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ABSTRACT
Sensor networks are widely used in many applications for
collecting information from the physical environment. In
these applications, it is usually necessary to track the rela-
tionships between sensor data readings within a time win-
dow to detect events of interest. However, it is difficult to
detect such events by using the common aggregate or selec-
tion queries. We address the problem of processing window
self-join in order to detect events of interest. Self-joins are
useful in tracking correlations between different sensor read-
ings, which can indicate an event of interest. We propose the
Two-Phase Self-Join (TPSJ) scheme to efficiently evaluate
self-join queries for event detection in sensor networks. Our
TPSJ scheme takes advantage of the properties of the events
and carries out data filtering during in-network processing.
We discuss TPSJ execution with one window and we ex-
tend it for continuous event monitoring. Our experimental
evaluation results indicate that the TPSJ scheme is effective
in reducing the amount of radio transmissions during event
detection.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
filtering

General Terms
Experimentation, Performance

Keywords
Sensor Networks, Self-Join Queries

1. INTRODUCTION
Sensor networks are being increasingly deployed in many

important applications from environmental monitoring to
military surveillance. Such networks consist of many small
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sensor nodes with sensing, data processing and wireless com-
munication capabilities. Since sensor nodes are resource-
constrained, novel data management techniques are needed
to meet the application requirements taking into account
the resource limitations.

Sensor-based applications have different data requirements
ranging from simple data logging to complicated event de-
tection. Existing approaches like TinyDB [12] and Cougar
[16] are query-based data collection systems developed for
sensor networks. Users acquire interesting data by issuing
SQL-like queries while the underlying data retrieval and col-
lection processes are transparent to them. Many of the early
works on query processing in sensor networks have focused
on aggregate queries such as COUNT, SUM and MAX, and
have developed in-network aggregation techniques that sig-
nificantly reduce the amount of data transmission. Some
approximate query processing techniques [7, 10, 6, 5] were
also proposed to reduce the cost of data collection while
providing high quality query results.

However, in certain scenarios, questions cannot be an-
swered simply by using the aggregate or selection queries.
In many applications, we are interested in tracking the cor-
relations among sensor data within a time window to de-
tect events of interest. For example, scientists often study
the correlations between environmental or weather changes,
and the habitats of animal species. They may want to know
whether the animals tend to gather at a region in the forest
when it rains, and leave that place when it is sunny. This
question could be answered by the following SQL query.

Q1:
SELECT A1.humidity, A1.num, A1.time, A1.loc,

A2.num, A2.time, A2.loc

FROM Animal AS A1, Animal AS A2

WHERE A1.humidity > δ

AND A2.num − A1.num > θ

AND near(A1.loc, A2.loc, r)

AND A2.time > A1.time

AND A2.time−A1.time < h

Assume we have a table named Animal that stores the
data collected by sensor nodes deployed in the region of in-
terest. Each sensor periodically reports the humidity read-
ing and the number of animals that pass by. In query Q1,
humidity being larger than δ indicates rainy weather. At-
tribute num records the number of animals detected. The
predicate A2.time > A1.time suggests that animals are gath-
ering when it begins to rain; while A2.time − A1.time < h
means that two matching tuples are within a time window
of size h. The function near(loc1, loc2, r) checks whether
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the location of sensor N2 (loc2) is within distance r of the
location of sensor N1 (loc1) using some distance function.
Thus, Q1 queries whether there are sensors near each other
that detect a rapid increase in the number of animals within
a window of h after it rains.

Another interesting scenario is a volcano monitoring ap-
plication, where scientists are interested in the pressures de-
tected within a certain region around the volcanic mountain.
After noticing that the volcanic activity of the mountain has
increased, they may want to know whether the pressures de-
tected have crossed a certain threshold and is continuously
increasing within some period of time. This can be captured
by query Q2.

Q2:
SELECT P1.pressure, P1.time, P2.pressure, P2.time

FROM Pressure AS P1, Pressure AS P2

WHERE P1.pressure > δ

AND P2.pressure > P1.pressure

AND P2.time > P1.time

AND P2.time− P1.time < h

In query Q2, Pressure is a table that stores pressure read-
ings of sensor nodes. Q2 answers the question of whether
the sensors detect continuously increasing pressure over a
given threshold.

Queries like Q1 and Q2 involve self-join operations in
sensor networks. Although there are well established tech-
niques to process self-join queries in traditional distributed
databases, they are not directly applicable to sensor net-
works. Existing data collection approaches for sensor net-
works do not provide efficient evaluation for complicated
queries, especially those with ‘join’ operators. Thus, it is a
major challenge to implement self-join queries, since the sen-
sor nodes are resource-constrained, with limited battery en-
ergy, processing power, storage, and communication band-
width.

A direct method to evaluate this type of queries is by
flooding. Since each sensor node does not know beforehand
which nodes may generate data matching its own and when
these data will be generated, messages containing local sen-
sor data have to be propagated to neighboring nodes. In
the worst case, tuples from one sensor node may have to
be flooded in the entire network so as to find all match-
ing tuples under particular join conditions. In such a case,
the messages for exchanging information may overwhelm the
limited network bandwidth. Furthermore, for further pro-
cessing, each sensor node needs to store the local historical
sensor data and the data from other sensor nodes for at least
a window size, which may consume a large amount of local
storage. Evaluating local self-join in a sensor node will also
incur a lot of computational power and memory, which may
become a heavy burden for such a small device.

A more centralized approach to solve this problem is to
let all nodes periodically sense and transmit all the data
back to the base station, which would be in charge of the
data filtering and event detection. Since the base station
is much more powerful than the sensor nodes, it is better
equipped to handle self-join queries. However, this method
suffers from high data transmission cost compared to in-
network processing as all the nodes send data back to the
base station. It would be very inefficient especially when the
join selectivity (event frequency) is low. Furthermore, even
though the base station is powerful, it may still become a
bottleneck.

By examining queries Q1 and Q2 carefully, we find some
common properties among them:

1. They involve self-joins, as the join predicates are posed
on the same table (sometimes even on the same col-
umn).

2. There is a window predicate posed on the correlated
tuples. Even if two tuples satisfy the join conditions,
they will be filtered out from the final results if they
fall out of a window.

3. They include a selection predicate specifying the con-
ditions after which certain correlations among sensor
data are of interest. Therefore, this usually indicates
the possible start of an interesting event.

Based on the above observations, we propose the Two-
Phase Self-Join (TPSJ) technique to efficiently process self-
joins for this type of event detection in sensor networks. The
key idea of TPSJ is to process a self-join query in two phases.
The goal of the first phase is to do some preliminary filtering
and find some candidates that might be in the final result. In
the second phase, a window join is run and those candidates
found in phase one are used to do further filtering within the
network. In this manner, TPSJ tries to find matching tuples
within a time window. TPSJ coordinates the continuous
execution of monitoring queries for event detection over long
periods.

We conducted extensive simulations to evaluate TPSJ per-
formance relative to straightforward approaches. Our exper-
imental results indicate that TPSJ significantly reduces the
amount of data transmission during event detection.

The rest of this paper is organized as follows. Section 2
outlines the related previous work. In Section 3, we provide
the problem definition for our work. Section 4 presents our
TPSJ scheme focusing on one execution of such a query in-
cluding the algorithms for the two phases, while Section 5
extends this discussion to continuous monitoring. In Section
6 we discuss the methodology and results of our experimen-
tal evaluation. Finally, we conclude the paper in Section 7.

2. RELATED WORKS
Joins are common in applications for target tracking or de-

tection [16]. There are several works that consider join query
processing in sensor networks, starting with [16], which pro-
poses a technique similar to the centralized approach we
discussed in the introduction. It has a destination node,
called the leader, that collects all the tuples from other sen-
sor nodes through a multi-hop routing protocol. The leader
decides whether to send out all tuples it has received from
other nodes to the base station or to compute the join re-
sults locally based on whether or not the join operation will
increase the resulting data size. This method requires rel-
evant catalog data about selectivities. However, for a root
node (leader as in [16]) connected to a base station, it could
simply send out all the tuples and let the base station do
the joins. This work does not consider in-network join pro-
cessing.

Joins between two regions in sensor networks are further
discussed in [4]. This work proposes an in-network join pro-
cessing method that determines, for one join query, a set
of sensor nodes in the network to which tuples from two
regions are sent and the join executed. This method tries
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to minimize the overall communication cost based on a cost
model. However, it can not be applied to event detection
discussed in the first section directly. This is because, for a
join query like Q1, we do not know beforehand which two
nodes might participate in the joins and produce tuples that
would appear in the join results. Further, it does not take
into account the impact of query selectivity; the join results
are simply the cartesian product of two base relations. It is
expected that join operators may provide opportunities for
possible data reduction, especially for queries like Q1.

The problem of optimal operator placement when per-
forming sliding-window joins [2] in sensor networks has been
studied [14]. However, this work is based on the assump-
tion that data are collected at edge nodes and transmitted
through a hierarchy of nodes with progressively increasing
computing power and network bandwidth. It tries to min-
imize the overall computation and data transmission along
the hierarchy. It also assumes that data streams that partic-
ipate in the joins and the nodes that collect these data are
known before joins. However, in the applications we con-
sider, in the extreme, all nodes may be involved in the join
operation. The difficulty in our environment is to efficiently
filter unrelated tuples while transmitting only those tuples
that will contribute to the join results; the problem studied
in [14] does not address this difficulty.

Joins of multiple data streams in sensor networks within
a sliding window are studied in [9]. By defining the width of
the sliding window, joins are limited within a certain period.
However, this paper also does not consider how data are
to be collected from multiple data streams that originate
from different sensor nodes. REED [1] also applies joins to
filtering and event detection in sensor networks. However, it
mainly deals with joins between sensor data and static data
tables rather than joins between sensor data streams, and
does not take temporal relationships into consideration.

Much work has been done on join processing of multiple
data streams [13, 3, 8]. Most of these assume that multiple
data streams flow into the central system at different rates.
Large amount of data must be processed properly to provide
quick response to multiple user queries. Limitations such as
network bandwidth and power supply are not considered
in these systems. Further, these works do not consider in-
network query processing.

3. EXECUTION SEMANTICS
Before we describe our proposed approach for in-network

execution of self-join queries in sensor networks, we define, in
this section, the semantics that we wish to achieve. We will
do this by referring to a baseline case where all the sensors
report their data to the base station where the query is exe-
cuted (i.e., what we referred to as the centralized approach
earlier). Our task, therefore, is to achieve a distributed,
in-network execution of these queries that maintains the se-
mantics defined in this section.

Assume, as indicated above, that each sensor node Ni

sends to the base station its readings at each sampling in-
terval as a tuple: Tj = 〈atti

1, atti
2, . . . , atti

n, Ni, tsj〉, where
atti’s represent readings for multiple attributes (e.g., tem-
perature, pressure, etc), Ni is the sensor id, and tsj is the
timestamp that identifies when the data were read. In sen-
sor networks, the sensors are calibrated such that each one
takes a reading at fixed intervals, which means that tuples
that come from different sensors with the same timestamp

tsj represent readings “at the same time”. Systems issues
related to synchronizing sensors are beyond the scope of this
paper and have been studied elsewhere [11].

When the tuples arrive at the base station, they are put
in a relation called Sensor that has m(= n + 2) attributes.
This relation is sorted by the timestamp, thus all of the
tuples arriving from all of the sensors with timestamp tsj

are grouped together. Naturally, this is a conceptual table
and not one that is physically maintained; it is used merely
to define the semantics of what we wish to achieve.

The queries are executed over this (conceptual) Sensor ta-
ble. The queries we are interested in are monitoring queries
that address event detection problems similar to the exam-
ples given in Section 1 (i.e., queries of the type Q1 and Q2).
These queries have a common form:

Q∗

SELECT S1.AT1, S2.AT2

FROM Sensor AS S1, Sensor AS S2

WHERE p1(S1.AT3)

AND p2(S1.attj , S2.atth)

AND window (S1.ts, S2.ts, W )

where ATi represents the subset of attributes from Sen-
sor table, W is the size of the sliding window, which is
specified by the user to decide the temporal relationship
among tuples of the target event, predicate p1 is of the form
atti opt Constant, and p2 is of the form atti opt attj , where
opt can be any of {<, >, ≤, ≥, 6=, =}. Notice that we use
window predicate window (S1.ts, S2.ts, W ) to restrict that
tuples from S2 is sampled later than that of S1 as well as
that they are within a time window of size W . In this con-
text p1 is a selection predicate over Sensor and p2 is the join
predicate. S1 and S2 both are aliases to the Sensor table.

The operational semantics of this query execution is as
follows. When the query is run, p1 is evaluated over the
tuples in Sensor. If a tuple Tj is found where p1(Tj) = true,
then a window is defined of size tsj + W . All the tuples
in Sensor whose timestamps are within this window are
subjected to self-join and the result is output. Note that
there may be multiple tuples in Sensor that satisfy p1. As
long as the timestamps of these tuples are the same, they
are considered within one execution of the query (i.e., only
one window is defined). For each tuple that has a different
timestamp, a new window is defined, and the queries are
executed separately for each window.

4. TWO-PHASE SELF-JOIN APPROACH
In this section, we present our two-phase window self-join
(TPSJ) approach for in-network execution of monitoring
queries with the semantics as specified in Section 3. We
first describe the pre-processing that needs to be done (Sec-
tion 4.1, and then discuss the algorithm (Section 4.2). To
simplify the description, we shall present, in this section,
a single execution of a query of type Q∗; the continuous
execution of such queries is considered in Section 5.

4.1 Preprocessing: Query Decomposition
After the base station receives a user query of type Q∗, it

needs first to do some preprocessing. As mentioned in the
above section, we start a window join when we find some
tuples that satisfy the selection predicate p1. These tuples
are candidates that are likely to contribute to the final result.
They will be used to filter sensor readings when we evaluate
the window join in-network. Based on this, we define two
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main tasks for the window self-join query evaluation. The
first is to determine when to start a window join while the
second is to actually evaluate the join query in-network. So,
in preprocessing, we rewrite the original query into two ‘new’
queries corresponding to these two tasks. These will then
be processed using the two-phase self-join scheme presented
in the next section.

A user query Q∗ is rewritten into two queries after pre-
processing as follows:

Q∗
1

SELECT S.AT1 INTO R1

FROM Sensor AS S

WHERE p1(S.AT3)

Q∗
2

SELECT S.AT2

FROM R1, Sensor AS S

WHERE p2(R1.attj , S.atth)

AND window(R1.ts, S.ts, W )

The first query Q∗
1 is a selection query that finds tuples

that satisfy the selection predicate and stores them in a tem-
porary relation R1. The self-join in the original query now
becomes a join, in Q∗

2, between relation Sensor and the in-
termediate relation R1.

The two new queries will be evaluated in-network sepa-
rately in two phases, though the second query depends on
the result of the first one. Furthermore, Sensor is never ma-
terialized at the base station, but is maintained in individual
sensor nodes (i.e., it is a conceptual relation in Q∗

1 and Q∗
2).

Q∗
1 represents the detection, by one or more sensors, of the

event that is of interest in the monitoring application. Q∗
2

finds whether the correlation between readings that are im-
portant to the application exists in the readings after the
event is detected.

Let us return to the volcano monitoring application and
use it as an example to illustrate the preprocessing. Q2 is
rewritten as two queries:

Q2.1:
SELECT P.pressure, P.time INTO R1

FROM Pressure AS P

WHERE P.pressure > δ

Q2.2:
SELECT P.pressure, P.time

FROM R1, Pressure AS P

WHERE P.pressure > R1.pressure

AND window(R1.time, P.time, h)

4.2 Two-Phase Self-Join Processing
We now focus on the TPSJ algorithm considering only a

single execution of query Q∗ that has already been decom-
posed into Q∗

1 and Q∗
2.

Phase One:
In phase one, query Q∗

1 is executed. The goal of this phase
is to find candidates that might contribute to the final result
and then properly start the window self-join.

All sensor nodes take periodic readings and insert these
readings into a local table that they manage (we refer to the
table at node Ni as Readingi). When the selection query
Q∗

1 is injected into the network by the base station1, each

1
Note that in monitoring applications of the type we consider, queries

may be pre-defined, which would allow their pre-processing and the
pre-deployment of Q∗

1 and Q∗
2 at the sensors. However, in our ex-

periments we do account for ad hoc queries that are posed by users

sensor node executes it over its Reading table. If a tuple is
found to satisfy p1, it is forwarded to the base station. That
particular sensor node stops executing Q∗

1 at that point since
an event of interest has been detected and the remainder of
the tuples within the window will be checked during the
execution of Q∗

2 in any case. This concludes the first phase
of execution.

There are two points that require attention. One is the
topology of the sensor network. Our algorithm does not
make any assumption about the topology, but in our ex-
periments we use a routing tree topology that is employed
in TinyDB [12]. The second issue is the maintenance of
the Reading table at each sensor node, as this table can-
not be allowed to grow too big. The size of the table is a
user-defined parameter and entries in it can be managed in
a FIFO manner (based on tuple timestamps). It is impor-
tant, however, that the size is sufficient to hold the readings
that can occur in one window; given the window size and
the sampling frequency of the sensors, it is possible to set
the table size (or set the other two parameters given the
restrictions on storage space at the sensor nodes).

0

1

3

2

4

5 (480, 1)

(350, 1)

(530, 1)

(510, 1)

(490, 1)

(a) Sensor data of epoch 1.

0

1

3

2

4

5 (480, 1)

(350, 1)

(530, 1)

(510, 1)

(490, 1)

{(510, 1), (530, 1)}

(b) Results of Q2.1.

Figure 1: Phase one.

We again use Q2 as an example to illustrate this process.
Assume a routing tree topology for the sensor network as
shown in Figure 1(a) where the base station is node 0 (N0).
Suppose δ is equal to 500 and h is defined as 10 sampling
intervals. In phase one, Q2.1 is injected into the network
and is propagated, along the routing tree, to all the sensor
nodes. Sensor data collected at sampling point 1 (i.e., ts =
1) is depicted in Figure 1(a) along with their timestamps.
Two readings satisfy p1 = P.pressure > 500: readings from
nodes N2 and N3 (indicated by circles in Figure 1(b)). These
two tuples are sent back to the base station along the routing
tree as depicted in Figure 1(b)).

Phase Two:
The goal of the second phase is to find matching tuples

for the candidates found in phase one and complete event
detection within one time window. The base station con-
structs an intermediate result table R1 and injects it along
with query Q∗

2 into the network. Note that all readings in
R1 have the same timestamp since they are sent at the same
sampling point when p1 is detected to be true. Thus R1 is
constructed by projecting out the nodeid and the timestamp
attributes from the reading tuples. Notice that the informa-
tion about the timestamp when R1 is constructed is included
in the window predicate of phase two query. Consequently,
R1 contains only the reading attributes. Once a sensor node
receives the table and the new query, it will execute the sec-
ond query over a window defined over the Reading table

at any time, with the base station taking over the responsibility of
injecting them into the sensor network.
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(a) Static table
propagation.
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(b) Results of Q2.2.

Figure 2: Phase two.

that it maintains. In other words, it will look at the tuples
in Reading whose timestamps are within tsi + W where tsi

is the start time of the window predicate, i.e., the timestamp
of the tuples in R1 (note that all tuples in R1 have the same
timestamp).

Let us again consider example query Q2 to illustrate phase
two. Q2.2, together with table R1, is injected into the net-
work (Figure 2(a)). Each sensor node will execute Q2.2 over
the window [1, 11] since the timestamp of the tuples in R1

is 1 and the window size (h) is 10. Results of Q2.2 at each
sensor node are shown in Figure 2(b) next to each node.

The base station forms the result of the join query as it
gets results from individual sensor nodes. For the example
we are considering, this is depicted as the second (larger)
table in Figure 2(b), which we denote by R2 in the following
discussion. At this point, the base station can easily con-
struct the final result for the original user query, since this
is now a simple join operation between R1 (the result of the
selection query) and R2 (the result of the join query). For
example, given tables R1 and R2, as shown in Figure 2(b),
the final results of Q2 are {(510, 520), (510, 535), (510, 520),
(510, 550), (530, 535), (530, 550)} given that the predicate
is R2.pressure > R1.pressure.

Note that, as indicated at the beginning of this section, we
have so far focused on the single execution of the user query;
therefore, the results are likely not complete. For example,
tuple 〈520, 5〉 at N3 may also join with tuple 〈550, 9〉 at N5,
which means that tuple 〈520, 5〉 can actually trigger a new
window self-join starting at timestamp 5. We discuss how
to extend our method to handle continuous event detection
(and multiple window join) in Section 5.

Algorithm 1: TPSJ(Q)

//input: user query Q.
//output: answers to Q.
//q1: selection query for phase one.
//q2: join query for phase two.
begin

1 q1, q2 = preprocess(Q)
2 inject q1 into network and execute
3 if q1 generates a result then
4 form R1, stop q1

5 R2 = windowSelfjoin(q2, R1)

6 calResult(R1, R2)

end

The basic TPSJ algorithm is shown in Algorithm 1. Phase
one is captured in lines 2–3, while function windowSelfjoin
in line 5 mainly addresses the work of phase two. Note that

q1 generating a result (line 3) means that predicate q1 =
true for some tuple(s) at some sensor node(s). Function
calResult is executed at the base station, which outputs
the final results of the user query after receiving the results
of two phases. Timely response to the user query can be
achieved by incrementally outputting answers as soon as the
base station receives one tuple from phase two.

There are some situations where fewer tuples may be sent
into the network instead of the whole result table R1 of phase
one. If the join predicate in the user query only involves
operators of {<, >, ≤, ≥}, we can sort R1 and choose
to send the smallest or the largest value to the network.
For example, consider Q∗, Q∗

1 and Q∗
2 where predicate p2

includes “<” operator i.e., p2(S1.attj , S2.atth) = S1.attj <
S2.atth in Q∗. Assume the result table R1 consists of tuples
{T1, T2,...,Tn}. We sort table R1 into {T ′

1, T ′
2,...,T

′
n} such

that T ′
1.attj ≥ T ′

2.attj ≥ ... ≥ T ′
n.attj . The smallest value

of T ′
n in R1 is the only tuple that needs to be sent into the

network, and is sufficient to get a complete result set. We
may further rewrite Q∗

2 into
SELECT S.AT2

FROM Sensor AS S

WHERE p2(T ′
n.attj , S.atth)

AND window (W )

which becomes a simple selection query. By doing so, lo-
cal join operations are avoided at each sensor node. For
example, in Figure 1 the result table consists of two tuples
{〈510〉, 〈530〉}. Instead of sending the whole table into the
network, we could just send the tuple with the smaller value
which is 〈510〉.

A more specific situation is that, when selectivity is low, it
is possible that the result of phase one consists of few tuples.
When table R1 consists of one tuple {T}, similar rewriting
techniques as in the above situation can be applied to Q∗

2

regardless of the type of predicate p2. This is especially
useful when we want to track some rare events where the
frequency of results of phase one is low.

5. CONTINUOUS TPSJ
In continuous TPSJ, we aim to detect target events over

a long period of time. In this section, we discuss how to
extend TPSJ from one window execution, as discussed in
the previous section, to continuous event detection.

As we have mentioned in Section 4, it is possible that
there are some tuples that may trigger a new window self-
join within the current processing window. For example, we
noted that while Q2.2 (a self-join) was executing within the
window [1,11], another reading at ts = 5 may satisfy the se-
lection query. It will be necessary, in continuous monitoring,
to start a new window [5,15] and execute the self-join within
that window as well. However, this has to be done carefully
in order to ensure that unnecessary work is not done within
overlapping windows.

Therefore the first task is to detect tuples that satisfy
the selection predicate (i.e., execute query Q∗

1) continuously.
This requires minor changes in phase one: phase one does
not stop after the detection of the first tuple that satisfies
p1; instead, Q∗

1 runs continuously from its insertion into
the sensor network until it is explicitly terminated. Tuples
satisfying p1 are continuously sent back to the base station.

The second task is to modify the processing that is per-
formed at the base station. As tuples that satisfy selection
predicate p1 continuously flow back, the base station must
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react properly to start new window self-joins for them. As
indicated above, the naive way is to compile relation R1 as
before and start a new window for each R1 (recall that each
R1 contains readings with the same timestamp). However,
this is very inefficient in several aspects. First, in the case of
overlapping windows, one query may already be (partially
or fully) answered by another. Second, frequent triggering
of queries may incur significant transmissions in-network,
as new queries have to be propagated from the base station
to all the sensor nodes. Finally, result tables of phase one
among consecutive window queries may also overlap. We
aim to find an efficient way of triggering window self-joins
of phase two at the base station.

Based on the above observations, we have developed sev-
eral rules to guide the triggering of window self-joins (i.e.,
query Q∗

2).
Rule A - One Window Self-Join Per Sampling In-

terval
This rule requires that at most one window self-join is

triggered for one time clock, i.e., for all the tuples that have
identical timestamps, phase two is triggered only once. This
is not so much a rule as it is a statement of the semantics
for completeness.

Rule B - Delay Query Triggering As Much As Pos-
sible

This rule addresses the relationship between two consecu-
tive query executions during overlapping windows and aims
to reduce the amount of work that is done. Assume Q is
the phase two (self-join) query currently executing and Q′

is the subsequent execution of the same query triggered by
a tuple that has a timestamp that falls within the execution
of window Q (Figure 3). It is possible that the two queries
will generate some join results that are identical. This is
because, if R1 and R′

1 refer to the phase one result tables
that will be used in Q and Q′, respectively, these tables may
have overlapping tuples (it is possible that one may even be
contained in the other). To deal with this case, we follow a
set of rules. These rules are based on two factors: (1) the re-
lationship between the result tables generated in phase one,
and (2) the join predicate.

Trigger Q' here

Q

The start of Q

Q'

The original start of Q'

W

W'

t

New window for Q'

W'

Figure 3: Delay Triggering Query

1. If R1 ⊂ R′
1,

(a) If the join predicate is attj = atth, then the re-
maining answer of Q is completely included in
Q′’s answer. Therefore, Q′ is injected into the
sensor network with R′

1 and the sensor nodes are
instructed to stop executing Q and start Q′ in-
stead.

(b) If the join predicate is attj 6= atth, then part of
Q′’s answer is included in Q’s answer. Therefore,

instead of initiating the execution of Q′ immedi-
ately, it is delayed until the end of Q’s execution
window. At this point, Q′ is injected into the
network with R′

1
2. The window of Q′ is adjusted,

because we only need to run it in the remainder
of its original window. For example, window W
is described by [ts, te], where ts is the start time
and te is the end time. If query Q′ with window
W ′ = [t′s, t

′
e] is delayed by query Q with window

W = [ts, te], then W ′ is modified to [te + 1, t′e].

2. If R′
1 ⊂ R1,

(a) If the join predicate is attj = atth, then this is
identical to rule B1(b).

(b) If the join predicate is attj 6= atth, then this is
identical to rule B1(a).

3. If R1 = R′
1, then Q and Q′ have exactly the same

join results during overlapping window. We consider
Q′’s answer to be partially included by Q and delay
Q′ till the end of Q’s execution window. Note that
another option is to inform each sensor node to extend
the window W of Q to include W ′ of Q′. However,
doing so incurs similar cost in radio transmissions as
injecting Q′ in a later time. The merit of doing so will
be further discussed in the following rule.

4. If none of 1, 2 or 3 holds for join predicate attj θ atth

where θ ∈ {=, 6=}, Q′ together with R′
1 is injected into

the network for execution.

5. If the join predicate is attj θ atth where θ ∈ {<, >,≤
,≥}, result table R1 (or R′

1) is of size 1, i.e., it contains
only one tuple as discussed in Section 4. Assume R1 =
{a} and R′

1 = {b}. The join predicate in Q may be
rewritten as a θ atth.

(a) If b < a,

i. If θ ∈ {<,≤}, then the remaining answer of Q
is completely included in Q′’s answer. There-
fore, Q′ is injected into the sensor network
with the join predicate rewritten to b θ atth

and the sensor nodes are instructed to stop
executing Q and start Q′ instead.

ii. If θ ∈ {>,≥}, then part of Q′’s answer is
included in Q’s answer. Therefore, instead
of initiating the execution of Q′ immediately,
it is delayed until the end of Q’s execution
window. At this point, Q′ is injected into the
network with the join predicate rewritten as
b θ atth and the window adjusted as MW ′ =
W ′ −W .

(b) If b > a,

i. If θ ∈ {<,≤}, then this is identical to rule
B5(a)ii.

ii. If θ ∈ {>,≥}, then this is identical to rule
B5(a)i.

2
It is possible to reduce the amount of data injected into the sensor

network by adjusting R′
1 as MR′

1 = R′
1 −R1 and executing over win-

dow MW ′ as shown in Figure 3. However, this introduces additional
complexity at the sensor nodes since they have to reconstruct R′

1 as
R′

1 =MR′
1 ∪ R1. Therefore, we have not implemented this optimiza-

tion.
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(c) If b = a, Q and Q′ have exactly the same join
results for overlapping window. Similar to rule
B3, we delay Q′ accordingly.

Consider the following example. Assume R1 = {5, 9} is
the result table used by the active query Q, the self-join
predicate p2 requires that the sensor reading be not equal
to any element of R1, and Q′ has result table R′

1 = {2, 5, 9}.
In this case, R1 ⊂ R′

1 and thus the results of Q′ are at
least partially contained by Q, i.e., answers to Q′ during the
overlapping period of length t are provided by that of Q.
By applying rule B1(b), we delay sending Q′ and R′

1 into
the network until the end of the Q’s window as illustrated
in Figure 3. Notice that the window W ′ of Q′ is modified
accordingly (as shown by the dashed line to the solid line in
Figure 3)

Rule C - Hidden Query
This rule covers the case that may occur when a query Q′

is delayed until the currently active query Q is completed, as
discussed in Rule B. It is possible that, while Q′ is waiting
to be issued by the base station, another tuple may trigger
a third query Q′′ that may make it unnecessary to issue
Q′ at all. This would happen in several situations. Let
us consider query Q, Q′, Q′′ with windows W , W ′, W ′′

respectively (Figure 4) and R1, R′
1 and R′′

1 are the phase
one result relations used by these queries.

Q: >60

The start of Q

Q': >70

The original start of Q'

Trigger Q" here and stop Q

Q": >40

t
1

t
2

Q' is not triggered here

W

W'

W''

W'

Figure 4: Hidden Query

1. If R′
1 ⊆ R′′

1

(a) If the join predicate is attj = atth, then Q′’s re-
sult during MW ′(= W ′−W ) is completely covered
by the result of Q′′ (note that this is analogous
to rule B1(a)). Consequently , the entire result
of Q′ is covered by the result of Q union result of
Q′′.

2. If R′′
1 ⊆ R′

1

(a) If the join predicate is attj 6= atth, then similar
to rule B2(b) and the above, result of Q′ during
MW ′(= W ′ − W ) is completely covered by the
result of Q′′; its entire result is covered by the
union of the result of Q and Q′′.

3. If the join predicate is attj θ atth where θ ∈ {<, >,≤
,≥}, result table R1 (or R′

1 or R′′
1 ) is of size 1. Assume

R1 = {a}, R′
1 = {b} and R′′

1 = {c}.

(a) If θ ∈ {<,≤} and c ≤ b, then Q′’s answer (within
the new window MW ′) is completely included in
Q′′’s answer. Note that the relationship between
Q and Q′′ does not matter. No matter whether
Q′′ is delayed by Q if a ≤ c or Q′′ is injected into

Algorithm 2: Continous TPSJ

//Input: query Q of type Q∗
2 and relation R1 as result of phase

one
begin

1 for each cycle tCurrent do
2 for each Q in ActiveQueue do
3 if Q.te < tCurrent then
4 ActiveQueue.dequeue(Q, R1)

5 for each Q in DelayQueue do
6 if Q.ts = tCurrent then
7 DelayQueue.dequeue(Q, R1)
8 NewqueryQueue.enqueue(Q, R1)

9 if there is a new query Q generated by phase one
then

10 NewqueryQueue.enqueue(Q, R1)

11 for each Q in NewqueryQueue do
12 for each Q′ in ActiveQueue do
13 if Q can be (partially) answered by Q′ then
14 modify Q.Window,

DelayQueue.enqueue(Q, R1)

15 else
16 if Q′ can be answered by Q then
17 ActiveQueue.dequeue(Q′, R′

1)
18 InjectQueue.enqueue(Q, R1)

19 if Q is not in DelayQueue or InjectQueue then
20 InjectQueue.enqueue(Q, R1)

21 for each Q in InjectQueue do
22 for each Q′ 6= Q in InjectQueue do
23 if Q is a hidden query caused by Q′ then
24 InjectQueue.dequeue(Q, R1)

25 if Q can be (partially) answered by Q′ then
26 modify Q.Window

27 for each Q in InjectQueue do
28 delete all hidden queries in DelayQueue caused by

Q
29 if Q.ts > tCurrent then
30 DelayQueue.enqueue(Q, R1)

31 else
32 Inject Q and R1 into the network
33 ActiveQueue.enqueue(Q, R1)

34 InjectQueue.dequeue(Q, R1)

35 for each Q in DelayQueue do
36 delete all hidden queries in DelayQueue caused by

Q
37 modify Q.Window if it is delayed by some

query(s) in DelayQueue

end

the network at once if c < a, this would not affect
the fact that Q′’s answer is fully included in Q′′.

(b) If θ ∈ {>,≥} and c ≥ b, then Q′’s answer (within
the new window MW ′) is completely included in
Q′′’s answer. Similarly, the relationship between
Q and Q′′ does not affect either.

In all the above 3 cases, we call Q′ a hidden query. Once
we detect a hidden query, it is removed from the delayed
query list and need not to be injected into the network; part
of the Q′’s results will be handled by Q and the rest will be
handled by Q′′. For cases where two queries have exactly the
same join results for overlapping window (covered by rule
B3 and B5(c)), we delay the newly generated query since it
may become a hidden query resulting from later queries and
we can save one query dissemination.

Let us use another example to illustrate Rule C3. Assume
that R1 = {60} and the self-join predicate is “attj < atth”,
i.e., Q finds sensor readings larger than 60. Let R′

1 = {70},
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ts Active Delayed Remarks
1-4 ∅ ∅
5-6 q1 ∅ start q1 at ts = 5
7 q1 q2 delay q2, q2 = (60, 16, 17)

8-9 q3 ∅ stop q1, start q3 at ts = 8
remove hidden query q2

10-11 q3 q4 delay q4, q4 = (70, 19, 20)
12-13 q3 q4, q5 delay q5, q5 = (80, 21, 22)
14-18 q3 q6 delay q6, q6 = (60, 19, 24),

remove hidden query q4, q5
19-24 q6 ∅ start q6 at ts = 19

Table 1: Example of window query triggering.

i.e., query Q′ asks for data larger than 70. In this case, due
to Rule B, Q′ is delayed to trigger till when Q ends. Assume
now that phase one creates R′′

1 = {40}, triggering query Q′′

that asks for readings larger than 40 as shown in Figure 4.
According to rule C, Q′ is a hidden query and need not to
be injected into the sensor network.

Based on above rules, we develop Algorithm 2 for the
base station to handle continuous monitoring in sensor net-
works(we show only phase two). The input of the algorithm
is a stream of new queries continuously generated from re-
sult tuples of phase one by applying rule A. The output of
the algorithm is a stream of window queries (along with the
result tables to be used) that will be injected into the net-
work for execution. The basic idea of the algorithm is that
we try to delay issuing a new query as far as possible. In
Algorithm 2, ActiveQueue stores queries that are currently
running while queries in DelayQueue are those delayed by
others. NewqueryQueue stores queries that will be checked
in the current time clock to decide whether to inject into
the network or not. Queries in InjectQueue are candidates
that may be injected into the network.

Let us use an example to illustrate how the algorithm
works. We consider join predicate attj < atth and the
window size is defined as 10 sampling intervals. Each new
query q is described by (v, ts, te) where ts (te) is the start
(end) timestamp of q’s window and q’s phase one result ta-
ble is R1 = {v}. The join predicate of q may be rewrit-
ten as v < atth. Let’s consider a series of new queries
{q1, q2, q3, q4, q5, q6}, which q1 = (50, 5, 15), q2 = (60, 7, 17),
q3 = (40, 8, 18), q4 = (70, 10, 20), q5 = (80, 12, 22) and
q6 = (60, 14, 24). The process of handling these 6 queries
are illustrated in Table 1, where ts is timestamp, Active
indicates queries that are executed currently and Delayed
shows delayed queries. At ts = 12 when q5 is formed, it is
delayed not only by the active query q3 but also delayed by
q4, and therefore the start time of its window becomes 21.
At ts = 14 when q6 is formed, although it is delayed by q3,
it forces q4 and q5 to become hidden queries. In all, only
three queries out of six are propagated into the network,
which illustrates that our algorithm helps saving up to 50%
in query transmissions in this example.

When the self-joins whose join predicate is of the type
attj θ atth where θ ∈ {<, >,≤,≥}, we can get the following
interesting results for Algorithm 2:

Lemma 1. Consider a self-join query with join predicate
involving {<, >,≤,≥}. For any two phase two queries Q
and Q′ with overlapping windows, either Q is (partially) an-
swered by Q′ or Q′ is (partially) answered by Q.

Lemma 2. Consider a self-join query with join predicate
involving {<, >,≤,≥}. For each time clock, there is at most

one active phase two query running in the network, which
cannot be (partially) answered by any other query with a
overlapping window.

Theorem 1. Consider a self-join query with join join
predicate involving {<, >,≤,≥}. The number of phase two
queries injected by Algorithm 2 is minimal.

Due to lack of space, we omit the proof of Theorem 1.
Since the two lemmas hold, Algorithm 2 will not issue any
unnecessary queries into the network.

For self-joins with predicate involving {=, 6=}, the above
two lemmas do not hold. Assume the operator is = and
there are three queries Q, Q′ and Q′′ with corresponding
phase one result tables R1 = {2, 3}, R′

1 = {4, 5} and R′′
1 =

{2, 3, 4}. Both Q and Q′ are active queries and Q′′ is the
subsequent execution of the same self-join. Because R′′

1 *
R1 and R′′

1 * R′
1, according to Algorithm 2, Q′′ will be

injected into the network. However, R′′
1 ⊂ R1∪R′

1 and Q′′’s
answer during overlapping window will be included in the
union of the results of Q and Q′. Therefore, Q′′ does not
need to be injected into the network. A direct improvement
to Algorithm 2 is to calculate the union of result tables of
all active queries for each overlapping window. At each time
cycle, when a new query comes, the result table is compared
with the union. Similar operations as in rules B and C could
be applied.

Processing on Phase One Result Table
When the window self-join of phase two involves join pred-

icates with {=, 6=}, the entire phase one result table needs
to be disseminated into the network. This may incur high
transmission cost especially when the size of the result table
is not trivial. A possible solution is to express the result
table in a compressed way while maintain all the important
information. When the range of the values of the result table
is known, we may use a bitmap to represent a result table,
i.e., if a belongs to the result table, the a’s bit is set to 1.
Using bitmap also eases the comparison among result tables.
Whether one result table is a subset of the other can now
be easily known by XORing their bitmaps and comparing it
to 0.

It is expected that fewer phase two queries are activated
in the network by continuous TPSJ, therefore saving query
transmission cost as well as query execution cost at the sen-
sor nodes, resulting in power savings. The algorithm also
stores fewer queries locally, saving storage at the sensor
nodes, which is a limited source for such a small device.
Moreover, our algorithm also simplifies the work at sensor
nodes. Each sensor maintains a table storing active queries.
When a new query arrives, it is evaluated over historical
data. Tuples that satisfy the join predicate and window
predicate are transmitted to the base station. New tuples
will be evaluated over all active queries. A tuple is sent out
once though it may satisfy several active queries.

6. EXPERIMENTS
We have implemented and evaluated our TPSJ scheme

using our own simulator. The size and shape of the network
topology are varied in our experiments. We simulate four
configurations of sensor network sizes, with the sensor nodes
organized in a 2 × 2, 4 × 4, 6 × 6 and 8 × 8 grid3. The

3
Experiments on larger grids with different density have shown con-

sistent results as discussed in this section.
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Figure 5: Query transmissions
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Figure 6: Result transmissions
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Figure 7: Total transmissions

spacing between each row and column of nodes is set at 20
feet. The transmission radius is set at 50 feet. We adopt
similar routing tree construction method as in TinyDB. In
the routing tree, each node directly points to its parent, to
which its sensor data are sent. The user queries we consider
are of the following form:
Sample User Query :
Select S1.nodeid, S1.A, S1.B, S2.nodeid, S2.B

From Sensor As S1, Sensor As S2

Where S1.A < δ

And S2.B opt S1.B

And Window(S1.ts, S2.ts, D)

where opt ∈ {<, >,≤,≥, =, 6=}. Queries are propagated into
the network from the root node along the routing tree by
broadcasting to its child nodes. Each node will receive the
query from its parent node and rebroadcast it to all its chil-
dren.

Besides TPSJ, we have implemented two other methods.
One is the centralized method we discussed in Section 1,
where all sensor readings are transmitted back to the base
station for query evaluation (referred to as BASE in the re-
mainder). The other method is flooding. In this method,
each sensor node broadcasts its readings satisfying the se-
lection predicate throughout the network. Self-joins are per-
formed locally at each node by evaluating local readings over
those from other nodes. This method requires each node to
store readings received from other nodes. Flooding works
similarly as TPSJ as both methods use the results of the
selection query to filter future readings. The only difference
lies in that the results of the selection query are not trans-
mitted back to the base station for possible processing in
flooding. For each method, we also implement two versions.
One is with aggregation, in which multiple data transmis-
sions arriving at the same node may be aggregated before
sending. The other is without aggregation. Note that the
packet size for one radio transmission is fixed. Therefore,
data larger than one packet cannot be aggregated and will
be transmitted in multiple transmissions.

Our simulator also handles node failures. In our imple-
mentation, each node periodically broadcasts one message
to all of its neighbors to inform them that it is active. Each
node maintains a neighbor table, recording the number of
messages that it has received from that node and the num-
ber of hops that node is away from the root. If one node
fails to hear from its parent for some time, it will choose a
new parent node from its neighbor table based on the his-
torical information about transmission quality and distance
from the root.

In the following experiments, we examine the performance
of both TPSJ and Continuous TPSJ.

6.1 Experiments for TPSJ
The first set of experiments examines TPSJ for one win-

dow. The key performance metric we use is power savings.
We use the number of radio transmissions as an approxima-
tion of power savings [1]. We first consider user queries with
opt equal to ‘<’4.

6.1.1 Network Topology
This experiment tests the effect of network topology and

the total number of sensors on the number of transmissions.
We measure the number of transmissions in-network and
identify two cost categories. One is the cost for query prop-
agation, the other is cost of result transmissions. We set the
window size as 10 sampling intervals and the selection and
self-join selectivity as 0.4 and vary the underlying network
topology among 2 × 2, 4 × 4, 6 × 6 and 8 × 8 grids. Note
that the selectivity of the selection predicate is to limit the
amount of tuples that need to be flooded in the network by
flooding.

First, we compare the number of query transmissions in-
curred by our TPSJ scheme with that of BASE and flooding.
Figure 5 shows that the number of query transmissions in-
creases as the size of the grid increases. This is expected as
more transmissions are needed to make the query reach more
nodes at deeper depth as the grid size increases. Because
TPSJ incurs two-phase query processing, more information
need to be sent into the network than the other two meth-
ods (as shown in Figure 5). Since each time only one query
is propagated into the network along the routing tree, no
aggregation is applicable here.

Figure 6 shows the number of result transmissions for each
method. All methods perform better after aggregation is
applied, as results are aggregated as much as possible when
their routes to the same destination nodes converge in the
routing tree. When the grid size is small, flooding performs
better than BASE. However, flooding performs worse than
BASE without aggregation in the 8x8 grid. This is because,
in flooding, although self-joins are performed locally and less
results are transmitted back to the base station as TPSJ, the
cost for flooding local readings to others dominates under
such a small window. Among the three methods, TPSJ per-
forms best both with aggregation and without aggregation.
The reason is twofold. TPSJ filters out many irrelevant tu-
ples especially in phase two. Although flooding could achieve
similar filtering results, the cost of flooding the results sat-
isfying the selection predicate in-network is too high.

The total number of transmissions is depicted in Figure 7.
Although TPSJ incurs some extra cost in sending more in-
formation into the network for filtering, its overall total num-

4
Similar results could be achieved for opt ∈ {>,≤,≥}.
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Figure 8: Total transmissions with
different window size
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Figure 9: Total transmissions with
different self-join selectivity
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Figure 10: Transmissions for result
table dissemination
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Figure 11: Savings with different
window size
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Figure 12: Savings with different
probability
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Figure 13: Query transmissions in
continuous monitoring

ber of transmissions is much less than that of the other two
methods. Even though the time window of 10 sampling in-
tervals is quite small, the decrease in the total number of
transmissions is obvious. The total number of transmis-
sions in TPSJ is more than 50% less than that of BASE and
flooding without aggregation and 30% less after aggregation
is applied in the 8x8 grid. As shown in this experiment, the
three methods without aggregation perform worse than their
corresponding counterpart with aggregation. So, for the fol-
lowing two experiments, we shall restrict our discussion to
the aggregation-based methods.

6.1.2 Window Size
Next, we examine the effect of window size on the total

number of transmissions used in the three methods. In this
experiment, the network topology is set as an 8 × 8 grid.
The selection and join selectivity is set to 0.4. We vary the
window size from 10 to 50 sampling intervals. The results
are shown in Figure 8. As the window size increases, the
total number of transmissions also increases. The difference
between the number of transmissions sent in TPSJ and in
BASE also increases as the window size becomes larger. This
is because, as the window size increases, more result tuples
will be filtered out by TPSJ, and thus reducing the amount
of transmissions in the network. However, the difference
between TPSJ and flooding does not increase with larger
window size and remains almost the same. This is because
in the one window case, the cost of flooding results satisfying
the selection predicate is counted only once.

6.1.3 Self-Join Selectivity
In the above experiments, the join selectivity is fixed. In

this experiment, we examine how well TPSJ works under
different join selectivity. We use a window size of 30 sam-
pling intervals, because a larger window size will guarantee
that there are results even if the selectivity is very low. The
network topology is again an 8 × 8 grid. The selection se-
lectivity is 0.4, while the self-join selectivity is varied from 0

to 1. We measure the total number of transmissions of the
three methods. As Figure 9 shows as expected, the total
number of transmissions incurred by TPSJ and flooding in-
creases with higher selectivity. On the other hand, the num-
ber of transmissions in BASE could be viewed as constant
as it simply transmits all tuples back to the base station,
and thus is not affected by the selectivity. Even with high
selectivity, TPSJ generally outperforms BASE by incur less
transmissions. When the selectivity reaches 1, TPSJ works
just like BASE by sending back all the tuples during phase
two. However, this only tests TPSJ at the limit as selec-
tivity as high as 1 is not practical and of less use for real
applications.

6.1.4 Result Table Dissemination
In the above experiments, the user query involved ‘<’ op-

erator in the self-join predicate. As such, only one tuple has
to be disseminated into the network during phase two. The
tuple could be contained in the query of phase two and will
thus incur no extra transmissions. However, when the op-
erator opt ∈ {=, 6=}, the whole result table of phase one has
to be disseminated into the network. In this section, we ex-
amine the cost of result table dissemination for one window
TPSJ in the 8x8 grid. We vary the selectivity of the selec-
tion query in phase one, which decides the approximate size
of the result table, namely, how many nodes of the total 64
nodes will contribute to the result table. We compare TPSJ
with flooding, which uses flooding to disseminate the infor-
mation of the results of phase one. For TPSJ, we measure
the number of transmissions used to collect results back in
phase one plus that for result table dissemination in phase
two. Aggregation is applied to both methods. For result ta-
ble dissemination in phase two of TPSJ, aggregation simply
defines at most how many result tuples could be sent in one
radio transmission.

The results are shown in Figure 10. When no aggrega-
tion is applied, the number of transmissions used in TPSJ
is slightly more than that of flooding. This is expected as
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Figure 14: Result transmissions in
continuous monitoring
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Figure 15: Total transmissions in
continuous monitoring
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Figure 16: Result table dissemina-
tion

0

0.05

0.1

0.15

0.2

0.25

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Probability

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

10 20 30 40 50 60 70 80 90 100

Window Size

Figure 17: Savings with different probability

in TPSJ, results of phase one have to be sent to the base
station before being disseminated into the network. When
aggregation is applied, fewer transmissions are used in TPSJ
than in flooding with higher selectivity. This is because ag-
gregation are less well utilized in flooding as two tuples may
be aggregated only when they meet each other at some inter-
mediate node while in TPSJ, the result table is disseminated
from the root, which will send the table in the most econom-
ical way. As selectivity increases, aggregation achieves much
more savings for both methods. From this experiment, we
note that if no encoding technique is applied to reduce the
cost of result table dissemination, TPSJ will incur similar
high data transmission as that of flooding.

6.2 Experiments for Continuous TPSJ
In this set of experiments, we examine the performance of

continuous TPSJ, especially the performance of Algorithm
2 for triggering window self-joins. We compare our trig-
gering algorithm with the naive method with only rule A
applied. The key performance metric is savings in query
transmissions. Assume n1 is the number of queries sent into
the network by the naive method and n2 is the number of
queries sent into the network by Continuous TPSJ. Savings
is defined as 1− n2/n1.

We first consider user queries where opt ∈ {<, >,≤,≥}.
Therefore the result table to be disseminated into the net-
work consists of only one tuple. The information of this
particular tuple is used to rewrite the window self-join query
of phase two. In the following experiments, we simulate the
generation of new window self-join queries using uniform dis-
tribution, i.e., at each time cycle a new query arrives with
equal probability. For each new window self-join described
as (v, ts, te), the value of v is randomly generated from range
[1, 100].

6.2.1 Window Size
First, we examine the effect of window size for self-join

upon the savings. We vary the window size from 5 to 100
sampling intervals. The arrival probability of new queries is
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Figure 18: Savings with different window size

0.1. We run the experiment for 10000 time cycles (1 time
cycle = 1 sampling interval). The results are shown in Fig-
ure 11. As we can see, the savings increases with larger
windows. When the window size reaches 40 sampling inter-
vals, more than half of the new queries are saved from being
injected and run in the network. This is easy to understand
as window size increases, more overlaps occur among con-
secutive queries and thus the probability increases that one
query may be partially or fully answered by another.

6.2.2 Arrival Probability
Next, we vary the arrival probability of new queries from

0.05 to 1 and plot the savings by continuous TPSJ for an
execution of 10000 time cycles. The window size is set as
20 sampling intervals. The results are shown in Figure 12.
We can see that the savings increases with higher probabil-
ity. When the arrival rate of new queries is 0.2, i.e., every
5 time cycles a new query comes, more than half of them
become hidden queries. When the arrival rate is high, e.g.,
1, which may become a very hard problem for naive method
as it has to issue new query into the network almost every
epoch, only 10% out of all are injected by continuous TPSJ.
An interesting conclusion we may come to is that although
more new queries are generated with higher arrival rate, the
actual number of queries that are disseminated into the net-
work does not increase much. This is because when arrival
probability gets higher, average number of queries over time
increases and thus the probability of query delay and hidden
queries also increases.

6.2.3 In-network Transmissions
In this set of experiments, we simulate the running and

evaluating of user queries by continuous TPSJ over a long
period of time, covering multiple windows. We measure the
number of transmissions used to disseminate queries and re-
sults respectively over different grids. The probability that
a new window self-join will be generated is 0.3. The selectiv-
ity for selection query is 0.4; while the self-join selectivity is
varied from 0.3 to 0.6 so that different window self-joins are
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generated. The window size is set as 30 sampling intervals.
We run the experiments for 500 time cycles and compare
continuous TPSJ (CONTPSJ here after) with BASE and
flooding. We assume that aggregation is applied to each
method5. Here we use TPSJ to represent the naive two-
phase self-join for continuous queries.

As expected, cost for query dissemination of BASE and
flooding could be neglected over such a long period; while
TPSJ incurs much more query transmissions than CON-
TPSJ (Figure 13). This is because for a period of 500 time
cycles, around 150 new queries are generated. TPSJ will
inject all these queries into the network while only 30 on av-
erage are injected by CONTPSJ. On the other hand, much
fewer transmissions are used by TPSJ and CONTPSJ to col-
lect results back to the base station (Figure 14). Although
the self-join selectivity is varied from 0.3 to 0.6, queries with
lower selectivity is more likely to be delayed by queries with
higher selectivity during overlapping windows and even be-
come hidden ones. Therefore, it is expected that for a large
amount of time over the whole period, nearly 60% nodes are
reporting back to the base station. CONTPSJ outperforms
under such high selectivity (Figure 15). Note that flooding
is not applicable in large grid.

We also compare the number of transmissions for dissem-
inating phase one results by flooding with that for dissemi-
nating new window queries by naive TPSJ and CONTPSJ.
From Figure 16 we could see that similar number of trans-
missions are used in small grid while much more transmis-
sions are used by flooding in larger grid. Therefore, although
flooding could also achieve in-network filtering by broadcast-
ing results of phase one, the cost is too high to be practical.

6.2.4 Result Table Processing in Continuous TPSJ
In this set of experiments, we study the performance of

continuous TPSJ for triggering window self-joins with result
tables. We consider user queries involving join operators of
{=, 6=}. In section 5, we have discuss how to improve Algo-
rithm 2 for join operator of {=, 6=}. We use CONTPSJ to
denote the original Algorithm 2 while CONTPSJ* with the
improvement applied and compare these two methods. The
range of the values in the result table is 30 and each result
table contains 1 to 10 values randomly chosen. Similarly, we
vary the arrival rate and the window size. The experiments
are run for 10000 time cycles. Assume CONTPSJ issues n1

window self-joins into the network while CONTPSJ* n2. We
calculate 1 − n2/n1 to show how much extent CONTPSJ*
performs better than CONTPSJ.

First, we fix the window size at 30 sampling intervals and
vary the arrival probability of new queries. The results are
shown in Figure 17. When the arrival rate is low, both
CONTPSJ* and CONTPSJ performs poorly. However, with
increasing arrival probability, CONTPSJ* performs better
than CONTPSJ and injects 20% less queries into the net-
work when the arrival rate is 0.9. Next, we fix the arrival
rate of new queries as 0.5 and vary the window size. From
Figure 18, we see that with increasing window size, the dif-
ference between CONTPSJ and CONTPSJ* also increases.
The reason why CONTPSJ* performs better is as follows.
For user queries involving = or 6= operators, the probability

5
If no aggregation is applied in continuous monitoring, flooding will

trigger too many transmissions for disseminating results of selection
query. It is expected that many collisions will happen in the network.
Therefore here we do not consider each method without aggregation.

for query delay or hidden queries decreases as the relation-
ship of containment between two result sets usually does
not hold. However, when the union of result sets of running
queries covers most of the interesting values, new coming
queries with overlapping windows are more likely to be de-
layed or become hidden.

7. CONCLUSIONS
In this paper, we have studied the problem of in-network

execution of monitoring queries for continuous event detec-
tion in sensor networks. We proposed a Two-Phase Self-
Join (TPSJ) technique that efficiently processes self-joins
in-network. Our experimental results show that TPSJ can
significantly reduce the data transmission cost in most cases.
We further extend TPSJ to handle continuous monitoring
and propose an algorithm for efficient window query trigger-
ing. Our method can also be applied to ordinary joins be-
sides self-join, which requires minor modifications to TPSJ.

In the future, we plan to extend this work in the following
directions. First, we want to extend our scheme to handle
longer series of tuples and more complicated predicates us-
ing a similar multi-phase query process, and at the same
time seek further performance enhancement. Furthermore,
we will integrate our method with multiple query optimiza-
tion techniques [15] to handle multiple join query processing
in sensor networks. These works will be carried out with the
goal of producing energy efficient algorithms or implemen-
tations.
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