
On an Authorization Mechanism

RONALD FAGIN

IBM Research Laboratory

Griff~ths and Wade (ACM Trans. Database Syst. 1, 3, (Sept. 1976), 242-255) have defined a dynamic
authorization mechanism that goes beyond the traditional password approach. A database user can
grant or revoke privileges (such as to read, insert, or delete) on a fue that he has created. Furthermore,
he can authorize others to grant these same privileges. The database management system keeps track
of a directed graph, emanating from the creator, of granted privileges. The nodes of the graph
correspond to users, and the edges (each of which is labeled with a timestamp) correspond to grants.
The edges are of two types, corresponding to whether or not the recipient of the grant has been given
the option to make further grants of this privilege. Furthermore, for each pair A, B of nodes, there
can be no more than one edge of each type from A to B. We modify this approach by allowing graphs
in which there can be multiple edges of each type from one node to another. We prove correctness
(in a certain strong sense) for our modified authorization mechanism. Further, we show by example
that under the original mechanism, the system might forbid some user from exercising or granting a
privilege that he “should” be allowed to exercise or grant.

Key Words and Phrases: authorization, protection, security, privacy, access control, database,
revocation, proof of correctness
CR Categories: 4.30, 4.31, 4.33, 4.34, 4.35, 5.24, 5.32

1. INTRODUCTION

Griftiths and Wade [l] have defined an authorization mechanism (which we will
henceforth call the GW mechanism) for granting and revoking privileges. Their
procedure has attracted attention [4, 51 as an extension beyond traditional
password approaches. This paper can be viewed as an extended corrigendum to
the Griffiths-Wade paper. Therefore, this paper focuses primarily on technical
issues, and leaves the reader to refer to the earlier paper for a historical perspec-
tive and for a discussion of implementation issues.

As an example of a grant in the GW mechanism, user A may grant user B the
right to read a certain file, say fde F. Optionally, user A may make his grant to
user B with grant option, which means that user B can also grant others the right
to read file F, with or without grant option (as B chooses).

If one user revokes a privilege that he gave to a second user, then the second
user should not necessarily lose that privilege. This is because the second user
may have been granted this privilege “independently” by yet another user. As an
example, due to Griffths and Wade [l], ronsider the situation in Figure 1, in

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
Author’s address: IBM Research Laboratory K53/282, 5600 Cottle Road, San Jose, CA 95193.
0 1978 ACM 0362-5915/78/0900-0310 $60.75

ACM Transactions on Database Systems, Vol. 3, No. 3, September 1978, Pages 310-319.

On an Authorization Mechanism * 311

which user A (the creator of file F) grants users B and C the privilege to read file
F, with grant option (the numbers written on the edges are timestamps of the
grants). Assume that users B and C each grant user D that privilege, and then B
revokes the privilege. User D retains the privilege, because of the grant from C.

As a constrast, consider the situation in Figure 2. Here, when B revokes the
privilege he granted to D, then D should lose the privilege, even though, as in the
previous situation, D has another grant of this privilege from C. This is because
the path back to A has been cut.

Fig. 1 Fig. 2

The GW mechanism maintains an authorization table. For grants of those
privileges that have not yet been revoked, the table contains the timestamp of
the grant, the i.d. of the grantor, the i.d. of the recipient, a description of the
privilege (such as to read file F), and a notation as to whether or not this grant
is with grant option. We can think of this authorization table as being a directed
graph, where the nodes correspond to users and the edges (each of which is
labeled with a timestamp) correspond to grants. The edges are of two types,
corresponding to whether or not the grant is with grant option.

We now describe the GW mechanism (and our modification). Assume that at
time t, user X grants user Y privilege P over file F, with or without grant option.
Let us call this grant G. If X is the creator of file F, then grant G is recorded into
the authorization table. If not, but if at time t there appears in the authorization
table a grant of privilege P to X, with grant option, then once again grant G is
recorded. Otherwise, grant G is invalid, and so it is not recorded (thus, it is
ignored, that is, treated as a NO-OP).

There is one exception to the above set of rules for recording grants. The
manner in which this exception is handled is the difference between the original
GW mechanism and our modified version. Assume that just before time t, there
already appears in the authorization table an earlier grant G’ of the same privilege
P from the same grantor X to the same recipient Y, and with the same grant
option as G (that is, grants G and G’ are either both with grant option or both
without grant option). In the original GW mechanism the new grant G is not
recorded [l, p. 2491. In our modified version the new grant G is recorded and the
old grant G’ is also left recorded. Thus, in this case, just after time t, the
authorization table contains at least two grants of the same privilege from the
same grantor to the same recipient, with the same grant option (but with different
timestamps). We note that grants with grant option and grants without grant
option are recorded separately in the original GW mechanism. Therefore, under
the original GW mechanism, it is possible that at a given time there is recorded
in the grant table two grants of the same privilege, from the same grantor to the

ACM Transactions on Database Systems, Vol. 3, No. 3, September 1978.

312 - Ronald Fagin

same recipient, as long as the two grants have different grant options. By contrast,
under the modified GW mechanism, an arbitrary number of grants of each type,
from the same grantor to the same recipient of the same privilege, may appear in
the authorization table. (A natural scenario in which A might grant the same
privilege P twice to B is if, say, he grants privilege P to B, and then, at a later
time, he grants privilege P to everyone.)

Our revocation algorithm is the same as that of Griffiths and Wade, except
that their rules for deleting a grant by X’ to Y’ of privilege P from the authori-
zation table may lead us to delete several (but as we will see, not necessarily all)
such grants from X’ to Y’. Assume that grantor X revokes privilege P from Y. If
the authorization table at that time contains no grant of privilege P from X to Y,
then the revocation is ignored. Otherwise, on step 1 of the revocation algorithm,
each recorded grant of privilege P from X to Y is deleted from the table. If one of
the deleted grants from X to Y was with grant option, then what happens to Y’s
grants of privilege P to others? Let t be the minimum timestamp for which there
still appears in the authorization table a grant to Y of privilege P, with grant
option (if no such grant still appears, then let t = w). On step 2, each grant by Y
of privilege P, with timestamp smaller than t, is deleted from the table. Grants
continue to be deleted from the table recursively by this procedure. For example,
consider the situation in Figure 2. Assume that all grants in Figure 2 are with
grant option. At time 50, user B revokes privilege P from D. In step 1 of the
revocation algorithm, the grant from B to D is deleted from the authorization
table. On step 2, the grant from D to C is deleted. On the third (and this case,
final) step, the grant from C back to D is deleted.

In Section 3 we prove “correctness” for the modified GW mechanism. To
explain what we mean by “correctness,” we must first explain some auxiliary
concepts.

Assume that G1, . . . , G, are grants of privilege P over file F. We assume that
GI, . . . , G, are each timestamped, and each annotated as to whether or not it is
with grant option. We say that (G1, . . . , G,) is an authorization chain of privilege
P if

(a) the grantor of G1 is the creator of file F;
(b) the timestamp of G,+, is larger than the timestamp of Gi (i = 1, . . . , n - 1);
(c) the grantor of Gi+l equals the recipient of Gi (; = 1, . . . , n - 1);
(d) grants G,, . . . , G,,-1 are with grant option.

For example, assume that A is the creator of file F, and that G1, G2, G;i, G, are,
respectively, grants from A to B at time 10, from B to C at time 20, from C to D
at time 30, and from D to E at time 40. Assume that each of the four grants is a
grant of privilege P, which is to read file F, and that the first three grants are
with grant option. Then (G1, GZ, G3, G4) is an authorization chain of privilege P.

Assume that a fived finite sequence of grants and revocations has taken place
(where the grants and revocations may be interleaved). Let GRANT be the set
of grants only (each timestamped and annotated as to grant option). Let RE-
VOKED be the set of all grants in GRANT of privileges that are later revoked by
users. That is, if in our fixed sequence of grants and revocations, user X revokes
privilege P from user Y at time t, then REVOKED contains all grants of privilege
P from X to Y with timestamp less than t. Note that REVOKED is not defined
ACM Transactions on Database Systems, Vol. 3, No. 3, September 1978.

On an Authorization Mechanism * 313

to contain all grants that are deleted from the authorization table by the recursive
revocation procedure; instead, REVOKED contains only those grants of privileges
that are explicitly revoked by users. Let UNREVOKED be the set difference
GRANT - REVOKED. Thus, UNREVOKED is the set of all grants (in our fixed
finite sequence) of privileges that are not later explicitly revoked by users. Define
VALID to be the subset of UNREVOKED of all grants G for which there is an
authorization chain (Gl, . . , , G,,) of grants in the set UNREVOKED, with G, =
G. (It is possible that the chain is of length 1; then the grantor of G is the creator
of the file F over which the privilege is being granted.) So a grant is in VALID if
it is the final grant in an authorization chain of grants in UNREVOKED. Note
that the authorization chain that shows that a given grant is in VALID is not
necessarily unique. That is, it is possible for a grant to be the final grant in more
than one authorization chain. Intuitively, we think of VALID as the set of grants
in our sequence that would be valid if the grants of privileges that were later
revoked had never taken place. Hence, VALID is the set of grants that the system
“should” honor. We will prove (in Section 3) that if the modified GW mechanism
is continually applied (after each grant and revocation in our fixed finite se-
quence), then the following desirable property holds.

CORRECTNESS PROPERTY. The final resulting authorization table contains
precisely the set VALID of grants.

This property is, as its name implies, what we mean by “correctness” of the
modified GW mechanism.

The actual manner in which the authorization table is utilized in practice is
twofold. First, a user (such as user X) is allowed to exercise privilege P over file
F if and only if either (1) X is the treater of file F, or else (2) there is an entry in
the authorization table in which user X is granted privilege P. If either (1) or (2)
holds, then we say that “the system authorizes user X to exercise privilege P.”
Second, user X is allowed to grant privilege P to others if and only if either (1’)
X is the creator of file F, or else (2’) there is an entry in the authorization table
in which user X is granted privilege P with grant option, If either (1’) or (2’)
holds, then we say that “the system authorizes user X to grant privilege P.” It is
easy to see that the correctness property above implies the following two prop-
erties.

EXERCISABILITY PROPERTY. The system authorizes user X to exercise privi-
lege P (over file F) if and only if either (1) X is the creator of file F, or else (2)
X is the recipient of a grant that is in the set VALID.

The exercisability property is desirable since, as we saw, VALID is the set of
all grants that the system should honor.

GRANTABILITY PROPERTY. The system authorizes user X to grant privilege
P (over file F) if and only if either (1’) X is the creator of file F, or else (2’) X is
the recipient of a grant, with grant option, that is in the set VALID.

In Section 2 we show that the original GW mechanism does not obey the
correctness property, the exercisability property, or the grantability property.

2. EXAMPLES AND COUNTEREXAMPLES

In this section we show that the original GW mechanism does not perform as it
should. Recall that the only difference between the original GW mechanism and

ACM Transactions on Database Systems, Vol. 3, No. 3, September 1978.

314 * Ronald Fagin

our modified version is that if the same privilege from the same grantor to the
same recipient, with the same grant option, is granted more than once (without
an intervening deletion of the first grant from the authorization table), then the
original GW mechanism ignores all but the first such grant (that is, does not
record the later grants in the authorization table). However, under the modified
GW mechanism, all legal grants are recorded.

We now demonstrate an example of a problem with the original GW mecha-
nism. Assume that user A is the creator of file F, and that a number of grants,
each with grant option, of privilege P over file F take place as in Figure 3(a). For
example, user A grants user 23 privilege P at time 10, user B grants user C
privilege P at time 20, and so on. Note that C grants D privilege P both at time
30 and at time 60. Under the modified GW mechanism, all grants appearing in
Figure 3(a) are contained in the authorization table after time 60. However, under
the original GW mechanism, the second grant from C to D is ignored, and so,
after time 60, only the grants in Figure 3(b) are contained in the authorization
table. Assume now that at time 70, user B revokes privilege P from user C. What
is the effect on the authorization table in the original GW mechanism? On step
1 of the revocation algorithm, the grant from B to C is deleted from the
authorization table. Then the earliest remaining grant to C has timestamp 40. So
on step 2, the revocation algorithm deletes from the authorization table the grant
from C to D, since the timestamp (30) of this latter grant is smaller than 40.
Similarly, on the last step, the grant from D to E is deleted. Thus, under the
original GW mechanism, the final resulting authorization table contains the
grants in Figure 3(c). In particular the system no longer authorizes user D to
exercise privilege P. However, D should be allowed privilege P, since there was a
grant from A to C at time 40, and from C to D at time 60.

Under the modified GW mechanism, after the revocation by B at time 70, the
revocation algorithm first (on step 1) deletes from the authorization table the
grant from B to C. Then the earliest remaining grant to C has timestamp 40. So
on step 2, the grant from C to D with timestamp 30 is deleted (but the grant from
C to D with timestamp 60 is not deleted). On the last step, the grant from D to E
is deleted. The final resulting authorization table contains the grants in Figure
3(d). So after time 70, user D is authorized to exercise (and to grant) privilege P,
as he should be, whereas under the original GW mechanism, as we saw, he is not.

,0~\20
(b) @'-40, L @-30-G+50-k@ (e) @--60--W@-50-+@

10

(4 @' -40-Q (fi @'-40+ % -SO+@

Fig. 3

ACM Transactions on Database Systems, Vol. 3, No. 3, September 1978.

On an Authorization Mechanism - 315

We have shown that the original GW mechanism violates the correctness
property, as defined in Section 1, because the grant from C to D at time 60 should
be honored by the system, that is, this grant is in the set VALID. The exercis-
ability and grantability properties are violated, since after time 60, user D should
be allowed to exercise and grant privilege P, yet the system forbids this.

What would have happened if the original GW mechanism were modified so
that after the grant from C to D at time 60, rather than the second grant being
ignored, instead the first grant were deleted and the second grant were recorded?
Then after time 60, the authorization table would contain the grants in Figure
3(e). It is easy to see that the system can “garbage collect” away the grant from
D to E, since the incoming grant (that has timestamp 60) to D has timestamp
larger than that of the grant from D to E (that has timestamp 50). Then the
authorization table would contain the grants in Figure 3(f). In particular the
system would not authorize user E to exercise or grant privilege P. However, user
E should be so authorized, because of the grants from A to B at time 10, from I?
to C at time 20, from C to D at time 30, and from D to E at time 50. In fact under
the modified GW mechanism, the final authorization table contains the grants in
Figure 3(a). In particular the system then does authorize user E to exercise and
grant privilege P, as it should.

We have shown that if only one grant at a time of the same privilege, from the
same grantor to the same recipient, with the same grant option, is contained in
the authorization table, then the system may not authorize some user to exercise
or grant some privilege that the user should be authorized to exercise or grant.

3. PROOF OF CORRECTNESS OF THE MODIFIED GW MECHANISM

In this section we prove that the correctness property, defined in Section 1, holds
for our modified GW mechanism. That is, we show that after a sequence of grants
and revocations (where the grants and revocations may be interleaved), the
resulting authorization table contains precisely those grants in the set VALID.
Recall that a grant G of privilege P over file F from user X to user Y (with or
without grant option) is in the set UNREVOKED if grant G appears in our
sequence, and if, furthermore, our sequence does not contain a revocation, of
privilege P by user X from user Y, that occurred after the time of grant G. The
grant is in the set VALID if it is also the last grant in an authorization chain of
grants in UNREVOKED. So VALID contains precisely those grants that the
system “should” recognize.

We now show that the modified GW mechanism obeys the correctness property.
The exercisability and grantability properties of Section 1 then follow, since they
are consequences of the correctness property.

THEOREM. After a sequence of (possibly interleaved) grants and revocations
in which the modified GW mechanism is applied after each grant and revoca-
tion, the resulting authorization table contains precisely those grants in the set
VALID.

PROOF. Let AUTH be the set of grants in the resulting authorization table.
We must show that AUTH = VALID.

We first show that VALID is a subset of AUTH. If not, then of all the grants
ACM Transactions on Database Systems, Vol. 3, No. 3, September 1978.

316 - Ronald Fagin

that are in VALID but not in AUTH, let G be the one with the smallest
timestamp (there is at least one such grant by assumption). Since G is in VALID,
there is an authorization chain (G1, . . . , G,), where each grant in the chain is in
UNREVOKED, and where G,, = G. Grant GfiP1 is in VALID, because of the
authorization chain (Gl, . . . , G,-l). Now, the timestamp of G,-l is smaller than
that of G,, that is, smaller than that of G. Therefore, since G is the grant with
minimal timestamp that is in VALID but not in AUTH, it follows that G,-l, being
in VALID, is also in AUTH. Hence, G,-1 is never deleted from the authorization
table during the execution of the sequence of grants and revocations (because it
is in the final version AUTH of the authorization table). I

,
Assume for definiteness that G is a grant of privilege P by user X to user Y,

with timestamp t. Now there are only two ways that G can be deleted from the
authorization table. The first way is if X revokes privilege P from Y at some time
after time t. But this is not the case, since G is in VALID. The only other way
that G can be deleted from the authorization table is if at some time after time t,
a grant to X of privilege P is deleted from the authorization table and if there is
then no remaining grant of privilege P to X in the authorization table with
timestamp smaller than t. But this cannot happen either, since, as we saw, grant
G,-1 is never deleted from the authorization table.

Hence, G is never deleted from the authorization table, and so G is in AUTH.
This is a contradiction.

We have shown that VALID is a subset of AUTH. To conclude the proof, we
must show that AUTH is a subset of VALID.

Let HI, , . . , Hk be a sequence of (possibly interleaved) grants and revocations.
We wish to show that AUTH is a subset of VALID (where AUTH and VALID
are each based on HI, . . . , Hk). We call each Hj (i = 1, . . . , k) a command; a
command is either a grant or a revocation. For j = 1, . . . , k, we denote by AUTHj
the resulting authorization table when the modified GW mechanism has com-
pleted its actions after command Hj. Similarly, define UNREVOKEDi and
VALID, to be based on the sequence HI, . . . , Hj. That is, a grant G is in
UNREVOKEDj if G appears in HI, . . . , Hj, and if HI, . . , , Hj does not contain a
revocation of the privilege granted in G by the grantor of G from the recipient of
G, after the time that G was granted. Furthermore, a grant is in VALID, if it is
the last grant in an authorization chain of grants in UNREVOKEDj.

:

I

1

i
i:.

P

/I:

We wish to show that AUTHk is a subset of VALIDk. Our proof proceeds by
induction on k. To begin the induction, assume that k = 1. In this case both
AUTHl and VALID1 are empty (and hence equal) unless (a) HI is a grant, and
(b) the grantor of HI is the creator of the file over which the privilege is granted.
If (a) and (b) both hold, then AUTHl and VALID1 both contain precisely HI, and
so once again, AUTHl and VALID1 are equal. This concludes the proof in the
k = 1 case.

Assume inductively that AUTHkPI is a subset of VALIDkeI. We wish to show
that AUTHk is a subset of VALIDk.

Since AUTHk-I is a subset of VALIDk-1, and since (by the first part of the
proof) VALIDh-1 is a subset of AUTHk-I, it follows that AUTHk-I = VALIDk-1.

It is possible that command Hk is either a grant or a revocation. We assume
first that Hk is a grant. For definiteness, assume that Hk is a grant by user X to
user Y of privilege P over file F. Recall that by definition of the modified GW
ACM Transactions on Database Systems, Vol. 3, No. 3, September 1978.

On an Authorization Mechanism * 317

mechanism, grant Hk is in AUT&, that is, I& is recorded into the authorization
table, if and only if either

(1) X is the creator of file F, or
(2) AUTHkml contains a grant to X of privilege P, with grant option,

It is easy to see that because Hk is a grant and not a revocation, it follows that
VALIDk-1 is a subset (not necessarily proper) of VALIDk. Furthermore, we know
that AUTHk-I = VALIDk-1. So AUTHk-I is a subset (not necessarily proper) of
VALIDk. Now our goal is to show that AUTHk is a subset of VALIDk, and we
know that AUTHk-l is a subset of VALIDk. But the only possible difference
between AUTHk-l and AUTHk is that AUTHk might contain Hk, while AUTHk-I
does not. So we need only show that if Hk is in AUTHk, then also Hk is in
VALIDk. Therefore, let us assume that Hk is in AUTHk; we will show that Hk is
in VALIDk. Since Hk is in AUTHk, we know that either (1) or (2) above holds. If
(1) holds, that is, if the grantor of Hk is the creator of file F, then & is certainly
in VALIDk. If (2) holds, then let G be a grant, contained in AUTHk-1, of privilege
P to user X, with grant option. Since AUTHk-l = VALIDk-l, it follows that G is
in VALIDk-1. So there is an authorization chain (G1, . . . , Gn) of grants in
UNREVOKEDk-l, where G,, = G. Now UNREVOKEDk-l is a subset of UNRE-
VOKEDk, since HA is a grant. So each of the grants G1, . . . , G,, is in UNRE-
VOKED,+. Furthermore, it is clear that & is in UNREVOKED, since HA! is the
last command in the sequence HI, . . . , Hk. But then (G,, . . . , G,, Hk) is an
authorization chain. Therefore, Hk is in VALIDk, as desired.

Now we assume that the final command Hk is a revocation. Again, we wish to
show that AUTHk is a subset of VALIDk. We assume not, and derive a contra-
diction. Since AUTHk is not a subset of VALIDk, let G be the grant with minimal
timestamp that is in AUTHk but not in VALIDk. It is clear that AUTHk is a
subset of AUT&-I, since Hk is not a grant (it is a revocation). In particular, grant
G, being in AUTHk, is also in AUTHM. Since AUTHk-I = VALIDkeI, it follows
that grant G is in VALIDk-1.

For definiteness, let us assume that this grant G is a grant from user X to Y of
privilege P over file F with timestamp t.

Since G is in VALIDk-1, there is an authorization chain (G,, . . . , G,) of grants
in UNREVOKEDk-l, where G, = G. Assume first that length n of this authori-
zation chain is 1. Then the grantor X of G is the creator of file F. However, since
grant G is in VALIDhe but not in VALIDk, we know that revocation Hk must be
a revocation by X from Y of privilege P (because X is the creator of file F). But
then G is not in AUTHk, which is a contradiction.

Therefore, the length n of the authorization chain is at least 2. Now G,,-1 is in
VALID~M, since it is part of an authorization chain of grants in UNREVOKEDk-1.
Since AUTHk-l = VALIDk-I, it follows that Gnel, being in VALID*-,, is in
AUTHkPI. Let us call each grant to X of privilege P, with grant option, with
timestamp smaller than t (the timestamp of G), a supporting grant for G.
Intuitively, these grants “provide support” for G, that is, they are grants of
privilege P, with grant option, where the recipient is the grantor of G (and where
these grants have timestamps smaller than that of G). We know that AUTHk-1
contains a supporting grant for G, namely G,-l. We now show that AUTHk

ACM Transactions on Database Systems, Vol. 3, No. 3, September 1978.

318 * Ronald Fagin

contains a supporting grant for G. Assume not. Then the revocation Hk must
have caused the revocation algorithm to delete G,,-l and all other supporting
grants for G. When the last supporting grant for G was deleted from the
authorization table, then G should have been deleted, according to the rules of
the revocation algorithm. But G was not deleted. Hence, our assumption that
AUTHk does not contain a supporting grant for G is false. Therefore, let G’ be a
grant that is in AUTHk and that is a supporting grant for G. Now the timestamp
of G’ is smaller than that of G, and G’ is in AUTHk. Therefore, since G is the
grant with minimal timestamp that is in AUTHk but not in VALIDk, we know
that G’ is in VALIDk. So there is an authorization chain (Gl’, . . . , G,‘) of grants
in UNREVOKEDk, with G,,’ = G’. Now the grantor X of G did not revoke the
privilege P from the recipient Y of G after the time t of the grant G, since G is in
AUTHk. Therefore, G is in UNREVOKEDk So (G1’, . . . , G,‘, G) is an authori-
zation chain of grants in UNREVOKEDk. Therefore, G is in VALIDk. This is a
contradiction.

4. HISTORICAL COMMENTS

We refer the reader to Griffiths and Wade [l] for a historical perspective of their
authorization scheme, and for a good bibliography of papers on protection. We
note that their scheme differs fundamentally from the recent schemes analyzed
by Harrison, RUZZO, and Ullman [2] and by Lipton and Snyder [3], because of the
major role of timestamps in the GW mechanism (there are no timestamps in the
other schemes).

This paper originated when the author tried to prove correctness for the
(original) GW mechanism. Thus, an attempted proof of correctness led to the
discovery of a “bug”!

5. SUMMARY

We have modified the authorization mechanism of Grifliths and Wade by allowing
the authorization table to contain simultaneously more than one grant from the
same grantor to the same recipient of the same privilege with the same grant
option. We have proven correctness for the modified authorization mechanism,
whereas we have shown that under the original authorization mechanism the
system may not authorize some user to exercise or grant some privilege that he
should be authorized to exercise or grant.

ACKNOWLEDGMENTS

The author is grateful to Pat Griffiths and Brad Wade for helpful discussions and
suggestions, and to Peter Denning for a historical perspective.

REFERENCES
1. GRIFFITHS, P.P., AND WADE, B.W. An authorization mechanism for a relational database system.

ACM Trans. Database Syst. I, 3 (Sept. 1976), 242-255.
2. HARRISON, M.A., Ruzzo, W.L., AND ULLMAN, J.D. Protection in operating systems. Comm. ACM

19,8 (Aug. 1976), 461-471.

ACM Transactions on Database Systems, Vol. 3, No. 3, September 1978.

On an Authorization Mechanism * 319

3. LIPTON, R.J., AND SNYDER, L. A linear time algorithm for deciding subject security. J. ACM 24,

3 (July 1977), 455-464.
4. TAYLOR, A. Another security approach steps beyond passwords. Computerworla! ZO, 49, Dec. 6,

1976, p. 13.
5. VOYSEY, H. San Jose: Home of System R. Computing Europe, Oct. 28, 1976, p. 8.

Received May 1977; revised February 1978

ACM Transactions on Database Systems, Vol. 3, No. 3, September 1978.

