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Abstract. In 1977 Dalenius articulated a desideratum for statistical
databases: nothing about an individual should be learnable from the
database that cannot be learned without access to the database. We give
a general impossibility result showing that a formalization of Dalenius’
goal along the lines of semantic security cannot be achieved. Contrary to
intuition, a variant of the result threatens the privacy even of someone
not in the database. This state of affairs suggests a new measure, dif-
ferential privacy, which, intuitively, captures the increased risk to one’s
privacy incurred by participating in a database. The techniques devel-
oped in a sequence of papers [8, 13, 3], culminating in those described
in [12], can achieve any desired level of privacy under this measure. In
many cases, extremely accurate information about the database can be
provided while simultaneously ensuring very high levels of privacy.

1 Introduction

A statistic is a quantity computed from a sample. If a database is a repre-
sentative sample of an underlying population, the goal of a privacy-preserving
statistical database is to enable the user to learn properties of the population
as a whole, while protecting the privacy of the individuals in the sample. The
work discussed herein was originally motivated by exactly this problem: how
to reveal useful information about the underlying population, as represented
by the database, while preserving the privacy of individuals. Fortuitously, the
techniques developed in [8, 13, 3] and particularly in [12] are so powerful as to
broaden the scope of private data analysis beyond this orignal “representatitive”
motivation, permitting privacy-preserving analysis of an object that is itself of
intrinsic interest. For instance, the database may describe a concrete intercon-
nection network – not a sample subnetwork – and we wish to reveal certain
properties of the network without releasing information about individual edges
or nodes. We therefore treat the more general problem of privacy-preserving
analysis of data.

A rigorous treatment of privacy requires definitions: What constitutes a fail-
ure to preserve privacy? What is the power of the adversary whose goal it is
to compromise privacy? What auxiliary information is available to the adver-
sary (newspapers, medical studies, labor statistics) even without access to the
database in question? Of course, utility also requires formal treatment, as releas-
ing no information or only random noise clearly does not compromise privacy;
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we will return to this point later. However, in this work privacy is paramount: we
will first define our privacy goals and then explore what utility can be achieved
given that the privacy goals will be satisified1.

A 1977 paper of Dalenius [6] articulated a desideratum that foreshadows for
databases the notion of semantic security defined five years later by Goldwasser
and Micali for cryptosystems [15]: access to a statistical database should not
enable one to learn anything about an individual that could not be learned
without access2. We show this type of privacy cannot be achieved. The obstacle
is in auxiliary information, that is, information available to the adversary other
than from access to the statistical database, and the intuition behind the proof
of impossibility is captured by the following example. Suppose one’s exact height
were considered a highly sensitive piece of information, and that revealing the
exact height of an individual were a privacy breach. Assume that the database
yields the average heights of women of different nationalities. An adversary who
has access to the statistical database and the auxiliary information “Terry Gross
is two inches shorter than the average Lithuanian woman” learns Terry Gross’
height, while anyone learning only the auxiliary information, without access to
the average heights, learns relatively little.

There are two remarkable aspects to the impossibility result: (1) it applies
regardless of whether or not Terry Gross is in the database and (2) Dalenius’
goal, formalized as a relaxed version of semantic security, cannot be achieved,
while semantic security for cryptosystems can be achieved. The first of these
leads naturally to a new approach to formulating privacy goals: the risk to one’s
privacy, or in general, any type of risk, such as the risk of being denied automobile
insurance, should not substantially increase as a result of participating in a
statistical database. This is captured by differential privacy.

The discrepancy between the possibility of achieving (something like) seman-
tic security in our setting and in the cryptographic one arises from the utility
requirement. Our adversary is analagous to the eavesdropper, while our user is
analagous to the message recipient, and yet there is no decryption key to set
them apart, they are one and the same. Very roughly, the database is designed
to convey certain information. An auxiliary information generator knowing the
data therefore knows much about what the user will learn from the database.
This can be used to establish a shared secret with the adversary/user that is
unavailable to anyone not having access to the database. In contrast, consider
a cryptosystem and a pair of candidate messages, say, {0, 1}. Knowing which
message is to be encrypted gives one no information about the ciphertext; in-
tuitively, the auxiliary information generator has “no idea” what ciphertext the
eavesdropper will see. This is because by definition the ciphertext must have no
utility to the eavesdropper.

1 In this respect the work on privacy diverges from the literature on secure function
evaluation, where privacy is ensured only modulo the function to be computed: if
the function is inherently disclosive then privacy is abandoned.

2 Semantic security against an eavesdropper says that nothing can be learned about a
plaintext from the ciphertext that could not be learned without seeing the ciphertext.
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In this paper we prove the impossibility result, define differential privacy, and
observe that the interactive techniques developed in a sequence of papers [8, 13,
3, 12] can achieve any desired level of privacy under this measure. In many
cases very high levels of privacy can be ensured while simultaneously providing
extremely accurate information about the database.

Related Work. There is an enormous literature on privacy in databases; we
briefly mention a few fields in which the work has been carried out. See [1] for a
survey of many techniques developed prior to 1989.

By far the most extensive treatment of disclosure limitation is in the statis-
tics community; for example, in 1998 the Journal of Official Statistics devoted
an entire issue to this question. This literature contains a wealth of privacy sup-
portive techniques and investigations of their impact on the statistics of the data
set. However, to our knowledge, rigorous definitions of privacy and modeling of
the adversary are not features of this portion of the literature.

Research in the theoretical computer science community in the late 1970’s
had very specific definitions of privacy compromise, or what the adversary must
achieve to be considered successful (see, eg, [9]). The consequent privacy guaran-
tees would today be deemed insufficiently general, as modern cryptography has
shaped our understanding of the dangers of the leakage of partial information.
Privacy in databases was also studied in the security community. Although the
effort seems to have been abandoned for over two decades, the work of Den-
ning [7] is closest in spirit to the line of research recently pursued in [13, 3, 12].

The work of Agrawal and Srikant [2] and the spectacular privacy compromises
achieved by Sweeney [18] rekindled interest in the problem among computer
scientists, particularly within the database community. Our own interest in the
subject arose from conversations with the philosopher Helen Nissenbaum.

2 Private Data Analysis: The Setting

There are two natural models for privacy mechanisms: interactive and non-
interactive. In the non-interactive setting the data collector, a trusted entity,
publishes a “sanitized” version of the collected data; the literature uses terms
such as “anonymization” and “de-identification”. Traditionally, sanitization em-
ploys techniques such as data perturbation and sub-sampling, as well as removing
well-known identifiers such as names, birthdates, and social security numbers.
It may also include releasing various types of synopses and statistics. In the in-
teractive setting the data collector, again trusted, provides an interface through
which users may pose queries about the data, and get (possibly noisy) answers.

Very powerful results for the interactive approach have been obtained ([13,

3, 12] and the present paper), while the non-interactive case has proven to be
more difficult, (see [14, 4, 5]), possibly due to the difficulty of supplying utility
that has not yet been specified at the time the sanitization is carried out. This
intuition is given some teeth in [12], which shows concrete separation results.
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3 Impossibility of Absolute Disclosure Prevention

The impossibility result requires some notion of utility – after all, a mechanism
that always outputs the empty string, or a purely random string, clearly preserves
privacy3. Thinking first about deterministic mechanisms, such as histograms or
k-anonymizations [19], it is clear that for the mechanism to be useful its output
should not be predictable by the user; in the case of randomized mechanisms the
same is true, but the unpredictability must not stem only from random choices
made by the mechanism. Intuitively, there should be a vector of questions (most
of) whose answers should be learnable by a user, but whose answers are not in
general known in advance. We will therefore posit a utility vector, denoted w.
This is a binary vector of some fixed length κ (there is nothing special about the
use of binary values). We can think of the utility vector as answers to questions
about the data.

A privacy breach for a database is described by a Turing machine C that takes
as input a description of a distribution D on databases, a database DB drawn
according to this distribution, and a string – the purported privacy breach– and
outputs a single bit4. We will require that C always halt. We say the adversary
wins, with respect to C and for a given (D, DB) pair, if it produces a string s
such that C(D, DB, s) accepts. Henceforth “with respect to C” will be implicit.

An auxiliary information generator is a Turing machine that takes as input
a description of the distribution D from which the database is drawn as well as
the database DB itself, and outputs a string, z, of auxiliary information. This
string is given both to the adversary and to a simulator. The simulator has no
access of any kind to the database; the adversary has access to the database via
the privacy mechanism.

We model the adversary by a communicating Turing machine. The theorem
below says that for any privacy mechanism San() and any distribution D sat-
isfying certain technical conditions with respect to San(), there is always some
particular piece of auxiliary information, z, so that z alone is useless to someone
trying to win, while z in combination with access to the data through the pri-
vacy mechanism permits the adversary to win with probability arbitrarily close
to 1. In addition to formalizing the entropy requirements on the utility vectors
as discussed above, the technical conditions on the distribution say that learning
the length of a privacy breach does not help one to guess a privacy breach.

Theorem 1. Fix any privacy mechanism San() and privacy breach decider C.
There is an auxiliary information generator X and an adversary A such that for
all distributions D satisfying Assumption 3 and for all adversary simulators A∗,

Pr[A(D,San(D, DB),X (D, DB)) wins]− Pr[A∗(D,X (D, DB)) wins] ≥ ∆

where ∆ is a suitably chosen (large) constant. The probability spaces are over
choice of DB ∈R D and the coin flips of San, X , A, and A∗.
3 Indeed the height example fails in these trivial cases, since it is only through the

sanitization that the adversary learns the average height.
4 We are agnostic as to how a distribution D is given as input to a machine.
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The distribution D completely captures any information that the adversary (and
the simulator) has about the database, prior to seeing the output of the auxiliary
information generator. For example, it may capture the fact that the rows in
the database correspond to people owning at least two pets. Note that in the
statement of the theorem all parties have access to D and may have a description
of C hard-wired in; however, the adversary’s strategy does not use either of these.

Strategy for X and A when all of w is learned from San(DB): To develop
intuition we first describe, slightly informally, the strategy for the special case in
which the adversary always learns all of the utility vector, w, from the privacy
mechanism5. This is realistic, for example, when the sanitization produces a
histogram, such as a table of the number of people in the database with given
illnesses in each age decile, or a when the sanitizer chooses a random subsample
of the rows in the database and reveals the average ages of patients in the
subsample exhibiting various types of symptoms. This simpler case allows us to
use a weaker version of Assumption 3:

Assumption 2 1. ∀ 0 < γ < 1 ∃nγ PrDB∈RD[|DB| > nγ ] < γ; moreover nγ

is computable by a machine given D as input.
2. There exists an ` such that both the following conditions hold:

(a) Conditioned on any privacy breach of length `, the min-entropy of the
utility vector is at least `.

(b) Every DB ∈ D has a privacy breach of length `.
3. Pr[B(D, San(DB)) wins] ≤ µ for all interactive Turing machines B, where

µ is a suitably small constant. The probability is taken over the coin flips of
B and the privacy mechanism San(), as well as the choice of DB ∈R D.

Intuitively, Part (2a) implies that we can extract ` bits of randomness from the
utility vector, which can be used as a one-time pad to hide any privacy breach of
the same length. (For the full proof, ie, when not necessarily all of w is learned by
the adversary/user, we will need to strengthen Part (2a).) Let `0 denote the least
` satisfying (both clauses of) Part 2. We cannot assume that `0 can be found in
finite time; however, for any tolerance γ let nγ be as in Part 1, so all but a γ
fraction of the support of D is strings of length at most nγ . For any fixed γ it is
possible to find an `γ ≤ `0 such that `γ satisfies both clauses of Assumption 2(2)
on all databases of length at most nγ . We can assume that γ is hard-wired into
all our machines, and that they all follow the same procedure for computing
nγ and `γ . Thus, Part 1 allows the more powerful order of quantifiersd in the
statement of the theorem; without it we would have to let A and A∗ depend on
D (by having ` hard-wired in). Finally, Part 3 is a nontriviality condition.

The strategy for X and A is as follows. On input DB ∈R D, X randomly
chooses a privacy breach y for DB of length ` = `γ , if one exists, which occurs
with probability at least 1 − γ. It also computes the utility vector, w. Finally,
it chooses a seed s and uses a strong randomness extractor to obtain from w

5 Although this case is covered by the more general case, in which not all of w need
be learned, it permits a simpler proof that exactly captures the height example.
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an `-bit almost-uniformly distributed string r [16, 17]; that is, r = Ext(s, w),
and the distribution on r is within statistical distance ε from U`, the uniform
distribution on strings of length `, even given s and y. The auxiliary information
will be z = (s, y ⊕ r).

Since the adversary learns all of w, from s it can obtain r = Ext(s, w) and
hence y. We next argue that A∗ wins with probability (almost) bounded by µ,
yielding a gap of at least 1− (γ + µ + ε).

Assumption 2(3) implies that Pr[A∗(D) wins] ≤ µ. Let d` denote the maxi-
mum, over all y ∈ {0, 1}`, of the probability, over choice of DB ∈R D, that y is a
privacy breach for DB. Since ` = `γ does not depend on DB, Assumption 2(3)
also implies that d` ≤ µ.

By Assumption 2(2a), even conditioned on y, the extracted r is (almost)
uniformly chosen, independent of y, and hence so is y ⊕ r. Consequently, the
probability that X produces z is essentially independent of y. Thus, the simula-
tor’s probability of producing a privacy breach of length ` for the given database
is bounded by d`+ε ≤ µ+ε, as it can generate simulated “auxiliary information”
with a distribution within distance ε of the correct one.

The more interesting case is when the sanitization does not necessarily reveal
all of w; rather, the guarantee is only that it always reveal a vector w′ within
Hamming distance κ/c of w for constant c to be determined6. The difficulty with
the previous approach is that if the privacy mechanism is randomized then the
auxiliary information generator may not know which w′ is seen by the adversary.
Thus, even given the seed s, the adversary may not be able to extract the same
random pad from w′ that the auxiliary information generator extracted from w.
This problem is solved using fuzzy extractors [10].

Definition 1. An (M,m, `, t, ε) fuzzy extractor is given by procedures (Gen,Rec).

1. Gen is a randomized generation procedure. On input w ∈ M outputs an
“extracted” string r ∈ {0, 1}` and a public string p. For any distribution W
on M of min-entropy m, if (R,P )← Gen(W ) then the distributions (R,P )
and (U`, P ) are within statistical distance ε.

2. Rec is a deterministic reconstruction procedure allowing recovery of r =
R(w) from the corresponding public string p = P (w) together with any vector
w′ of distance at most t from w. That is, if (r, p)← Gen(w) and ||w−w′||1 ≤
t then Rec(w′, p) = r.

In other words, r = R(w) looks uniform, even given p = P (w), and r = R(w)
can be reconstructed from p = P (w) and any w′ sufficiently close to w.

We now strenthen Assumption 2(2a) to say that the entropy of the source
San(W ) (vectors obtained by interacting with the sanitization mechanism, all of
distance at most κ/c from the true utility vector) is high even conditioned on
any privacy breach y of length ` and P = Gen(W ).
6 One could also consider privacy mechanisms that produce good approximations to

the utility vector with a certain probability for the distribution D, where the proba-
bility is taken over the choice of DB ∈R D and the coins of the privacy mechanism.
The theorem and proof hold mutatis mutandis.
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Assumption 3 For some ` satisfying Assumption 2(2b), for any privacy breach
y ∈ {0, 1}`, the min-entropy of (San(W )|y) is at least k+`, where k is the length
of the public strings p produced by the fuzzy extractor7.

Strategy when w need not be fully learned: For a given database DB, let w be
the utility vector. This can be computed by X , who has access to the database.
X simulates interaction with the privacy mechanism to determine a “valid” w′

close to w (within Hamming distance κ/c). The auxiliary information generator
runs Gen(w′), obtaining (r = R(w′), p = P (w′)). It computes nγ and ` = `γ (as
above, only now satisfying Assumptions 3 and 2(2b) for all DB ∈ D of length
at most nγ), and uniformly chooses a privacy breach y of length `γ , assuming
one exists. It then sets z = (p, r ⊕ y).

Let w′′ be the version of w seen by the adversary. Clearly, assuming 2κ/c ≤ t
in Definition 1, the adversary can reconstruct r. This is because since w′ and w′′

are both within κ/c of w they are within distance 2κ/c of each other, and so w′′

is within the “reconstruction radius” for any r ← Gen(w′). Once the adversary
has reconstructed r, obtaining y is immediate. Thus the adversary is able to
produce a privacy breach with probability at least 1− γ. It remains to analyze
the probability with which the simulator, having access only to z but not to the
privacy mechanism (and hence, not to any w′′ close to w), produces a privacy
breach.

In the sequel, we let B denote the best machine, among all those with access
to the given information, at producing producing a privacy breach (“winning”).

By Assumption 2(3), Pr[B(D,San(DB)) wins] ≤ µ, where the probability is
taken over the coin tosses of the privacy mechanism and the machine B, and
the choice of DB ∈R D. Since p = P (w′) is computed from w′, which in turn is
computable from San(DB), we have

p1 = Pr[B(D, p) wins] ≤ µ

where the probability space is now also over the choices made by Gen(), that is,
the choice of p = P (w′). Now, let U` denote the uniform distribution on `-bit
strings. Concatenating a random string u ∈R U` to p cannot help B to win, so

p2 = Pr[B(D, p, u) wins] = p1 ≤ µ

where the probability space is now also over choice of u. For any fixed string
y ∈ {0, 1}` we have U` = U` ⊕ y, so for all y ∈ {0, 1}`, and in particular, for all
privacy breaches y of DB,

p3 = Pr[B(D, p, u⊕ y) wins] = p2 ≤ µ.

Let W denote the distribution on utility vectors and let San(W ) denote
the distribution on the versions of the utility vectors learned by accessing the
7 A good fuzzy extractor “wastes” little of the entropy on the public string. Better

fuzzy extractors are better for the adversary, since the attack requires ` bits of
residual min-entropy after the public string has been generated.
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database through the privacy mechanism. Since the distributions (P,R) = Gen(W ′),
and (P,U`) have distance at most ε, it follows that for any y ∈ {0, 1}`

p4 = Pr[B(D, p, r ⊕ y) wins] ≤ p3 + ε ≤ µ + ε.

Now, p4 is an upper bound on the probability that the simulator wins, given D
and the auxiliary information z = (p, r ⊕ y), so

Pr[A∗(D, z) wins] ≤ p4 ≤ µ + ε .

An (M,m, `, t, ε) fuzzy extractor, where M is the distribution San(W ) on
utility vectors obtained from the privacy mechanism, m satisfies: for all `-bit
strings y which are privacy breaches for some database D ∈ DB, H∞(W ′|y) ≥ m;
and t < κ/3, yields a gap of at least

(1− γ)− (µ + ε) = 1− (γ + µ + ε)

between the winning probabilities of the adversary and the simulator. Setting
∆ = 1− (γ + µ + ε) proves Theorem 1.

We remark that, unlike in the case of most applications of fuzzy extractors
(see, in particular, [10, 11]), in this proof we are not interested in hiding partial
information about the source, in our case the approximate utility vectors W ′, so
we don’t care how much min-entropy is used up in generating p. We only require
sufficient residual min-entropy for the generation of the random pad r. This is
because an approximation to the utility vector revealed by the privacy mecha-
nism is not itself disclosive; indeed it is by definition safe to release. Similarly, we
don’t necessarily need to maximize the tolerance t, although if we have a richer
class of fuzzy extractors the impossibility result applies to more relaxed privacy
mechanisms (those that reveal worse approximations to the true utility vector).

4 Differential Privacy

As noted in the example of Terry Gross’ height, an auxiliary information gen-
erator with information about someone not even in the database can cause a
privacy breach to this person. In order to sidestep this issue we change from ab-
solute guarantees about disclosures to relative ones: any given disclosure will be,
within a small multiplicative factor, just as likely whether or not the individual
participates in the database. As a consequence, there is a nominally increased
risk to the individual in participating, and only nominal gain to be had by con-
cealing or misrepresenting one’s data. Note that a bad disclosure can still occur,
but our guarantee assures the individual that it will not be the presence of her
data that causes it, nor could the disclosure be avoided through any action or
inaction on the part of the user.

Definition 2. A randomized function K gives ε-differential privacy if for all
data sets D1 and D2 differing on at most one element, and all S ⊆ Range(K),

Pr[K(D1) ∈ S] ≤ exp(ε)× Pr[K(D2) ∈ S] (1)
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A mechanism K satisfying this definition addresses concerns that any participant
might have about the leakage of her personal information x: even if the partic-
ipant removed her data from the data set, no outputs (and thus consequences
of outputs) would become significantly more or less likely. For example, if the
database were to be consulted by an insurance provider before deciding whether
or not to insure Terry Gross, then the presence or absence of Terry Gross in the
database will not significantly affect her chance of receiving coverage.

This definition extends to group privacy as well. A collection of c participants
might be concerned that their collective data might leak information, even when
a single participant’s does not. Using this definition, we can bound the dilation
of any probability by at most exp(εc), which may be tolerable for small c. Note
that we specifically aim to disclose aggregate information about large groups, so
we should expect privacy bounds to disintegrate with increasing group size.

5 Achieving Differential Privacy

We now describe a concrete interactive privacy mechanism achieving ε-differential
privacy8. The mechanism works by adding appropriately chosen random noise to
the answer a = f(X), where f is the query function and X is the database; thus
the query functions may operate on the entire database at once. It can be simple
– eg, “Count the number of rows in the database satisfying a given predicate” –
or complex – eg, “Compute the median value for each column; if the Column 1
median exceeds the Column 2 median, then output a histogram of the numbers
of points in the set S of orthants, else provide a histogram of the numbers of
points in a different set T of orthants.”

Note that the complex query above (1) outputs a vector of values and (2) is
an adaptively chosen sequence of two vector-valued queries, where the choice of
second query depends on the true answer to the first query. Although complex,
it is soley a function of the database. We handle such queries in Theorem 4. The
case of an adaptively chosen series of questions, in which subsequent queries
depend on the reported answers to previous queries, is handled in Theorem 5.
For example, suppose the adversary first poses the query “Compute the median
of each column,” and receives in response noisy versions of the medians. Let M
be the reported median for Column 1 (so M is the true median plus noise). The
adversary may then pose the query: “If M exceeds the true median for Column 1
(ie, if the added noise was positive), then . . . else . . . ” This second query is a
function not only of the database but also of the noise added by the privacy
mechanism in responding to the first query; hence, it is adaptive to the behavior
of the mechanism.

5.1 Exponential Noise and the L1-Sensitivity

We will achieve ε-differential privacy by the addition of random noise whose
magnitude is chosen as a function of the largest change a single participant
8 This mechanism was introduced in [12], where analagous results were obtained for

the related notion of ε-indistinguishability. The proofs are essentially the same.
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could have on the output to the query function; we refer to this quantity as the
sensitivity of the function9.

Definition 3. For f : D → Rd, the L1-sensitivity of f is

∆f = max
D1,D2

‖f(D1)− f(D2)‖1 (2)

for all D1, D2 differing in at most one element.

For many types of queries ∆f will be quite small. In particular, the simple count-
ing queries (“How many rows have property P?”) have ∆f ≤ 1. Our techniques
work best – ie, introduce the least noise – when ∆f is small. Note that sensitivity
is a property of the function alone, and is independent of the database.

The privacy mechanism, denoted Kf for a query function f , computes f(X)
and adds noise with a scaled symmetric exponential distribution with variance
σ2 (to be determined in Theorem 4) in each component, described by the density
function

Pr[Kf (X) = a] ∝ exp(−‖f(X)− a‖1/σ) (3)

This distribution has independent coordinates, each of which is an exponentially
distributed random variable. The implementation of this mechanism thus simply
adds symmetric exponential noise to each coordinate of f(X).

Theorem 4. For f : D → Rd, the mechanism Kf gives (∆f/σ)-differential
privacy.

Proof. Starting from (3), we apply the triangle inequality within the exponent,
yielding for all possible responses r

Pr[Kf (D1) = r] ≤ Pr[Kf (D2) = r]× exp(‖f(D1)− f(D2)‖1/σ) . (4)

The second term in this product is bounded by exp(∆f/σ), by the definition of
∆f . Thus (1) holds for singleton sets S = {a}, and the theorem follows by a
union bound.

Theorem 4 describes a relationship between ∆f , σ, and the privacy differen-
tial. To achieve ε-differential privacy, one must choose σ ≥ ε/∆f .

The importance of choosing the noise as a function of the sensitivity of the
entire complex query is made clear by the important case of histogram queries, in
which the domain of data elements is partitioned into some number k of classes,
such as the cells of a contingency table of gross shoe sales versus geographic
regions, and the true answer to the query is the k-tuple of the exact number of
database points in each class. Viewed näıvely, this is a set of k queries, each of
sensitivity 1, so to ensure ε-differential privacy it follows from k applications of
9 It is unfortunate that the term sensitivity is overloaded in the context of privacy.

We chose it in concurrence with sensitivity analysis.
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Theorem 4 (each with d = 1) that it suffices to use noise distributed according to
a symmetric exponential with variance k/ε in each component. However, for any
two databases D1 and D2 differing in only one element, ||f(D1)− f(D2)||1 = 1,
since only one cell of the histogram changes, and that cell only by 1. Thus, we
may apply the theorem once, with d = k and ∆f = 1, and find that it suffices
to add noise with variance 1/ε rather than d/ε.

Adaptive Adversaries We begin with deterministic query strategies F spec-
ified by a set of query functions fρ, where fρ(X)i is the function describing
the ith query given that the first i − 1 (possibly vector-valued) responses have
been ρ1, ρ2, . . . , ρi−1. We require that fρ(X)i = fρ′(X)i if the first i − 1 re-
sponses in ρ and ρ′ are equal. We define the sensitivity of a query strategy
F = {fρ : D → (R+)d} to be the largest sensitivity of any of its possible func-
tions, ie: ∆F = supρ ∆fρ.

Theorem 5. For query strategy F = {fρ : D → Rd}, the mechanism KF gives
(∆F/σ)-differential privacy.

Proof. For each ρ ∈ (R+)d, the law of conditional probability says

Pr[KF (X) = ρ] =
∏
i≤d

Pr[KF (X)i = ρi|ρ1, ρ2, . . . ρi−1] (5)

With ρ1, ρ2, . . . , ρi−1 fixed, fρ(X)i is fixed, and the distribution of KF (X)i is
simply the random variable with mean fρ(X)i and exponential noise with vari-
ance σ2 in each component. Consequently,

Pr[KF (X) = ρ] ∝
∏
i≤d

exp(−‖fρ(X)i − ρi‖1/σ) (6)

= exp(−‖fρ(X)− ρ‖1/σ) (7)

As in Theorem 4, the triangle inequality yields (∆F/σ)-differential privacy.

The case of randomized adversaries is handled as usual, by fixing a “successful”
coin sequence of a winning randomized strategy.
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