Relational Algebra Equivalences

- Allow us to choose different join orders and to ‘push’ selections and projections ahead of joins.
- Rules on joins, cross products and union

\[R \bowtie S = S \bowtie R \]
\[(R \bowtie S) \bowtie T = R \bowtie (S \bowtie T) \]
\[R \times S = S \times R \]
\[(R \times S) \times T = R \times (S \times T) \]
\[R \cup S = S \cup R \]
\[R \cup (S \cup T) = (R \cup S) \cup T \]

Rules: Selects

\[\sigma_{p_1 \land p_2}(R) = \sigma_{p_1}(\sigma_{p_2}(R)) \]
\[\sigma_{p_1 \lor p_2}(R) = [\sigma_{p_1}(R) \cup [\sigma_{p_2}(R)] \]

Rules: Project

Let: \(X = \) set of attributes
\(Y = \) set of attributes
\(XY = X \cup Y \)
\[\pi_{xy}(R) = \pi_x[\pi_y(R)] \]

Rules: Project

Let: \(X = \) set of attributes
\(Y = \) set of attributes
\(XY = X \cup Y \)
\[\pi_{xy}(R) = \pi_x[\pi_y(R)] \]
\[\pi_x(R) = \pi_x[\pi_y(R)] \text{ if } y \text{ contains } x \]

Rules: \(\sigma + \bowtie \) combined

Let \(P = \) predicate with only \(R \) attributes
\(Q = \) predicate with only \(S \) attributes
\(M = \) predicate with only \(R,S \) attributes
\[\sigma_p(R \bowtie S) = [\sigma_p(R)] \bowtie S \]
\[\sigma_q(R \bowtie S) = R \bowtie [\sigma_q(R)] \]

More Rules

Let \(x = \) subset of \(R \) attributes
\(z = \) attributes in predicate \(P \)
\(\pi_x[\sigma_p(R)] = \pi_x \{ \sigma_p[\pi_{xz}(R)] \} \)
More Rules

Let \(x = \) subset of \(R \) attributes
\(y = \) subset of \(S \) attributes
\(z = \) intersection of \(R, S \) attributes

\[
\pi_{xy}(R \bowtie S) = \\
\pi_{xy}\left(\pi_{xz}(R) \bowtie \pi_{yz}(S)\right)
\]

More Rules

\[
\pi_{xy}\left\{\sigma_p (R \bowtie S)\right\} = \\
\pi_{xy}\left\{\sigma_p \left[\pi_{xz'}(R) \bowtie \pi_{yz'}(S)\right]\right\}
\]
\(z' = z \cup \{\text{attributes used in } P\} \)