
Computing Capabilities of MediatorsRamana Yerneni, Chen Li, Hector Garcia-Molina, Je�rey UllmanDepartment of Computer ScienceStanford Universityfyerneni,chenli,hector,ullmang@cs.stanford.eduAbstractExisting data-integration systems based on the media-tion architecture employ a variety of mechanisms to de-scribe the query-processing capabilities of sources. How-ever, these systems do not compute the capabilities ofthe mediators based on the capabilities of the sourcesthey integrate. In this paper, we propose a frameworkto capture a rich variety of query-processing capabil-ities of data sources and mediators. We present al-gorithms to compute the set of supported queries ofa mediator, based on the capability limitations of itssources. Our algorithms take into consideration a vari-ety of query-processing techniques employed by media-tors to enhance the set of supported queries.1 IntroductionMany data integration systems (e.g., [1, 2, 3, 4,6, 7]) use a mediation architecture [9] in whicha mediator provides users with seamless accessto information from heterogeneous sources. Inmediation systems, one often encounters sourceswith diverse and limited query capabilities.Contemporary mediator systems such as TSIM-MIS [5, 6], Garlic [7], Information Manifold [4]and DISCO [3, 8] perform capability-based queryprocessing. Sources express their capabilities inthese systems through a variety of mechanisms{ query templates, capability records, and simplecapability-description grammars. However, none ofthese systems computes the query-capabilities ofmediators based on the supported source queries.Not having the mediator capabilities readily avail-able makes it di�cult to treat mediators as sources

for other mediators. Furthermore, users have a dif-�cult time understanding the set of supported me-diator queries in these systems. Consequently, usersmust endure a frustrating trial-and-error approach,submitting queries that are rejected until �nally hit-ting upon a query that is answered by the mediator.In this paper, we present algorithms to precom-pute mediator capabilities automatically, so thatusers and other mediators know which queries aresupported. In addition, we extend the types ofsource limitations that can be handled by exist-ing mediation systems. For example, we handle at-tributes that can only be queried with values froma �xed menu of constants.The World Wide Web is a prime example of acontext where we need to handle many di�erenttypes of source limitations. On the Web, datasources typically publish their query-processingcapabilities through query forms. Users posequeries to data sources by �lling out query formsand submitting them to the sources. For instance,the Web bookstore Amazon.com (www.amazon.com)provides a query form that allows users to searchfor books by specifying any one of author, titleand subject attributes. Another Web bookstoreA1Books.com (www.a1books.com) does not allowsearch by the subject attribute alone, while itprovides search by the author or the title attribute.Mediators built on Web sources frequently in-dicate their sets of supported queries throughforms. For instance, the Junglee shopping guidefor books (compaq.junglee.com) mediates acrossmany Web bookstores including Amazon.com andA1Books.com. The Junglee mediator provides aquery form that allows search by the title or theauthor attribute.Computingmediator capabilities can be simple insome cases. For instance, the combined restrictionsof Amazon.com and A1Books.com indicate that theJunglee shopping guide can support queries thatsearch for books by specifying the author or the titleattribute. Queries specifying the subject attribute 1

alone are not feasible because A1Books.com doesnot answer this query.In many cases, the computation of mediatorcapabilities is more complicated due to the richvariety of source-capability limitations and thehost of techniques mediators employ in processingqueries. For instance, we show in Section 4 thatby using special techniques to postprocess theresults of queries on weaker data sources, mediatorscan support much larger sets of queries. Thus,the capabilities we compute for mediators can be\stronger" than those of the underlying sources.Another complication arises when we considermediator capabilities that depend on the contentsof sources. In such cases, a mediator may de�neits capabilities with a \lower bound" that speci�eswhich queries will always be answerable, and an\upper bound" indicating which queries will neverbe answerable. Queries \between" bounds maybe answerable, depending on the contents of thesources at run time. We refer to mediatorsthat handle upper and lower bounds as dynamicmediators. In Section 5, we discuss how dynamicmediators process queries and how their capabilitiescan be determined.Deriving mediator forms by hand is error-prone.Manual computation of mediator capabilities is alsoexpensive, since each time a source changes itscapabilities, we may have to update the mediatorcapabilities. We need to develop algorithms tocompute mediator capabilities automatically.In this paper, we make the following speci�ccontributions:� Framework: We develop a framework for de-scribing the restrictions on attribute speci�ca-tions commonly found on the Web and in otherheterogeneous data-integration contexts.� Algorithms: We present algorithms for comput-ing the query capabilities of mediators based onthe capabilities of the sources they mediate.� Concise Description: We provide strategiesto condense the capability description of amediator and enable e�cient query-feasibilitydetermination for users and other mediatorsthat employ this mediator as a source.� Advanced Techniques: We discuss advancedtechniques that could be used by dynamicmediators to process queries beyond those thatare feasible in conventional mediators.2 FrameworkIn this section, we present our framework fordescribing the query capabilities of data sources

and mediators. In our framework, each data sourceexports a set of relational views.1 Conceptually,a query to a source is submitted by �lling out aform on one of the views exported by the source.The query speci�es values for some attributes ofthe view, and the result of executing the query is aset of tuples of the source view on which the queryis posed. The following example illustrates a sourceview and answering queries on that view.EXAMPLE 2.1 Consider a source that exports aview R(X;Y; Z). Let the set of tuples in source viewR be f(x1; y1; z1); (x1; y2; z1); (x2; y2; z2)g. QueryR(X;Y; z1) results in f(x1; y1; z1); (x1; y2; z1)g, whilequery R(X; y1; Z) returns one tuple: (x1; y1; z1). 22.1 Mediator ViewsA mediator integrates data from multiple sourcesand exports a set of integrated views. Each in-tegrated view is de�ned in terms of source viewsand/or other integrated views. The set of oper-ations used to de�ne integrated views are union,join, selection and projection. We do not allow re-cursive views, so the mediator-view de�nitions forma directed acyclic graph (DAG). Since we allow theuse of integrated views to de�ne other integratedviews, we can assume without loss of generality thateach de�nition of a mediator view uses only one op-erator { union, join, selection or projection.EXAMPLE 2.2 Consider a mediator with �vedata sources. Let the respective source views beR1(X;Y; Z), R2(X;Y; Z), R3(X;Y; Z), R4(Z;U),and R5(U; V;W). Let the mediator de�ne thefollowing two views: M1(X;Y; Z) is the union ofR1, R2 and R3; M2(X;Y; Z; U; V;W) is the join ofM1(X;Y; Z), R4 and R5. Users can pose querieson the views of a mediator in a manner similar tosubmitting queries on source views. For instance,one can specify M2(x1; Y; Z; U; V; w1) as a query tothe mediator. 22.2 Attribute AdornmentsThe query capabilities of a data source are ex-pressed as a set of templates supported by thesource. A template, like a form on the Web, iden-ti�es the various attributes of a source view thatcan be speci�ed in a query submitted on the view.Restrictions on attribute speci�cation are also indi-cated by templates (e.g., if an attribute value has1We use the relational framework for simplicity of expo-sition. We believe that all the main ideas presented in thispaper carry over seamlessly to other data models like OEM[6] and XML (www.w3.org/TR/REC-xml). In fact, our interestin computing mediator capabilities is based on our work inthe TSIMMIS project, which uses the OEM data model. 2

to be chosen from a menu of choices). We use at-tribute adornments to specify how the attributes ofa view can participate in supported queries.Based on our study of query forms for a varietyof Web data sources, we consider the following �vekinds of attribute adornments:1. adornment f (for free): the attribute may or maynot be speci�ed in the query;2. adornment u (for unspeci�able): the attributecannot be speci�ed in the query;3. adornment b (for bound): the attribute must bespeci�ed in the query;4. adornment c[s] (for constant): the attributemust be speci�ed, and in addition, it must bechosen from the set of constants s;5. adornment o[s] (for optional): the attributemay or may not be speci�ed in the query, andif speci�ed, it must be chosen from the set ofconstants s.Each template speci�es an adornment for eachattribute of a view. In the case of the c and oadornments, the menus of constants allowed arealso speci�ed by the templates. The followingexample illustrates how templates with attributeadornments are used to express query capabilities.EXAMPLE 2.3 Consider the source of Exam-ple 2.1 that exports the single view R(X;Y; Z). Letthe source support a set of queries on this view thatspecify some value for X and no value for Y . Inaddition, let these queries optionally specify somevalue for Z. A template that expresses these querycapabilities is buf. This template is similar to a Webform in which only the X and the Z �elds appear,with the annotation that the X �eld must be spec-i�ed when submitting the form.Suppose the source also supports another set ofqueries in which X cannot be speci�ed, Y can bespeci�ed optionally while Z must be speci�ed andmust be chosen from fz1; z2g. These query capabil-ities are expressed by the template ufc[z1; z2].Based on the two templates, one can easilydetermine whether a given query on the sourceview is answerable or not. For instance, queryR(x1; Y; Z) is answerable because it satis�es the�rst template, while query R(X;Y; z1) is answerablebecause it satis�es the second template. QueriesR(X; y1; Z) and R(X;Y; z3) do not satisfy eithertemplate. So, they are not answerable. 2We use the same mechanismof adorned templatesto describe mediator capabilities. That is, the

capabilities of a mediator are expressed as a set oftemplates on the views exported by the mediator.In this paper, we study the process of computing thetemplates of mediator views based on the templatesof source views.3 Templates for Simple MediatorsThe set of answerable queries of a mediator isa�ected by the techniques used by the mediator inprocessing the queries posed to it. In this section,we start by considering the following simple queryprocessing scheme: When a query is submitted, themediator translates this query into a set of relevantsource queries by transferring the query bindings;subsequently, the mediator combines the resultsof the source queries, based on the operations(union, join, selection, projection) appearing in thede�nition of the mediator view on which the queryis submitted. In particular, simple mediators:� do not perform any postprocessing other thanthat indicated in the view de�nitions;� perform join operations locally, i.e., they do notpass bindings from one join operand to another.The simple query-processing scheme we describedabove is likely to be supported by most mediators,so we choose it for our base case. We callmediators employing this query-processing schemesimple mediators. In Section 4, we discuss howmediators can employ additional postprocessingtechniques and join methods to enhance their setsof answerable queries.3.1 Union ViewsWe start by computing the set of templates for aunion view. We present this computation in threesteps. The �rst step deals with the simple case ofa union view that has two base views, with eachbase view having exactly one template. Next, weshow how to compute the set of templates withtwo base views, but with each base view having anarbitrary number of templates. Then, we describethe computation for a union view with an arbitrarynumber of base views, each having an arbitrarynumber of templates.Union of Two Single-TemplateBase Views.For each attribute, we compute its adornment inthe union-view template based on its adornmentsin the two base-view templates.2 This computationis based on the mapping function presented in2We assume here that both base views have the sameset of attributes. In Section 6, we discuss the templatecomputation for union views over base views that havedi�erent schemas. 3

f o[s3] b c[s4] uf f o[s3] b c[s4] uo[s1] o[s1] o[s1 \ s3] c[s1] c[s1 \ s4] ub b c[s3] b c[s4] -c[s2] c[s2] c[s2 \ s3] c[s2] c[s2 \ s4] -u u u - - uTable 1: Composition of AdornmentsTable 1. Given the two adornments of an attributein the two base-view templates, the table indicatesthe adornment of the attribute in the union-viewtemplate. For example, the entry in the tablefor the combination of f and b is b because the badornment in one of the base-view templates forcesthe mediator to require that the attribute must bespeci�ed in the union-view query. Note that themapping function of Table 1 is symmetric.When the adornments of an attribute in the base-view templates involve menus of constants, we needto compute the resulting menu of constants. Asindicated in Table 1, when only one of the base-view templates has a menu (with adornment o or c),this menu is copied over to the union-view template.When both the base-view templates have menus, weintersect the two menus.In some cases, the base-view adornments of anattribute cannot be combined to arrive at a validunion-view adornment. Such cases are indicated by\-" in Table 1. For instance, consider the case ofone base view having the b adornment and the otherhaving the u adornment. No valid adornment canbe computed in this case because the b adornmentof the �rst base view forces the mediator to requirethat the attribute must be speci�ed, while the uadornment of the other base view prevents themediator from allowing the attribute to be speci�edin the union-view query.3 Although not shownexplicitly in Table 1, an attribute may also endup with an invalid adornment when computing itsmenu of constants by intersecting its menus fromthe base-view templates. In particular, the c[s]entries in Table 1 are replaced by \-" when s isempty. Note that the o[s] entry should be replacedby u when s is empty.During the computation of the union-view tem-plate, if any attribute is determined to have theinvalid adornment, we declare that no union-viewtemplate can be computed from the two base-viewtemplates.Union of Two Base Views with Multiple3Recall that we are dealing with simple mediators in thissection. In the next section, we will see how mediators usepostprocessing techniques to arrive at a valid adornment ofb when the base-view adornments are b and u.

Templates. For each pair in the cross product ofthe template sets of the two base views, we computea template for the union view based on the processdescribed above. As noted earlier, in some casesno union-view template can result from a pair ofbase-view templates. Accordingly, the number oftemplates for a union view over two base viewswith template sets T1 and T2 varies from zero tojT1j � jT2j.Union of Multiple Base Views with Mul-tiple Templates. We compute the templates ofthe union view by considering two base views at atime. That is, if the union view has n base views,we invoke the method of computing templates for aunion view with two base views (n�1) times. Notethat the associativity and symmetry of the mappingfunction presented in Table 1 allow us to carry outthe computation in this simple manner.EXAMPLE 3.1 Let a mediator view M be de-�ned as the union of three source views R1(X;Y; Z),R2(X;Y; Z) and R3(X;Y; Z). Let R1 have two tem-plates: b� and �b, let R2 have the single templatefbf, and let R3 have two templates: �c[s1] andc[s2]�.When computing the templates of R1 [R2, weconsider two combinations of base-view templates:b� for R1 and fbf for R2; �b for R1 and fbf forR2. Based on the �rst combination, we computethe template bbf, and the second combination yieldsthe template fbb.Now, for (R1 [R2) [R3, four combinations oftemplates are considered and they result in thefollowing four templates for M : bbc[s1], fbc[s1],c[s2]bf and c[s2]bb. Notice that it may be possibleto \collapse" this set of templates into a smaller setthat still captures the same capability information.For instance, we can eliminate two of the fourtemplates for M and keep only two templates:fbc[s1] and c[s2]bf. In Section 3.4 we discuss howtemplate sets can be reduced to arrive at concisecapability description. 23.2 Join ViewsAs noted earlier, a simple mediator processes aquery on a join view by �rst transferring the querybindings to the base views, and then joining theresults of the base-view queries. Since the join-viewquery processing is similar to the union-view queryprocessing, the computation of templates for joinviews is similar to that of union-view templates.However, unlike in the case of a union view, theattributes of a join view may not appear in all ofits base views. So, the computation of attributeadornments in a join-view template is slightlydi�erent from that in a union-view template. 4

Join of Two Single-Template Base Views.For all nonjoin attributes, we copy over theiradornments from the base-view templates (eachnonjoin attribute appears in exactly one of the baseviews). For each join attribute, the adornmentcomputation employs the same mapping function(see Table 1) that is used when computing union-view templates.Join of Two Base Views with MultipleTemplates. As in the union case, for each pair inthe cross product of the sets of base-view templates,we compute a join-view template.Join of Multiple Base Views with MultipleTemplates. Once again, as in the union case,we consider two base views at a time. If the joinview has n base views, we invoke the method ofcomputing templates for a join view with two baseviews (n� 1) times.3.3 Selection and Projection ViewsWhen processing a query on a selection view,the mediator copies it over into a query on theunderlying base view and applies the selectionpredicate on the results of the base-view query.Therefore, the set of base-view templates are simplycopied over as the set of selection-view templates.A query on a projection view is translated into aquery on the underlying base view by simply leavingthe hidden attributes (those that are in the baseview but not in the projection view) unspeci�ed. Ifany of the hidden attributes has a b or c adornmentin a base-view template, the translated query doesnot match this base-view template. Therefore,we only create a template for the projection viewwhenever the base-view template has the f, o or uadornments for the hidden attributes. The createdprojection-view template simply copies over theadornments for each of the projected attributesfrom the base-view template.3.4 Concise Capability DescriptionThe number of templates computed for mediatorviews can be very large. For instance, in the caseof a mediator view that is a union of n sourceviews with k templates each, we can end up with asmany as kn templates. A large number of templatesmakes it di�cult to ascertain whether a given queryis answerable. A user or another mediator tryingto �gure out if a candidate query should be posedto a mediator would like a succinct speci�cation ofthe mediator query capabilities. Fortunately, wemay be able to reduce the size of the capabilitydescription signi�cantly, based on the concept ofeliminating redundant templates. Informally, atemplate in a set is redundant if every query allowed

by it is also allowed by at least one other templatein the set. A complete discussion of the problemof identifying redundant templates and eliminatingthem is beyond the scope of this paper. Here, webrie
y describe a simple technique that helps useliminate redundant templates.
c

o

u

b

f

Figure 1: The Adornment GraphFirst, we develop the notion of comparing the re-strictiveness of two attribute adornments. The rela-tive restrictiveness of the various kinds of attributeadornments is captured by the graph of Figure 1.The set of nodes in the graph are the �ve adorn-ments: f, o, b, c and u. A solid arc in the graphfrom node n1 to node n2 represents the fact thatthe adornment of n1 is at least as restrictive asthat of n2. Broken arcs originate and terminatewith adornments that have constant sets associatedwith them (i.e., c and o adornments). A broken arcfrom node n1 to node n2 represents the fact thatthe adornment of n1 is at least as restrictive as theadornment of n2 if the constant set associated withthe former is a subset of the constant set associatedwith the latter. For instance, c[s1] is at least asrestrictive as o[s2] if s1 is a subset of s2.Note that the adornment-restrictiveness relation-ship represented by Figure 1 is transitive. For in-stance, c is at least as restrictive as f because it isat least as restrictive as b, which in turn is at leastas restrictive as f. Based on the relative restric-tiveness of adornments discussed above, we specifythe following simple test for identifying redundanttemplates in a set.Subsumption Test: A template T is subsumedby another template T 0 if for every attribute X theadornment of X in T is at least as restrictive as theadornment of X in T 0 (based on Figure 1).As illustrated in the following example, weuse the Subsumption Test to identify redundanttemplates in a set of templates (those subsumed byother templates in the set). 5

EXAMPLE 3.2 Suppose a view has the followingset of templates: fbff; fbf; ffb; c[s1]fb; ubo[s2]g.Based on the Subsumption Test de�ned above, wededuce that c[s1]fb is subsumed by b�, and ubo[s2]is subsumed by fbf. Thus, the given set of �vetemplates can be reduced to fbff; fbf; ffbg. 23.5 Summary RemarksOur algorithm for computing mediator templateshas time complexity that is exponential in the inputsize (the number of source-view templates and thesize of the mediator-view de�nitions). However, theexponential time complexity is not an importantconcern because all this computation is performed\o�ine," when the mediator is formed on a set ofsources (not when a query is being processed).We have presented the machinery to compute thetemplates of a single mediator view starting fromthe templates of its base views. We can extend thismachinery in a straightforward manner to computethe templates of all the views in a mediator viewDAG by considering them in topological order.4 Advanced Query-ProcessingTechniques in MediatorsIn this section, we consider some techniques em-ployed by mediators to support more queries thanthose supported by the simple mediators of the pre-vious section. We start by presenting examples thatillustrate two important techniques used by media-tors, postprocessing and passing bindings, and howthey impact template computation.EXAMPLE 4.1 Let M be a mediator view de-�ned as the union of two source views R1(X;Y; Z)and R2(X;Y; Z). Suppose R1 has the template bfu,and R2 has the template buf. In the case of a sim-ple mediator, we compute the single template buufor M . Based on this template, M (x1; Y; Z) is afeasible query, while M (x1; y1; z1) is not.If the mediator can postprocess the results ofqueries on the underlying views, then it can supportmore queries. For instance, it can support thequery M (x1; y1; z1) by �rst invoking the feasiblequeries R1(x1; y1; Z) and R2(x1; Y; z1), and then�ltering the results of these queries with respectto the conditions on the Y and the Z attributes.In particular, it can apply the condition (Z = z1)on the result of R1(x1; y1; Z) and the condition(Y = y1) on the result of R2(x1; Y; z1). The unionof the postprocessed results of source queries givesthe answer to the query M (x1; y1; z1). Thus, theability of the mediator to postprocess the results ofunderlying queries can enhance the set of feasiblequeries supported by the mediator. 2

f o[s3] b c[s4] uf f f b c[s4] fo[s1] f f b c[s4] fb b b b c[s4] bc[s2] c[s2] c[s2] c[s2] c[s2 \ s4] c[s2]u f f b c[s4] fTable 2: Union with PostprocessingEXAMPLE 4.2 Let a mediator view M be thejoin of two source views R1(X;Y; Z) andR2(Z;U; V).Suppose R1 has the single template bfb, and R2 hasthe single template fub. In the case of a simplemediator, M has the single template bfbub. For in-stance, M (x1; Y; z1; U; v1) is a feasible query whileM (x1; y1; Z; U; v1) is not.If the mediator can perform join operations bypassing bindings from one join operand to the next(i.e., it can perform bind joins [11]), the queryM (x1; y1; Z; U; v1) can be answered. The mediatorcan �rst execute the query R2(Z;U; v1) and passbindings for the Z attribute. For each value of Z,say zi, in the result of R2(Z;U; v1), the mediatorcan invoke the query R1(x1; y1; zi). The answerto the query on M is obtained from the resultsof all these R1 queries and the R2 query. Thus,the ability to perform join operations by passingbindings enhances the set of queries a mediator cansupport. 24.1 Union ViewsAs before, the computation of union-view templatescan be described in three steps. In fact, the onlydi�erence between this computation and the one inSection 3.1 is in the �rst step, where we computethe template of a union view de�ned over two baseviews, each with a single template.Union of Two Single-TemplateBase Views.Using the same notation as before, we de�ne anew mapping function for the computation of anattribute's adornment in the union-view templatefrom the attribute's adornments in the two base-view templates. The new mapping function isshown in Table 2.The essential di�erence between the mappingfunction of Table 2 and the mapping function usedin Section 3.1 is in the treatment of the u andthe o adornments. When a base-view adornmentis u, the mediator can invoke a query on thisview without specifying a value for this attributeand then optionally support a value speci�ed bythe union-view query for this attribute in thepostprocessing step. Therefore, the u adornmentis treated the same way as the f adornment. In asimilar way, when a base-view template has the oadornment for an attribute, and a value speci�ed 6

f o[s3] b c[s4] uf f f f c[s4] fo[s1] f f f c[s4] fb b b b c[s4] bc[s2] c[s2] c[s2] c[s2] c[s2 \ s4] c[s2]u f f f c[s4] fTable 3: Join by Passing Bindingsby the union-view query for this attribute is notone of the menu constants associated with the oadornment, the mediator can execute a query onthe base view without specifying any value for thisattribute and check for the value given by the union-view query in the postprocessing step. Thus, o isalso treated as f.4.2 Join ViewsWhen processing a query on a join view over a setof base views, since the attribute values returnedfrom one base-view query can be used to satisfy thebinding requirements of the subsequent base-viewqueries, the order in which the base-view queries areconsidered is important. Accordingly, the templatecomputation for join views is presented in foursteps. The �rst step considers a join sequence oftwo base views, each with one template. Thenwe deal with a join sequence of two base views,each with an arbitrary number of templates. Nextwe handle a join sequence of an arbitrary numberof base views, each with an arbitrary number oftemplates. Finally, in the fourth step, we computethe templates of a join view by considering all thesequences of its base views.Join Sequence of Two Single-TemplateBase Views. As before, for all nonjoin attributeswe copy over their adornments from the base-viewtemplates. The mapping function for computingthe adornment of a join attribute is presented inTable 3. The adornment of the �rst base-view islisted on the left and the adornment of the secondbase-view is listed on the top of the table. Becausethe mediator can perform joins by passing bindings,the case of a b adornment for the second base view issimilar to the case of an f adornment. The mediatorpasses the required binding for the second base viewfrom the result of the query on the �rst base view.Join Sequence of Two Base Views withMultiple Templates. As in the union case,we repeatedly invoke the method that handlessingle-template base views and compute the set oftemplates of the join sequence. That is, for eachcombination of base-view templates, we obtain atemplate for the join sequence.Join Sequence of Multiple Base Views withMultiple Templates. We associate left-to-right

the base views in the join sequence (note thatTable 3 is associative, but not symmetric). Thatis, if the join sequence has n base views, we call themethod of computing templates for a join sequenceof two base views (n� 1) times.Join View of Multiple Base Views withMultiple Templates. We consider all the possiblesequences of the base views, and for each sequence,we invoke the above method to compute a set oftemplates. For a join view with n base views, wecall this method n! times. We take the union of then! resulting sets of templates to arrive at the set oftemplates for the join view.EXAMPLE 4.3 Let a mediator view M be de-�ned as the join of three base views R1(X;Y; Z),R2(Z;U; V) and R3(V;W). Let R1 have two tem-plates: fbf and bfb, let R2 have two templates: bfband fbf, and let R3 have the single template fb.We consider a total of six sequences. Forthe sequence hR1; R2; R3i, we end up with fourtemplates: fb�bb, fbfbfb, bfbfbb and bfbbfb. For thesequence hR3; R2; R1i, the templates are: fbb�b,fbfbfb, bfb�b and b�bfb. Continuing in this manner,we can compute another four sets of four templateseach, based on the remaining four sequences. Theunion of these six sets of templates yields a setof 24 templates for M . After minimizing this setof templates, we end up with the following threetemplates for M : fb�fb, bfb�b, b�bfb.Without the ability to perform joins by passingbindings, the set of templates for the mediatorview M would be limited to: fbbfbb, fbfbfb, bfbfbband bfbbfb. Notice that these four templates aremore restrictive than the three we obtained for amediator that passes bindings. In particular, theset of queries covered by the three templates of Mprovided by the mediator through bind joins is astrict superset of the set of queries covered by thefour templates obtained through local joins. Forinstance, the query M (X; y1; Z; U; v1; w1) is feasibleonly if the mediator passes bindings. 24.3 Selection and Projection ViewsFor selection views, the template computation isquite di�erent from that of Section 3.3. We dogenerate a selection-view template correspondingto each base-view template. However, we do notsimply copy over the adornments from the base-view templates to the selection-view templates.EXAMPLE 4.4 Let M be a selection view withR(X;Y; Z) as its base view and (X < x1) asthe selection condition. Let R have a templatebfu. According to the template computation inSection 3.3, M will have the bfu template. 7

The bfu template of M does not allow a querylike M (x2; Y; z1). However, the mediator can makeuse of its postprocessing abilities to support such aquery. Given M (x2; Y; z1), the mediator can �rstprocess the feasible base-view query R(x2; y1; Z)and then �lter the results of this query with thecondition (Z = z1). Therefore, M can have themore
exible template b�.Now, suppose that the selection predicate onM is(X = x1) instead of (X < x1). The b� template ofM precludes a query likeM (X; y1; Z). However, themediator can infer from the selection-view predicatethat it can translate M (X; y1; Z) into R(x1; y1; Z),a feasible query on the base-view. So, it cansupport the query M (X; y1; Z). To re
ect thisability to support \additional" queries on M , thetemplate of M is changed to �f. Thus, a mediatorthat performs postprocessing can have selection-view templates that are much more
exible thantheir corresponding base-view templates. 2Base View Sel. Attribute Nonsel. AttributeAdornment Adornment Adornmentf f fo[s1] f fb f or b bc[s1] f or c[s1] c[s1]u f fTable 4: Selection with PostprocessingThe new rules for the computing selection-viewtemplates are based on the mapping function givenin Table 4. We consider two cases for eachattribute in the selection view: (i) the selectionpredicate speci�es a value for the attribute; (ii)the selection predicate does not specify a valuefor the attribute. In both cases, by employingpostprocessing operations at the mediator, base-view adornments of o and u are converted tothe selection-view adornment of f. In addition,the b adornment is also converted to the lessrestrictive f adornment if a value for the attributecan be inferred from the selection predicate. A cadornment is converted into an f adornment if theselection predicate speci�es a value for the attributethat is in the constant set associated with theattribute's adornment in the base-view template. Ifthe inferred value is not in the set of constants ofthe base-view template, we simply copy over the cadornment to the selection-view template.The computation of templates for projectionviews is similar to that of Section 3.3, except thatu and o adornments in the base-view templates aretreated as f adornments. That is, we copy over the

f, b and c adornments of the projected attributesfrom the base-view templates to the correspondingprojection-view templates, while the u and o for theprojected attributes are changed to the f adornmentin the projection-view templates. As before, we donot derive a projection-view template from a base-view template that has the b or the c adornment fora hidden attribute.5 Dynamic MediatorsSo far, we have seen how the templates of amediator can be computed in order to specifythe set of queries answerable by the mediator.Given that computation, a query is supported bythe mediator if it satis�es one of the mediatortemplates. However, as illustrated by Example 5.1,it may not be necessary for a query to satisfy atemplate in order for it to be answerable.EXAMPLE 5.1 Consider a mediator view Mde�ned as a join of two source views R1(X;Y) andR2(Y; Z). Let R1 have the single template bf andlet R2 have the single template c[s]f, where s isfy1; y2; y3g. Based on the computation described inSection 4, M has the single template bc[s]f. QueryM (x1; y1; Z) is answerable because it satis�es thetemplate of M .Consider the query M (x1; Y; Z). This querydoes not satisfy the template of M . However, themediator may attempt to process the query anyway.It can perform a bind join by processing the queryR1(x1; Y) and passing bindings for the Y attributein the queries to R2. The set of Y values in theresult of the query R1(x1; Y) may turn out to be asubset of s. In this case, the query M (x1; Y; Z) canbe answered successfully. 2Based on Example 5.1, we note that the answer-ability of a user query is not entirely determinedby checking it against the templates computed ac-cording to the methods of Sections 3 and 4. If thequery satis�es some template, it is guaranteed tobe answerable, otherwise, its answerability dependson the current state of the data in the source views.For instance, the current state of R1 in Example 5.1may help make the query answerable. Then again,the state of R1 may be such that the query can-not be answered. Mediators attempting to executequeries that are not guaranteed to be answerable, todetermine query answerability in a data-dependentmanner at run time, are called dynamic mediators.5.1 Conservative and Liberal TemplatesDynamic mediators execute queries that are notguaranteed to be feasible, with the hope of answer-ing them in a data-dependent manner. However, as 8

illustrated by Example 5.2, it is sometimes possi-ble to determine that a query is infeasible withoutattempting to execute it.EXAMPLE 5.2 Consider M , de�ned as a join ofR1(X;Y) and R2(Y; Z; U). Let R1 have the singletemplate bf and let R2 have the single templatec[s]fb, where s is fy1; y2; y3g. Then, M has thetemplate bc[s]fb. This template of M indicates thatthe query M (x1; y1; Z; u1) is de�nitely answerable.The query M (x1; Y; Z; u1) does not satisfy thetemplate of M . However, it is answerable if theset of Y values at R1 is a subset of s. The queryM (x1; Y; z1; U) also does not satisfy the templatebc[s]fb. We can determine that this query is notgoing to be answerable, irrespective of the set ofY values at R, because it does not specify a valuefor U . Blindly trying to execute it in a dynamicmediator results in an expensive way of �nding outthat the query is infeasible. 2Example 5.2 showed that there may be situationsin which we can determine that a given query is notgoing to be answerable irrespective of the state ofthe data in the sources. It is desirable to be ableto specify a set of templates such that if none ofthem is satis�ed by a query, we can ascertain thatthe query is infeasible, without trying to execute itfutilely. Such templates specify an \upper bound"to the set of queries that can be answered by adynamic mediator, while the templates computedin the previous section form the \lower bound." Wecall the �rst kind liberal templates and the secondkind conservative templates.Each view has a set of conservative templatesand a set of liberal templates. Given a query ona view, we ascertain that the query is answerableif it satis�es at least one of the conservative tem-plates of the view, and the query is not answerableif it does not satisfy any of the liberal templates ofthe view. If a query does not satisfy any conserva-tive templates but satis�es at least one liberal tem-plate, then a dynamic mediator executes the queryin a data-dependent manner. For instance, in Ex-ample 5.2, we can specify a conservative templatebc[s]fb and a liberal template b�b for the mediatorview M . Based on these templates, we can deter-mine that query M (x1; y1; Z; u1) is guaranteed tobe answerable; query M (x1; Y; Z; U) is guaranteedto be unanswerable; query M (x1; Y; Z; u1) may beanswerable depending on the contents of R1.5.2 Computing Liberal TemplatesTypically, in the case of a source view, the liberaltemplates of the view are the same as the conser-vative templates. When computing the templates

f o[s3] b c[s4] uf f f f f fo[s1] f f f f fb b b b b bc[s2] c[s2] c[s2] c[s2] c[s2] c[s2]u f f f f fTable 5: Liberal Templates for Join Viewsof derived views at a mediator, the liberal tem-plates tend to diverge from their conservative coun-terparts. The algorithms of Section 4 yield conser-vative templates for mediator views. That is, westart with conservative templates of base views andobtain conservative templates of derived views.With small changes to the algorithms of Sec-tion 4, we can compute the liberal templates. Forthe selection, projection and union views, we use thesame algorithms to compute the liberal templatesof derived views starting with the liberal templatesof their base views. However, the computation isslightly di�erent in the case of join views.For a join view, we start with the liberal tem-plates of the base views and compute the corre-sponding liberal templates of the join view, in amanner that is quite similar to that of Section 4.2.The only di�erence is the use of a new mappingfunction that combines the attribute adornments ofthe base-view templates. The new mapping func-tion is given in Table 5. This mapping functionis similar to the one used in Section 4.2, except inthe case of the c adornment in the second base-view template. In this case, when computing theliberal template of the join view, the mediator al-lows a more
exible adornment because it can try toget the appropriate constant required by the secondbase view from the result of the query on the �rstbase view. That is, it can optimistically treat thec adornment in the second base-view template as ifit is the f adornment. For instance, when the �rstbase-view adornment is f and the second base-viewadornment is c, the liberal adornment for the join-view is f (instead of c in the conservative computa-tion of Section 4.2). Also, note that when both thebase view adornments are c, the resulting c adorn-ment in the liberal template for the join-view hasthe same constant set as the c adornment in the�rst base view (instead of the intersection of theconstant sets in the two base-view templates).6 Output RestrictionsThe computation of mediator templates discussedso far assumes that all the attributes of a view arereturned in response to any query on that view.There are situations in which a view may have 9

attributes on which conditions may be speci�ed, butthese attributes are not returned in the answer. Forexample, we can pose a query to Amazon.com byspecifying the subject attribute of the desired set ofbooks, and Amazon.comdoes not return the subjectattribute when answering queries.In order to represent sources that do not returncertain attributes, we need to specify explicitly theoutput restrictions of attributes in the templates ofthe views exported by the sources. In a template,each attribute should be adorned to re
ect its input(query) as well as its output (result) restrictions.To describe the input requirements of an attributethat has no output restriction (i.e., it appears inthe result), we use the adornments introduced inSection 2: f, o, b, c and u. To describe theinput restrictions of an attribute whose output issuppressed (i.e., it does not appear in the result),we introduce �ve new adornments: f ', o', b', c' andu'. To illustrate the use of the new adornments,consider a source that exports view R(X;Y; Z) withthe requirement that queries on this view mustspecify X, must not specify Z, and can specify Yoptionally. Let the source suppress Y in its output(i.e., X and Z are output, Y is not). We describethe capabilities of the source with a bf'u template.The computation of mediator templates in thepresence of output restrictions can be undertakenby modi�ed versions of the algorithms of Sections 3and 4. Only the mapping functions used by thealgorithms have to be extended to deal with thenew adornments. In particular, no postprocessingoperations can be performed on attributes thatare not returned in source query results. Notethat even necessary operations like joining on suchattributes are prevented. All these considerationscan be re
ected in a new set of mapping functionsfor the algorithms presented so far. Due to spacelimitations, we do not present the new mappingfunctions here (please refer to the extended versionof the paper [10] for them). The introductionof the new attribute adornments forces us toalso reconsider the adornment graph of Figure 1,which is the basis for identifying and eliminatingredundant templates. The new graph is given inthe extended version of the paper.Recall that in Sections 3 and 4 we assumedthat the base views of a union view have thesame schema. With the help of the new attributeadornments, we can handle the case of union viewswith heterogeneous base-view schemas. Whenencountering heterogeneous base-view schemas, wecan simply treat the situation as if all the base-views have the same schema by adding the missingattributes to each base-view schema. For the newly

added attributes, we specify the u' adornments inthe templates of the base views. To illustrate,consider a mediator view M (X;Y; Z) de�ned as aunion of R1(X;Y) and R2(X;Z). Let R1 have thetemplate bf' and let R2 have the template bf'. Weintroduce the missing attribute Z into the templateof R1 and the missing attribute Y into the templateof R2. Both Z and Y have the u' adornment in thetemplates of R1 and R2, respectively. From theresulting bf'u' and bu'f' templates, we can computethe appropriate bu'u' template for M (based on thenew mapping function for computing union-viewtemplates, presented in [10]).7 A Case StudyTo verify that our capability-description frameworkmakes sense in practice, we explored the Web,where many limited-capability sources are found.In particular, we wished to determine if the adorn-ments we developed in our framework were ade-quate in describing the query capabilities of sourcesand mediators. We also wanted to know howmany templates were typically required to describesources and mediators. Capability-based query pro-cessing could become unwieldy if large numbers oftemplates were required. Therefore, it is importantto check if in the case of representative sources andmediators there would be an explosion of templates.7.1 Data SourcesWe considered two Web bookstores in our casestudy: Amazon.com (www.amazon.com) and Barne-sAndNoble.com (shop.barnesandnoble.com).Amazon.com supplies the following query forms:� Form 1: At least one of author, title, subjectand format attributes must be speci�ed. Theformat attribute has a menu of choices.� Form 2: The ISBN attribute must be speci�ed.� Form 3: At least one of keywords, publisher andpublication date attributes must be speci�ed.The results of queries to Amazon.com include thefollowing attributes: author, title, ISBN, publisher,date, format, price and shipping info. In particular,the subject and keywords attributes do not appearin the answers.The query capabilities of Amazon.com are de-scribed by the templates in Table 6. The capabili-ties o�ered by each query form are captured by oneor more templates. In Table 6, the �rst four tem-plates capture Form 1, the �fth template capturesForm 2, while the last three templates correspondto Form 3. Note that for simplicity of presentation 10

author title format subject KW ISBN pub date price shipb f o f' u' u u u u uf b o f' u' u u u u uf f c f' u' u u u u uf f o b' u' u u u u uu u u u' u' b u u u uu u u u' f' u b f u uu u u u' b' u f f u uu u u u' f' u f b u uTable 6: Templates of Amazon.comwe did not show the menu of choices attached to theo and c adornments of the format attribute. Themenu speci�ed by Amazon.com has \Hard cover",\Paperback", etc.BarnesAndNoble.com has two query forms:� Form 1: At least one of author, title andkeywords attributes must be speci�ed. Inaddition, the format, subject, price and agerange attributes can be speci�ed optionally.These four attributes have menus of choices.� Form 2: The ISBN attribute must be speci�ed.The output attribute set of BarnesAndNoble.comis the same as that of Amazon.com. That is,the source does not return the subject, keywordsand age range attributes in its answers. Thecapabilities of BarnesAndNoble.com are describedby the templates in Table 7. The �rst threetemplates describe the capabilities of the �rst form,while the last template captures the second form.7.2 A Bookstore MediatorWe considered a bookstore mediator that provides aunion view over the above two source views. As sug-gested in Section 6, we handled the heterogeneousunion of the two source views by adding the age at-tribute to the templates of Amazon.comwith the u'adornment. Moreover, we assumed that our book-store mediator employs postprocessing techniquesto extend the set of feasible union-view templates,as discussed in Section 4. Accordingly, we com-puted a total of 22 templates for the mediator view.Our algorithm actually considered 32 (8 � 4) pairsof source-view templates and successfully generatedunion-view templates in the case of 26 pairs. How-ever, there were 4 duplicates among the 26 resultingtemplates. Then, we employed the techniques dis-cussed in Section 3.4 to identify and eliminate 14redundant templates and ended up with a conciseset of 8 mediator templates (see Table 8).From the set of 8 templates for the mediator, 4query forms can be derived. Corresponding to the�rst template in Table 8, the bookstore mediator

has a query form that requires the speci�cation ofthe ISBN attribute. Corresponding to the secondtemplate, we created a query form that requires thekeywords to be speci�ed. Next, we created a singlequery form that corresponds to the third and fourthtemplates. This query form requires that at leastone of author and title attributes must be speci�edalong with an optional speci�cation of the subject�eld from a menu of choices. Finally, the last fourtemplates were combined into a single query formthat requires that at least one of author and titleattributes and at least one of publisher and dateattributes must be speci�ed.Note that, the theoretical maximum number offorms for our bookstore mediator is 32 (becauseeach combination of the base-view templates couldhave resulted in a mediator template, and eachmediator template could end up as a separate queryform). The fact that in our case study we obtained4 query forms for the mediator suggests that usingthe techniques presented in this paper, we may beable to compute manageable sets of query forms formediators on Web sources.7.3 ObservationsOur case study demostrates that the capability-description framework we introduced in Section 2is well suited to describe the capabilities of Websources and mediators. We note that sometimesmore than one template is needed to describe aquery form. However, the number of templatesrequired to describe a form is typically small. Wealso observe that, in general, it is more di�cult toderive forms from templates than vice versa.In the course of our experiments, we noticedthat many Web sources change their query formsfrequently. In fact, the data for our case study aspresented above is valid as of March 1, 1999. Itis unlikely that the Web sources we considered inour case study will retain the same forms a fewmonths later. In our experience, sources changetheir Web forms many times in a short period oftime (a few times a year). Building mediatorson such evolving sources poses special challenges. 11

author title format subject KW ISBN pub date price ship agef b o o' f' u u u o u o'b f o o' f' u u u o u o'f f o o' b' u u u o u o'u u u u' u' b u u u u u'Table 7: Templates of BarnesAndNoble.comauthor title format subject KW ISBN pub date price ship agef f f u' u' b f f f f u'f f f u' b' f f f f f u'b f f o' u' f f f f f u'f b f o' u' f f f f f u'b f f u' f' f b f f f u'f b f u' f' f b f f f u'f b f u' f' f f b f f u'b f f u' f' f f b f f u'Table 8: Concise Set of Templates for the Bookstore MediatorIn particular, manual generation of query formsfor mediators on such evolving sources becomesvery di�cult because whenever sources change theirquery forms, mediator capabilities have to be re-assessed. Automatic computation of mediatorcapabilities based on the techniques presented inthis paper can be very helpful to mediation systemsinvolving frequently changing sources.8 ConclusionIn data-integration systems, it is important to de-scribe the capabilities of mediators so that they canbe used as easily (by end users as well as otherapplications) as base sources are. Many contem-porary integration systems have not computed andexported mediator capabilities, thus making it hardfor them to be useful in scalable applications involv-ing networks of mediators and sources. In somesituations, mediator capabilities are manually com-puted and speci�ed. Manual computation is er-ror prone and becomes unwieldy when dealing withlarge numbers of evolving sources whose query ca-pabilities change frequently.In this paper, we provided the machinery for au-tomatically computing the capabilities of mediatorsbased on the capabilities of the sources they inte-grate. We proposed a capability-description frame-work with a rich set of attribute adornments todescribe a variety of query-processing limitationsof sources and mediators. We discussed variousclasses of mediators based on the query processingtechniques they employ, and presented algorithmsfor the computation of their capabilities. We con-ducted experiments using Web sources and studiedissues surrounding the adequacy of our capability-description framework and the e�ectiveness of our

algorithms for computing mediator capabilities.References[1] Y. Arens, C. Knoblock, W. Shen. Query Reformu-lation for Dynamic Information Integration. Journalof Intelligent Information Systems, 6(2/3):99-130,1996.[2] M. Genesereth, A. Keller, O. Duschka. Infomaster:An Information Integration System. Proc. SIGMODConference, 1997.[3] O. Kapitskaia, A. Tomasic, P. Valduriez. ScalingHeterogeneous Databases and the Design of Disco.INRIA Technical Report, 1997.[4] A. Levy, A. Rajaraman, J. Ordille. QueryingHeterogeneous Information Sources Using SourceDescriptions. Proc. VLDB Conference, 1996.[5] C. Li, R. Yerneni, et al. Capability-Based Mediationin TSIMMIS. Proc. SIGMOD Conference, 1998.[6] Y. Papakonstantinou, H. Garcia-Molina, J. Ullman.Medmaker: A Mediation System Based on Declara-tive Speci�cations. Proc. ICDE, 1996.[7] Y. Papakonstantinou, et al. Capabilities-BasedQuery Rewriting in Mediator Systems. Proc. PDISConference, 1996.[8] A. Tomasic, L. Raschid, P. Valduriez. Dealingwith Discrepancies in Wrapper Functionality. Proc.ICDCS, 1996.[9] G. Wiederhold. Mediators in the Architectureof Future Information Systems. IEEE Computer,25:38-49, 1992.[10] R. Yerneni, C. Li, et al. Extended Ver-sion: Computing Capabilities of Mediators.www-db.stanford.edu/~ yerneni/pubs/ccmev.ps.[11] R. Yerneni, C. Li, et al. Optimizing Large JoinQueries in Mediation Systems. Proc. ICDT, 1999. 12

