursively apply steps 3–4 on P1 until
no such plans can be found

Step 6: Check for redundant transmissions in
the final plan and eliminate them.

Hill Climbing Algorithm

CS5225 Query Optimization 16

Example R S σ(U) V

Rel Site Size tuple size = 1
R 1 10
S 2 20
U 3 90
V 4 40

Goal: minimize data transmission

CS5225 Query Optimization 17

Step 1: R S T V

Rel Site Size tuple size = 1
R 1 10
S 2 20
T 3 30
V 4 40

R S T V
A B C

T = σ(U)
Selectivity is 1/3

CS5225 Query Optimization 18

Step 2: Initial plan – send relations
to one site

What site do we send all relations to?
To site 1: cost=20+30+40=90
To site 2: cost=10+30+40=80
To site 3: cost=10+20+40=70
To site 4: cost=10+20+30=60

4

CS5225 Query Optimization 19

P0: R (1 → 4)
S (2 → 4)
T (3 → 4)
Compute R S T V at site 4

CS5225 Query Optimization 20

Steps 3 & 4
• Consider sending each relation to

neighbor:
e.g.:

4

1 2

4

1 2

R S

R

R
S

CS5225 Query Optimization 21

Assume: Size R S = 20
S T = 5
T V = 1

cost = 30 cost = 30 cost = 40
No savings Worse!

4

1 2

4

1 2

R S

R

SR10 20
10

20 4

1 2

S R

S
20

20

CS5225 Query Optimization 22

cost = 50 cost = 35 cost = 25
A Win! A Bigger Win

4

2 3

4

2 3

T S

T

TS
303020

5

4

2 3

S T

S
20

5

CS5225 Query Optimization 23

P1: P1a: S (2 → 3)
α = S T

P1b: R (1 → 4)
α (3 → 4)
compute answer at site 4

CS5225 Query Optimization 24

Step 5: Repeat Steps 3 & 4
- Treat α = S T as relation

4

1 3

R α

4

1 3

α R
α

4

1 3R

R α

vs

5

CS5225 Query Optimization 25

Hill climbing may miss best plan!
Example: best plan could be:
PB: T (3 → 4)

β=T V
β (4 → 2)
β’= β S
β’ (2 → 1)
β”= β’ R
β” (1 → 4)

Compute answer

4

1 2 3

β’’

β’

β

V

T

R S T

30

1

1

1

33 = total

Costs could be low
because is

very selective[optional]

CS5225 Query Optimization 26

(3) Query separation
- separate query into 2 or more steps
- optimize each step independently

CS5225 Query Optimization 27

σc1

σc2 σc3

R S

A
1. Compute R’ = ΠA[σc2 R]

S’ = ΠA[σc3 S]
2. Compute J = R’ S’

3. Compute

Ans = σc1{[J σc2 R] [J σc3 S]}

Example: simple queries

CS5225 Query Optimization 28

In other words:
(a) Compute A values in answer

(steps 1,2)
(b) Get tuples from sites with matching

A values and compute answer
(step 3)

CS5225 Query Optimization 29

Simple query
- Relations have a single attribute
- Output has a single attribute

e.g., J ← R’ S’

CS5225 Query Optimization 30

Idea
• Decompose query into

– Local processing
– Simple query (or queries)
– Final processing

• Optimize simple query
• Philosophy

– Hard part is distributed join
– Do this part with only keys; get rest of data later
– Simpler to optimize simple queries

6

CS5225 Query Optimization 31

Step 1: In the execution strategy (call it ES), include
all the local processing

Step 2: Reflect the effects of local processing on
the database profile

Step 3: Construct a set of beneficial semijoin
operations (BS) as follows :
BS = Ø

For each semijoin SJi

BS ← BS ∪ SJi if cost(SJi) < benefit(SJi)

SDD-1 Algorithm

CS5225 Query Optimization 32

Consider the following query
SELECT R3.C
FROM R1, R2, R3
WHERE R1.A = R2.A
AND R2.B = R3.B

which has the following query graph and statistics:

SDD-1 Algorithm – Example

R1

Site 3Site 1

R2 R3

Site 2
A B

attribute
R1.A
R2.A
R2.B
R3.B

0.3
0.8
1.0
0.4

36
320
400

80

relation card tuple size relation
size

R1
R2

30 50 1500
100 30 3000

R3 50 40 2000

size(Πattribute)SF

SF: selectivity factor
Result = SF*R

CS5225 Query Optimization 33

• Beneficial semijoins:

– SJ1 = R2 R1, whose benefit is
• 2100 = (1 – 0.3)*3000 and cost is 36

– SJ2 = R2 R3, whose benefit is
• 1800 = (1 – 0.4)*3000 and cost is 80

• Nonbeneficial semijoins:

– SJ3 = R1 R2, whose benefit is
• 300 = (1 – 0.8)*1500 and cost is 320

– SJ4 = R3 R2, whose benefit is 0 and cost is 400

SDD-1 Algorithm – Example
Cost = transfer semijoin

attribute
= TMSG + TTR*(size)

Benefit = cost of transferring
irrelevant tuples
(avoided by the
semijoin)

= (1-SF)*size*TTR

Assume: TMSG = 0

CS5225 Query Optimization 34

Iterative Process

Step 4: Remove the most beneficial SJi from BS and
append it to ES

Step 5: Modify the database profile accordingly

Step 6: Modify BS appropriately

– compute new benefit/cost values

– check if any new semijoin need to be included
in BS

Step 7: If BS ≠ Ø, go back to Step 4.

SDD-1 Algorithm

CS5225 Query Optimization 35

• Iteration 1:
– Remove SJ1 from BS and add it to ES.
– Update statistics

R2’ = size(R2) = 900 (= 3000×0.3)
size (R2’.A) = 320*0.3 = 96
SF (R2’.A) = ~0.8 × 0.3 = ~0.24

• Iteration 2:
– Two beneficial semijoins:

SJ2 = R2’ R3, whose benefit is 540 = (1–0.4) × 900 and cost is 80
SJ3 = R1 R2', whose benefit is 300=(1–0.8) × 1500 and cost is 96

– Add SJ2 to ES
– Update statistics

size(R2’) = 360 (= 900*0.4)

Note: selectivity of R2’ may also change, but not important in this
example.

SDD-1 Algorithm – Example

attribute
R1.A
R2’.A
R2’.B
R3.B

0.3
0.24
1.0
0.4

36
96
120
80

relation card tuple size relation
size

R1
R2’

30 50 1500
30 30 900

R3 50 40 2000
size(Πattribute)SF

NOT 1140=(1-0.24)*1500!!

CS5225 Query Optimization 36

• Iteration 3:
– No new beneficial semijoins.

– Remove remaining beneficial semijoin SJ3
from BS and add it to ES.

– Update statistics
size(R1) = 1200 (= 1500 × 0.8)
SF (R1.A) = ~0.3 × 0.8 = 0.24

SDD-1 Algorithm – Example

7

CS5225 Query Optimization 37

Assembly Site Selection

Step 8: Find the site where the largest amount of data
resides and select it as the assembly site

Example:
Amount of data stored at sites:

Site 1: 1200

Site 2: 360

Site 3: 2000

Therefore, Site 3 will be chosen as the assembly site.

SDD-1 Algorithm

CS5225 Query Optimization 38

Postprocessing
Step 9: For each Ri at the assembly site, find the

semijoins of the type Ri Rj
where the total cost of ES without this semijoin is
smaller than the cost with it and remove the
semijoin from ES.

Step 10: Permute the order of semijoins if doing so would
improve the total cost of ES.
– Example: Final strategy:

Send (R2 R1) R3 to Site 3
Send (R1 R2) to Site 3

SDD-1 Algorithm

CS5225 Query Optimization 39

Summary: Query Optimization
• Cost/result estimation
• Three key components in optimizer

– Cost model, search space, enumeration algorithm
• In practice, avoid bad plans (rather than find optimal)
• Strategies

– Exhaustive
– Hill climbing
– Separation
– SDD-1 (semi-join based)

