
Oracle Virtual Private Database

An Oracle Database 10g Release 2 White Paper
June 2005

Oracle Virtual Private Database

Introduction ... 3
Product Security .. 3

The Need for Granular Access Control .. 4
Current Approaches.. 5

Views .. 5
Introducing the Virtual Private Database .. 6

Dynamically Modified Queries ... 7
Secure Application Contexts ... 9

VPD Features Introduced in Oracle Database 10g Release 1: 11
VPD Features Introduced in Oracle9i ... 12

Partitioned Fine-grained Access Control .. 12
Global Application Context .. 13
Oracle Policy Manager ... 15
VPD Assists Application Development.. 15

Additional VPD Capabilities ... 16
Applying VPD Policies to Existing Views .. 16
Granular Security Policies.. 18
Multiple Policies per Table .. 18
Statement-based Access Control .. 18
Scalable Security .. 19

Summary ... 20

Oracle Virtual Private Database Page 2

Oracle Virtual Private Database

INTRODUCTION

The Internet has enabled greater amounts of data to be shared, collected and
consolidated in large central repositories or warehouses. The security of large
repositories is critical because they represent a gold mine for identity thieves and
others who wish to gain access to data for illicit purposes. Regulations such as
Sarbanes-Oxley and California Senate Bill 1386 have focused attention on internal
controls and the protection of personally identifiable information (PII). Business
managers and technical leads must choose and implement appropriate technologies
to protect sensitive data and enforce the principals of need-to-know and defense in-
depth. Oracle Database 10g Release 2 provides robust security features to assist
DBA's and application developers with security. Access to data traveling across the
network or placed on backup media can be encrypted using Oracle Advanced
Security. Data classification labels can be assigned to data within the Oracle
database using Oracle Label Security. Fine-grained audit policies can be setup
inside the Oracle database to enhance enterprise auditing. Strong authentication
can be deployed requiring digital certificates or Kerberos tickets for authentication
to the Oracle database using Oracle Advanced Security. This technical white paper
focuses on Oracle Virtual Private Database, a powerful enterprise edition security
feature, which extends access control beyond the object level, reduces the need for
database views and helps enforce the principals for need-to-know and defense in-
depth.

The Internet has changed data sharing
between businesses and their customers.

PRODUCT SECURITY

Collectively, there are countless terabytes of data stored electronically, and a
measurable portion of that data is stored in a core information storage unit—the
relational database management system (RDBMS). Oracle Database 10g Release 2
builds upon over 25 years of development and deployment to deliver the leading
database server on the market.

It is well known that a principal reason Oracle leads the database market is its
ability to scale to the onerous requirement placed on database servers today, at the
same time providing mature and comprehensive security functionality which

Oracle Virtual Private Database Page 3

safeguards your data. Simply put, Oracle’s secure infrastructure makes it an
attractive foundation for building and deploying applications.

The Need for Granular Access Control

Who would consider opening production systems, such as order entry, inventory
and customer support, to customers and partners without the ability to strictly limit
data access? Internet-based systems have a strong requirement for access control at
a very fine level of granularity, often to the level of individual customers or users.

Internet-based systems have a
strong requirement for access
control at a very fine level of
granularity, often to the level of
individual customers or users.

Another trend sweeping the corporate community is an increased focus on core
competencies and the outsourcing of routine tasks. Many examples of this can be
found, including human resources, customer support, online ticketing, and Web
storefronts.

A recurring challenge organizations face is the “application security problem.”
When access control is embedded in an application (instead of being enforced
directly on the data), users who have access to ad-hoc query or reporting tools
bypass the security mechanisms of the application. Strong security policies,
centrally managed and applied directly to data, enables security to be enforced no
matter how a user gets to the data, whether through an application, by a query, or
using a report-writing tool. A centrally-managed and applied security policy also
offers a lower cost of ownership: organizations can build security once, in the data
server, instead of building security into every application which accesses the data.

Many existing applications are also faced with problems of enforcing complex
access control policies, required to safeguard sensitive information (the disclosure
of which might have severe social and legal ramifications). Human resources and
medical information systems, for example, have strict requirements for security and
privacy. These applications typically enforce multiple security rules, depending
upon who is accessing the data, and what his function is. Organizations within
diverse industries endeavor to simultaneously manage data centrally (for
administrative ease and cost reduction purposes), while limiting access to
centralized data, for example:

A large company has a centralized human resource database which incorporates
data from multiple subsidiaries, divisions and departments. There are multiple
users of HR information, and different security policies apply to each type of
access:

Employees can view only their own HR records, and modify information such as
marital status, number of dependents, address, and phone number, but they cannot
modify their own salary.

Organizations face the same fundamental
challenge: the need to make data available
while mediating data access at a very fine
level of granularity.

Managers can view all information for employees who work for them, directly or
indirectly.

Oracle Virtual Private Database Page 4

HR specialists can review and update employee records within their area only. A
specialist might only be able to update records in the Engineering division with last
names beginning with the letters A-F.

In every one of these scenarios, the organization faces the same fundamental
challenge: the need to make data available while mediating data access at a very fine
level of granularity.

CURRENT APPROACHES

The principle of least privilege states that users should have only the minimum
privilege set required to perform their jobs, and no more. These features include:

Granular privileges as a means of limiting access rights

Roles to provide ease-of-administration (by grouping privileges)

Views to provide content - or context-based data access

Stored procedures to enable well-formed business transactions, without direct
privilege grants

While many of these features can be used to enforce least privilege, and provide
access control at a level greater than table-level (e.g. the ability to access all data in
a table), these features aren’t always well-suited to access control at much finer
levels of granularity. A discussion of one way in which Oracle users can obtain
more granular access control, and the limitations of this method, follows.

Views

Views are the foundation for many applications’ security mechanisms. Because
views can limit access to information contained in a base table by content or
context, they are widely used in many applications. For example, suppose an HR
clerk needs access to routine employee information contained in the EMP table
(such as name, address and department), but the EMP table also includes salary
information which the HR clerk is not allowed to see. A view, which includes only
name, address, and department, allows HR clerks to see only the selected columns
in EMP which they are authorized to see. A clerk is granted SELECT privilege on
the view, not on the EMP table itself. Also, if you want to allow the manager of
department 20 to see employee data for only her department, you could create a
view which selects department 20 data from the EMP table, and then grant the
manager SELECT privilege on the view. These are examples of view usage based
on data content, but views are also useful for controlling access based on a different
approach.

Views can be used to limit data access according to context. For example, suppose
your company policy is that employees can only view salary information during
normal business hours. You could create a view (which selects from the EMP table
the information you want to see) with the additional restriction that the view can
only be accessed from 9:00am to 5:00pm.

Oracle Virtual Private Database Page 5

Limitations of Views

While views can provide fairly granular access control, they have limitations which
make them less than optimal for very fine-grained access control:

Views are not always practical when you need a lot of them to enforce your security policy. For
example, using views to restrict access to customer data by region is probably
feasible if there are 10 customer regions (and hence 10 views). On the other hand,
using views to limit customers’ access to their own records if there are 100,000
customers (and hence 100,000 views) is not practical.

Views are best suited to access control conditions the database can evaluate simply. For
example, you can create a view of the EMP table for employees who are in
department 20 and whose salaries are less than $50,000 only if department and
salary are columns in the table, and the database can evaluate the condition “less
than 50,000.” A more complex access control policy, or one in which the database
cannot evaluate the access control condition, simply does not lend itself to views.
For example, if your access control policy is “a user accessing the EMP table as a
Payroll clerk through the Payroll application is allowed to see all EMP information,
including SALARY, but only for employees in her division,” this is probably not
possible to express in a view, since you can’t determine what application the user is
accessing at the time you create the view.

While applications may incorporate and
enforce security through views, users often
need access to base tables to run reports or
conduct ad-hoc queries

If users access base tables, they bypass view security. While applications may incorporate
and enforce security through views, users often need access to base tables to run
reports or conduct ad-hoc queries. Users who have privileges on base tables are
able to bypass the security enforcement provided by views. Note that this is a
general problem of embedding security in applications instead of enforcing security
through database mechanisms, but it is exacerbated when security is enforced on
views and not on the data itself (that is, on the table containing the data).

Views may complicate administration of security policy. A security administrator cannot tell
the difference between the parts of a view definition based on logical object
definition, and those designed to enforce security. When a security policy is added,
changed, or removed, it's difficult to determine what exactly to do with each view.
An administrator cannot tell whether, by changing security policies through altering
or dropping a view, he is breaking an application.

INTRODUCING THE VIRTUAL PRIVATE DATABASE

The Virtual Private Database (VPD) is the aggregation of server-enforced, fine-
grained access control, together with a secure application context in the Oracle
Database. It provides a flexible mechanism for building applications that enforce
the security policies customers want enforced, only where such control is necessary.
By dynamically appending SQL statements with a predicate, VPD limits access to
data at the row level and ties the security policy to the table (or view or synonym)
itself.

The Virtual Private Database (VPD) is the
aggregation of server-enforced, fine-grained
access control, together with a secure
application context in the Oracle Database.

The Virtual Private Database offers the following benefits:

Oracle Virtual Private Database Page 6

Lower cost of ownership. Organizations can reap huge cost savings by building
security once, in the data server, instead of implementing the same security in each
application that accesses data.

Elimination of the “application security problem.” Users cannot bypass
security policies embedded in applications because the security policy is attached to
the data. The same security policy is automatically enforced by the data server, no
matter how a user accesses data, whether through a report-writing tool, a query, or
through an application, or emerging methods like Web Services.

Application transparency. Virtual Private Database is enforced at the database
layer and takes into account application-specific logic used to limit data access
within the database. Both commercial off-the-shelf applications and custom-built
applications can take advantage of its granular access control, without the need to
change any lines of application code.

New business opportunities. In the past, organizations couldn’t give customers
and partners direct access to their production systems because there was no way to
secure the data. Hosting companies couldn’t have data for multiple companies
reside in the same data server, because they could not separate each company’s
data. Now, all these scenarios are possible, because fine-grained access control
gives you server-enforced data security with the assurance of physical data
separation.

These benefits contribute to Oracle10g’s industry-leading security solutions. No
other RDBMS vendor offers a competitive feature set that can limit access to data
at a comparatively granular level, uniquely placing Oracle10g as the database of
choice for any security-conscious or cost-sensitive application developers and
customers.

The following sections describe the functionality of the Virtual Private Database—
fine-grained access control and a related feature, Secure Application Context—
provided in Oracle Database 10g Release 2.

Dynamically Modified Queries

Fine-grained access control relies upon “dynamic query modification” to enforce
security policies on the objects with which the policies are associated. Here,
“query” refers to any selection from a table or view, including data access through a
query-for-update, insert or delete statements, or a subquery, not just statements
which begin with SELECT.

A user, directly or indirectly accessing a table, view or synonym with an associated
security policy causes the server to dynamically modify the statement based on a
“WHERE” condition (known as a predicate) returned by a function which
implements the security policy. The user’s SQL statement is modified dynamically,
transparently to the user, using any condition which can be expressed in, or
returned by, a function. Functions which return predicates can also include callouts
to other functions; you could embed a C or Java callout within your PL/SQL

Oracle Virtual Private Database Page 7

package that could either access operating system information or return WHERE
clauses from an operating system file or central policy store. You have great
flexibility within a policy function, which can return different predicates for each
user, each group of users, or each application.

At its purest, Virtual Private Database can limit
access to data in certain tables for all users, as
required by a corporate policy.

Figure 1: Both employee and customer issue the same statement,
but the result is filtered based on their identity

At its purest, Virtual Private Database can limit access to data in certain tables for
all users, as required by a corporate policy. For example, a company involved in
trading might need to limit access to certain tables so they are only accessible
during trading hours. This organization can implement a simple VPD policy that
acquires the time of day and the day of week from the system’s SYSDATE. The
policy allows users to query the table during normal trading hours, but returns no
rows when any user attempts to access the table outside of trading hours. Other
unrelated tables, views or synonyms within the same database need not have the
policy applied to them so that users can access them after hours and on days in
which the market is closed. This simple example illustrates a very straightforward
implementation of Virtual Private Database, but it does not take advantage of more
powerful ways to use the feature.

Consider an HR clerk who is allowed only to see employee records in the
Engineering Division. When the user initiates the query “SELECT * FROM emp,”
the function implementing the security policy returns the predicate “ WHERE
division = ‘ENGINEERING’”, and the database transparently rewrites the query,
so that the query actually executed becomes “SELECT * FROM emp WHERE
division = ‘ENGINEERING’”. The database could obtain the name of the
division from a subquery on another table, or the dynamically modified query

Oracle Virtual Private Database Page 8

implementation could be enhanced to use application context, which is explained in
the next section.

Secure Application Contexts

Many organizations want to make access control
decisions based on something about the user, such
as the user’s position within the organization

Many organizations want to make access control decisions based on something
about the user, such as the user’s position within the organization, his
organizational unit, whether he is a customer or partner. Application contexts give
application developers an easy mechanism to define, set, and validate the security
attributes on which to base fine-grained access control and thus enhance the ability
of developers to implement the Virtual Private Database within Oracle Database
10g Release 2.

Application contexts act as secure caches of data that may be applied to a
fine-grained access control policy on a particular table, view or synonym.
Upon logging into the database, Oracle10g sets up an application context in the
user’s session. Information in the application context is defined by a developer
based on information relevant to the particular application. For example, an Order
Entry application that will query data from an Orders table can base its access
control on the user’s position and geographical location. The application, in this
case, could initially set up an application context for each user as he/she logs in and
populate it with data queried from the Employees and Sales tables for the user’s
position and area (region), respectively. The package implementing the VPD policy
on the Orders table references this application context to populate the user’s
position and area for each query. As such, Application Context obviates the need
to execute sub-queries, which otherwise hinder performance.

Following are the salient points on Application Context that an application
developer should understand:

Application contexts are completely definable by an application developer,
as are their attributes. As a result, each application can have its own application-
specific context, with different attributes. For example, your order entry
application might base access control on customer number, position (whether you
are an order entry clerk, a customer, or a sales rep), and sales region; “customer
number,” “position,” “sales region,” etc. are all attributes of an application context,
which you could call ORDER_ENTRY_CONTEXT. A human resource
application might base access control on position, organizational unit, and
management hierarchies, for which you could define an application context called
HR_CTX, having attributes “position,” “org_unit,” and “hierarchy.” Thus,
application contexts are extensible and useful for a variety of applications.

Application contexts are easy to use ⎯ Applications
can set, verify and retrieve a particular context
attribute conveniently and unambiguously.

Application contexts are easy to use ⎯ Applications can set, verify and retrieve
a particular context attribute conveniently and unambiguously. For example, if a
GL user changes the set of books she is referencing within an application, the
application is able to reset a “set_of_books” attribute without resetting all other
attributes, or without parsing a long string of attributes to change the attribute of

Oracle Virtual Private Database Page 9

interest. Oracle offers a system function (SYS_CONTEXT) which allows you to
specify the exact context and attribute you want to set.

Application contexts simplify the implementation of fine-grained access
control in two significant ways:

Predicate selection. You can access an application context within the function
implementing a security policy to determine the correct predicate to return. For
example, if an attribute of your Order Entry context is “position,” you can return
different predicates depending on position; e.g. if the user has the “clerk” position,
then the predicate returned results in a query that retrieves all orders, but if the user
has the “customer” position, then the predicate returned results in a query that
returns records for only that customer.

Providing a bind variable within a predicate. A context attribute can be used within the
predicate itself, to provide a bind variable. For example, to limit customers to
seeing their own records, you could return a predicate which limits records returned
based on a “cust_num” attribute of your order entry context. The “cust_num”
attribute will be different for every user. Note that you’ve now created one SQL
statement which is shareable by all users, which nonetheless executes differently for
each user.

Application contexts are secure so that they may be safely used to enforce fine-
grained access control. Application contexts provide security in the following ways:

Context uniqueness: Oracle10g enforces that context names (“namespaces”) are
unique across an entire database, to ensure that contexts can’t be duplicated or
spoofed by individual users, either inadvertently or maliciously. For example, if
your human resources application uses the context HR_CONTEXT, you do not
want any user to be able to create her own HR_CONTEXT (which might
potentially allow her to access more information in HR than she is otherwise
privileged to see). Also, the ability to create an application context is a separate
system privilege; only suitably-privileged users are able to create a context.

Attribute validation: For example, suppose a user accessing GL changes his set of
books from 01 to 02. The application context can both ensure that 02 is a valid set
of books, and that the user has the privilege to access set of books 02 (for example,
by querying application metadata tables).

Secure attribute setting: The database ensures that whenever a context attribute
is set, it is the trusted package (implementing the context) and only the trusted
package that sets the context attribute. Oracle does not allow users to make
changes to the package; only the package itself can write to the user session. The
database accomplishes this by checking the call stack, thereby ensuring that the
trusted package is issuing a call to set an attribute. As a result, system security
officers can comfortably allow applications to base security decisions on application
contexts, because they can be assured that the context is set correctly, by a trusted
and known package (and not a malicious user or process).

The database ensures that whenever a context
attribute is set, it is the trusted package

Oracle Virtual Private Database Page 10

Built-In Session Primitives enable application context to use information the
database already has available regarding a user session, in order to perform
access control:

Oracle provides a built-in application context namespace, USERENV, which
provides access to predefined attributes called session primitives—information which
the database captures regarding a user's session. For example, the IP address from
which a user is connected, the distinguished name (DN) from a user’s public-key
(X.509) certificate, the user name, and a proxy user name (in cases where a user
connection is proxied through a middle tier), are all available as predefined
attributes through the USERENV application context.

Predefined attributes can be very useful for access control. For example, if you are
using a three-tier application which creates lightweight user sessions through OCI,
you can access the PROXY_USER attribute in the USERENV application context
to determine whether the user's session was created by a middle tier application.
Your policy function could allow a user to access data only for connections where
the user is proxied. If not (that is, in cases where the user is connecting directly to
the database), the user would not be able to access any data. You could use the
information in the user’s DN to perform access control; for example, if the
Organizational Unit (OU) is “Acme Corporation,” you could limit the data
accessed to “Acme Corporation” data. Predefined attributes can be accessed
through the USERENV application context, but cannot be changed.

VPD FEATURES INTRODUCED IN ORACLE DATABASE 10G RELEASE 1

In Oracle Database 10g Release 1, three new features were added to VPD to
improve granularity and performance: Column Relevance, Column Filtering, and
Policy Type:

Column Relevance – The policy applied to a table is invoked only when a specific
column of the table is part of a select statement (even in a sub-query) or DML
command. For example: An employee is able to see all rows (first name, last name,
location, etc.) from the HR table as long as she does not query the salary column.
As soon as the salary column of the HR table is referenced in her SQL statement,
the database returns only the entries she's allowed to see (her own, or her direct
reports') based on the security policy.

Column Filtering - All rows are returned, but only
the rows she is allowed to see contain a value in
the 'salary' column. All other data cells in the
'salary' column are empty.

Column Filtering – This feature maintains the usefulness of a query while
enforcing the access control policy where necessary: When the employee queries
the HR-table again (including the 'salary' column), all rows are returned, but only
the rows she is allowed to see contain a value in the 'salary' column. All other data
cells in the 'salary' column are empty.

Policy type – This new option allows three parameters to be added to the
“apply_policy” command: Static, context sensitive and dynamic
Static: When the predicate (WHERE-clause) does not change (for example
“WHERE 9 a.m. < sysdate < 6 p.m.”), the policy is only executed once (even if

Oracle Virtual Private Database Page 11

the result of the query varies depending on the time the statement is issued) and
stored in memory, which greatly enhances performance.
Context Sensitive: This is used when the predicate changes infrequently, for
example when another user logs on: “select * from orders WHERE customer_id in
(select cust_id from customers where last_name =
(sys_context('userenv','user_name'))); As long as one customer queries the orders
table, the policy does not need to be executed each time, since it doesn't change.
Only when another customer logs on and queries the same table, which of course
results in different rows being returned, the policy is executed again. Depending on
the frequency of changes, this is a significant performance enhancement.
Dynamic: For compatibility reasons, this is the default when not specified. The
policy is executed each time a protected objects is accessed.

VPD FEATURES INTRODUCED IN ORACLE9I

The Oracle9i Database release marked the introduction of three new Virtual Private
Database features that add to the already-powerful Oracle8i Virtual Private
Database:

Partitioned Fine-grained Access Control – which provides the ability to create
unique application contexts per-application.

Global Application Context – which supports connection pooling common to
multi-tier deployments while preserving Oracle’s ability to make fine-grained access
control decisions based on user information.

Oracle Policy Manager – the graphical user interface (GUI) tool used for
managing VPD policies.

Support for Synonyms – which enables the application of VPD policy functions
on synonyms (in addition to tables and views) so that applications that rely on
synonyms can take advantage of fine-grained access control (introduced in
Oracle9iR2).

Following is a discussion defining the new features and their value in enhancing
VPD. It is followed by an introduction to an Oracle9i database add-on option,
Oracle9i Label Security, which is built on top of VPD.

Partitioned Fine-grained Access Control

A database serving up data to multiple applications can run a different application context for
each of the applications. When deploying a Virtual Private Database on a server used
by multiple applications, it is useful to maintain separate contexts for each
application so that developers do not have to agree on a shared policy. This
enhancement enables customers using the feature to deploy VPD on more systems
because they can now centralize application data for a number of different
applications that share some of the same tables, yet define completely separate
VPD policies on them, returning appropriate results per application.

A database serving up data to multiple applications
can run a different application context for each of the
applications.

Oracle Virtual Private Database Page 12

Consider two applications, an Order Entry (OE) and a Sales Analyzer (SA), that
both rely on an Oracle database named “Products”. Though both query many of
the same tables and views in the “Products” database, they each have distinct
access control conditions they must individually enforce. OE must prevent users
from entering orders in someone else’s name and limit users from entering orders
outside of their own region, while Sales Analyzer needs users to examine sales
figures based on their region and perform analysis on only the product line they’re
responsible for. A “driving” application context securely determines which
application is accessing data, and policy groups facilitate managing the policies
which apply by application. The value of the driving application context indicates
which policy group shall be enabled. In this example, the policy group for OE
(users can update only in their own orders and those within their region) is
enforced when the OE driving context is active. When the query is executed
through SA, its policy group (limit access by region and by product line) is
enforced. The driving application context drives which application context enforces
the policy at a given time. By applying partitioned fine-grained access control, the
SQL predicate appended to statements differs by application.

There might also be a default policy group which acts as the policy that is always
enforced, onto which the application-specific contexts are added. For example, you
might want the database to enforce a policy in which “users only see products
manufactured by their own subsidiary” in addition to any application-enforced
confines. This policy is ANDed together with the Application A-specific
application context when a user accesses the table through that application. It is
ANDed together with the Application B-specific context when that application
accesses the table. Additionally, in the case that the database has no information on
which application context should be in use, the database enforces all policies for all
applications. This is done to ensure that a user cannot get more data if she
connects directly, bypassing the application (for example, with a query tool such as
SQL*Plus) than if she executed the query through an application.

The partitioned fine-grained access control model uniquely allows application-
driven security enforcement without relying on a less secure application security
mode, in which all access control would otherwise be enforced by the application,
leaving the data in the database exposed to direct queries. It allows you to mix and
match custom-built applications with off-the-shelf products with the ability to set
differing security policies appropriate for each application. You can still enjoy the
financial and technical benefits of application transparency, as well as the security
benefits derived from this powerful aggregation of application-based security logic
with database-enforced access control.

Global Application Context

Applications utilize global application context to supply user identity to the
database, which in turn utilizes the identity for access control decisions. Secure
application context can be shared across sessions. The three-tier architecture is the
cost common model for delivering highly effective, scalable, performant

Oracle Virtual Private Database Page 13

information systems, particularly for Web-based applications. The middle tier
application or application server establishes necessary application logic and
performs application-specific operations, while the database provides the scalability,
security and availability required for Web-enabled applications. Oracle’s global
application context increases performance for systems running in a three-tier
environment. Because the middle tier server does not create a new user sessions
for each connection to the database, global application context enables applications
to scale in a security-conscious manner. Good performance is the primary reason
application developers use the feature, but consider the following additional
reasons:

First, using global application context balances the benefits of utilizing database
security functionality with applicability to often-used architectures. That is, using
this feature within three-tier environments makes it possible to use of fine-grained
access control as well as audit the end user who need not be a database user.

Second, many application servers use connection pooling to enhance performance
and reduce the number of physical network connections between the middle tier
server and the database server. Connection pooling limits the use of network
resources used for each process, supports large user populations, maximizes the
number of client-server sessions over a limited number of process connections, and
optimizes resource utilization. Global application context allows you to take
advantage of connection pooling.

Most application servers do not start individual session for each user, as it weighs
down the network with too much overhead. Instead, applications often connect to
the database server simply as application_user. While this model scales well, it is
not an extremely secure model because (a) almost all security must be built into the
application, and (b) any user who subverts the application can potentially gain full
access to the data with no access control protections. Global application context
adds much-needed security to applications functioning in this type of environment.
Application developers do not have to re-architect the entire application; they need
only build in support for global application context and pass to the database the
relevant information in the client_identifier. The client identifier can refer to an
attribute such as a user’s name or virtually any type of group, enabling flexible
options for using global application context in a variety of application
environments. Following are examples of each of these two approaches.

Application developers do not have to re-architect
the entire application; they need only build in
support for global application context and pass to
the database the relevant information in the
client_identifier

Consider an online banking application running in a three-tier architecture that
consists of users on Web browser clients, the middle-tier banking application, and
an Oracle database. First, the application authenticates users on the browsers over
https, and, for best performance, the application pools connections to the database.
It connects to the database as BankApp and pools users’ connections, yet
endeavors to make access control decisions based on individual users. Because
global application context is employed, the application connects as BankApp and
sets a different client identifier (which can be defined and set by the application) for
each of its users. The Oracle database uses the identifiers for fine-grained access

Oracle Virtual Private Database Page 14

control, successfully restricting the user’s access at the row level as if she/he were a
database user.

Another example that is well-suited for global application context is an application
deployed at a university which shares the security decisions between the middle tier
application and the database. The application server first authenticates users, then
determines their category: Student, Professor, Dean, or Staff, then connects to the
VPD-enabled database. When the first user connects, the application establishes
that user Alan is a Student, then connects (as itself, the Application Server) to
Oracle and creates four global application contexts of Student, Professor, Dean,
Staff in the SGA. For the first user, Alan, it sets the client_identifier to Student. At
this point, the database can use the application context information in access
control. When user Barb connects to the application, it authenticates her and
establishes that she is a Professor. Within the same database session, the
application resets the client_identifier to Professor, at which point the database
limits access to tables, views, and rows therein to those appropriate for Professors.

Oracle9i introduced global application context as a part of VPD, but, in fact, it has
applicability beyond Virtual Private Database for secure three-tier systems
employing connection pooling. The application server can provide such a client
identifier to the database—even if it’s not employing VPD—in order to share
sessions among multiple end users who are not database users. It acts as a way to
manage access control on a group- or user-specific level and maintain user identity
throughout the tiers of a multi-tier application. Global application context thus
exemplifies an exceptional model for deploying scalable and secure three-tier
systems.

Oracle Policy Manager

Oracle Policy Manager is a Java-based GUI administration tool for managing
Virtual Private Database policies and application contexts. The same tool also
manages policies for Oracle Label Security. Oracle Policy Manager provides a
standard Oracle interface easing the administration of VPD policies and application
contexts and is especially useful for large implementations employing multiple
policies on various tables, views or synonyms. The tool does not replace the
coding involved in deploying a Virtual Private Database. However, it greatly
simplifies the administration involved in managing VPD policies, application
contexts, and global application contexts. Oracle Policy Manager makes VPD so
easy to use, that some administrators gain interest in VPD because of the tool itself.

VPD Assists Application Development

With the powerful security infrastructure provided by Virtual Private Database,
many application vendors and in-house application developers find VPD an
effective platform for securely scaling their applications. Without it, developers
might have to rely solely on views, build all security logic into the application, or
simply not be able to deploy practical, secure and scalable applications. In this

Oracle Virtual Private Database Page 15

light, one of the most challenging applications to build is a hosting environment,
with its stringent requirements for separation of data. Application Service
Providers (ASPs) that host their customers’ data face a very strict requirement to
separate data of their customers—they would certainly lose business if they were to
accidentally share proprietary information among them.

ADDITIONAL VPD CAPABILITIES

The following sections discuss more advanced Virtual Private Database concepts.

Applying VPD Policies to Existing Views

Virtual Private Database enables customers to extend the discretionary access
control mechanisms already provided by Oracle to a finer level of granularity than
was previously possible. VPD can further enhance the security already provided by
existing views present in a database, not compete with them.

VPD can further enhance the security already
provided by existing views present in a database,
not compete with them

In some cases, users may need to have base table access to run reports or to do ad-
hoc queries using SQL*Plus. Users who can access base tables underlying views
thus bypass security policies attached to those views. In these cases, fine-grained
access control can be applied to base tables, which ensures that, no matter how
their users get to data ⎯ via an application, a report writer, or SQL*Plus ⎯ the
same security policy is enforced. This ensures both data consistency (users can
access the same set of data no matter how they access the data) and that there are
no “backdoors” by which users can violate the security policy.

On the other hand, many applications today already use views to limit data access.
Security policies may be attached to views, for additional application development
flexibility. Application developers (and customers of these existing applications)
would like to extend the current view-based functionality they have, rather than
completely rewrite their applications to use table-based security. For example, an
HR application may use a view of the EMP table (EMP_VIEW) which includes all
information from the EMP table except salary. The company would like to allow
employees to view and update their base employee information online. Adding a
security policy to the view EMP_VIEW, rather than the base EMP table, preserves
the current application while supporting the desired functionality: that employees
can view or update only their own employee records, and nobody else’s.

Oracle Virtual Private Database Page 16

Name

Jones

Patel

Shan

Lupaya

EMP Table

sting View of EMP Table VPD on ViewExi

VPD Policy: users see their
own department only

Location

Boston

Atlanta

Chicago

Boston

Department

Marketing

Sales

Legal

Sales

Salary

2400

1800

2800

1500

Name

Jones

Patel

Shan

Lupaya

Location

Boston

Atlanta

Chicago

Boston

Department

Marketing

Sales

Legal

Sales

Name

Patel

Lupaya

Location

Atlanta

Boston

Department

Sales

Sales

Figure 2: VPD and views in collaboration save re-development.

In considering whether to apply a policy to a table or view, note that it is possible
to create a view reflecting a complex security policy, particularly when combined
with the application context feature; however, you may also end up with an
unwieldy predicate which results in a poor query plan. For example, if you create a
view which may be accessed by multiple users, each with different access
conditions, the view itself needs to contain a lot of data as well as potentially having
a security policy with many OR conditions. While only a few conditions may be
relevant to any particular user, if all of the (potential) access control conditions are
associated with a view, the optimizer will have to incorporate them into everyone's
query plan. However, if you apply fine-grained access control to the base object
rather than the view, everyone can reference the base object, with only those
predicates relevant to each user appended and optimized. That is, instead of having
one large view with many access conditions to be evaluated, you have multiple,
dynamically-created views, each of which only incorporates a small set of access
conditions. Enabling fine-grained access control on the base object (rather than on
the view) allows the view to be dynamic before execution, rather than during
execution, so performance is much faster. Allowing security policies to be attached to either

tables or views provides customers with the
flexibility they need to extend the security of existing
applications

There are benefits to both view-based and table-based fine-grained access control.
Allowing security policies to be attached to either tables or views provides
customers with the flexibility they need to extend the security of existing
applications based on views, or to associate their security policy directly with base
tables, as they choose.

Oracle Virtual Private Database Page 17

Granular Security Policies

Fine-grained access control need only be implemented on those tables, views or synonyms where you
want it. For example, an Order Entry application, in order to enforce the security
policy “customers can see their own orders, but nobody else’s orders” might only
need fine-grained access control on the ORDER and ORDER_LINES tables, not
all the tables used by the application. In many cases, if users have the ability to
SELECT from a table, they are allowed to select anything in the table, and thus no
additional access control needs to be implemented. Attaching security policies to
selected tables, views or synonyms (instead of making a policy apply system-wide)
allows you to use fine-grained security only where you need to. Additionally, you
can add, drop, or disable a policy on a table at any time, if you have appropriate
privilege.

Another advantage of applying fine-grained access control to tables, views or
synonyms is that you can continue to use existing applications, while enjoying the
benefits of better security. You don’t need to rewrite your entire application to use
fine-grained accessed control, you need only add it to base tables or views.

Multiple Policies per Table

Oracle’s Virtual Private Database capability provides maximum flexibility to
support both built-in application security and site-specific customization. For
example, an off-the-shelf Order Entry application might provide fine-grained
access control on the ORDERS table based on sales organization (sales
representatives can see any customer orders from their sales organization, but not
orders from any other sales organizations). A site which sells sensitive military
equipment might want to customize the Order Entry application to limit access to
customer orders based on the security clearance of the Order Entry clerk. The
addition of an additional, custom security policy on the ORDERS table enables the
desired customization without tampering with the base security policy of the
packaged Order Entry application. If there are multiple predicates returned for a
user, Oracle automatically ANDs them together to create the rewritten SQL
statement. Also, if your security policy changes, you can drop, alter or disable it,
without tampering with (and possibly altering) the security enforcement
mechanisms of the base application.

Statement-based Access Control

Fine-grained access control allows you to implement your access control policies based upon
statement type (e.g. SELECT, INSERT, UPDATE, or DELETE). This allows
application developers (and security specialists) maximum flexibility to implement
desired security policies. For example, a divisional HR representative might be able
to view (SELECT) all employee records in her division, but only create or change
(INSERT, UPDATE, or DELETE) records for employees whose last names begin
with A through F. Having different policies for different statement types (on the
same object) provides customers with the flexibility to fine-tune their access control
policies based on their needs and preferences.

The Virtual Private Database’s fine-grained access
control has been designed to be highly scalable

Oracle Virtual Private Database Page 18

Oracle also supports a “check option” on a security policy to automatically ensure
that users inserting or updating a record can see the resulting record. This ensures
that users don’t become frustrated by altering or inserting a record they cannot later
SELECT.

Scalable Security

The Virtual Private Database’s fine-grained access control has been designed to be
highly scalable, and to use the underlying optimization features of Oracle. Under
most circumstances, the addition of a security policy to a table should not adversely
impact performance. The addition of a WHERE clause, appended dynamically to a
statement, occurs before a statement is optimized. This means that the full
statement (including the appended WHERE condition) participates in optimization,
so that it is parsed and executed efficiently. And of course, the full statement can
participate in shared memory, so that any user executing the same statement
(including the WHERE condition) can re-execute the statement without re-parsing
it.

the same statement (including the WHERE condition)
can re-execute the statement without re-parsing it.

The use of application context with fine-grained access control can deliver even
greater performance benefits, because application context can function as a secure
data cache. For example, to implement the policy “customers can only see their
own orders,” one could have the actual policy function determine the customer
number for the logged-in user, by querying the CUSTOMERS table. Or, a
developer can create an application context having a “cust_num” attribute; the
policy function (or functions) can then access the “cust_num” attribute when
needed instead of querying the CUSTOMERS table repeatedly. It’s the difference
between writing an often-used phone number on a Post-It and sticking it on your
telephone (where you can access it readily), and looking the phone number up each
time you need to use it.

While the value of using an application context may not seem evident in such a
simple example, consider that many applications have a variety of access control
attributes; your policy might be “customers can only see their own orders, order
entry clerks can update all orders for customers in their region only, sales reps can
query orders for only their customers.” In this case, your context attributes could
include “customer_number,” “position” (clerk, customer, sales_rep, manager of
sales_rep), and “sales_region.” Now you can clearly see the benefit of caching the
attribute values for the logged-in user (once), instead of doing multiple queries to
retrieve multiple attribute values within a policy function.

Oracle Virtual Private Database Page 19

SUMMARY

The Virtual Private Database is key enabling technology
for opening mission-critical systems to partners and
customers over the Internet

The Virtual Private Database is key enabling technology for opening mission-
critical systems to partners and customers over the Internet. Fine-grained access
control, with secure application contexts, enables organizations to secure data in the
Oracle Database, and ensures that, no matter how a user gets to the data (through
an application, a report writing tool, or SQL*Plus) the same access control policy
will be enforced. Because it can be transparent to applications, it can help a
commercial application vendor or an in-house application designer decide to run
Oracle as the database of choice because no other vendor supplies a comparable
means of implementing granular access control nor nearly as mature an
implementation that combines security, scalability and performance.

The Virtual Private Database can help ASPs ensure that customers see their own
data and nobody else’s, that telecommunications firms can keep customer records
safely segregated, and that human resource applications can support their complex
rules of data access to employee records. The Virtual Private Database also helps
lower your cost of development, by building security once, in the data server,
instead of in every application that accesses the data. It thus eliminates the
“application security problem.” Finally, it complements the most common
application models to achieve secure, scalable three-tier deployments that combine
the use of connection pooling with the ability to control access at the row level
within Oracle.

Oracle Virtual Private Database Page 20

June 2005
Author:
Contributing Authors:

Oracle Corporation
World Headquarters
500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200
oracle.com

Copyright © 2005, Oracle. All rights reserved.
This document is provided for information purposes only and the
contents hereof are subject to change without notice.
This document is not warranted to be error-free, nor subject to any
other warranties or conditions, whether expressed orally or implied
in law, including implied warranties and conditions of merchantability
or fitness for a particular purpose. We specifically disclaim any
liability with respect to this document and no contractual obligations
are formed either directly or indirectly by this document. This document
may not be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without our prior written permission.
Oracle, JD Edwards, and PeopleSoft are registered trademarks of
Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

