
Solutions to the Polyinstantiation Problem 493

Essay 21

Solutions to the
Polyinstantiation Problem

Sushil Jajodia, Ravi S. Sandhu, and Barbara T. Blaustein

What distinguishes a multilevel database from ordinary single-level
ones? In a multilevel world, as we raise a user’s clearance new facts
emerge; conversely, as we lower a user’s clearance some facts get hid-
den. Therefore, users with different clearances see different versions of
reality. Moreover, these different versions must be kept coherent and
consistent — both individually and relative to each other — without in-
troducing any downward signaling channels.

The caveat of “no downward signaling channels’’ poses a major new
problem in building multilevel secure database management systems
(DBMSs) as compared with ordinary single-level DBMSs. Its considera-
tions have led to the notion of polyinstantiation in multilevel relations.
The need for polyinstantiation was first identified by T.H. Hinke and M.
Schaefer [HINK75]; the term “polyinstantiation’’ was coined by the
SeaView project [DENN87]. Polyinstantiation comes in several different
flavors [DENN87; HAIG90a; JAJO90c, d, f; JAJO91a-c; LUNT90; LUNT90b;
SAND90; SAND91; SAND92b, c]. There are significant differences among
these approaches, and debate continues about the correct definition of
polyinstantiation and its operational semantics. However, in each case
polyinstantiation significantly complicates the semantics of multilevel
relations (particularly for high users). As a result, recently some solu-
tions have appeared that attempt to do away with polyinstantiation
completely [BURN90, SAND91, WISE90]. In this essay, we carefully re-
view how the need for polyinstantiation arises in multilevel relations,
then survey methods that have been developed for dealing with it.

This essay is organized as follows. First we review the concept of poly-
instantiation from an intuitive point of view, with the objective of identi-
fying the sources of polyinstantiation. Next we present as a straw man a
simple but unacceptable solution. After we introduce an example for
comparison, we discuss different approaches to polyinstantiation and
the architectural considerations that affect it.

494 Information Security

What is polyinstantiation?

In this section we show by examples how polyinstantiation arises. We
assume that readers are familiar with the basic concepts of the standard
(single-level) as well as multilevel relations, as explained in Essay 20.

In multilevel relations, access classes can be assigned to data stored
in relations in four different ways. One can assign access classes to rela-
tions, to individual tuples in a relation, to individual attributes (col-
umns) of a relation, or to individual data elements of the tuples of a
relation. Polyinstantiation does not arise explicitly when access classes
are assigned to relations or individual attributes of a relation; therefore,
we consider the cases when access classes are attached to tuples or the
data elements themselves.

Types of polyinstantiation. A multilevel relation is said to be poly-
instantiated when it contains two or more tuples with the same appar-
ent primary key values [DENN87, JAJO91b]. There are two different
types of polyinstantiation:

• entity polyinstantiation, and
• attribute polyinstantiation.

Entity polyinstantiation occurs when a relation contains multiple tuples
with the same apparent primary key values, but having different access
class values for the apparent primary key. As an example, consider the
relation SOD given in Figure 1.

Starship Objective Destination

Enterprise U Exploration U Talos U

Enterprise S Spying S Rigel S

Figure 1. A multilevel relation with entity polyinstantiation.

In Figure 1, as in most of our examples, each attribute in a tuple not

only has a value but also a classification. We assume that the attribute
Starship is the apparent primary key of SOD.

Now, the relation given in Figure 1 contains two tuples for the same
starship Enterprise, resulting in entity polyinstantiation. These tuples
can be regarded as pertaining to two different real-world entities or a
single real-world entity. We cannot tell immediately by looking at the
relation which is really the case.

Solutions to the Polyinstantiation Problem 495

The relation in Figure 2 illustrates attribute polyinstantiation. With
attribute polyinstantiation, a relation contains two or more tuples with
identical apparent primary key and the associated access class values,
but having different values for one or more remaining attributes, as
shown in Figure 2. In the figure, both tuples refer to a single starship
Enterprise; an S-user sees different values for its objective and destina-
tion.

As we indicated, explicit polyinstantiation can occur with tuple-level
labeling instead of element-level labeling. Let us consider the same ex-
ample when access classes are associated with each tuple instead of
each element. The S-user will see the multilevel relation shown in Fig-
ure 3.

Starship Objective Destination

Enterprise U Exploration U Talos U

Enterprise U Spying S Rigel S

Figure 2. A multilevel relation with attribute polyinstantiation.

Starship Objective Destination TC

Enterprise Exploration Talos U

Enterprise Spying Rigel S

Figure 3. A multilevel relation with tuple-level labeling.

Notice that with tuple-level labeling, we can no longer distinguish the

entity polyinstantiation from attribute polyinstantiation. In our example
relation, it is possible that both tuples relate to the same starship En-
terprise; the U-tuple is merely the cover story. At the same time, it is
also possible that there are two completely different starships; however,
they have been given the same name, possibly by mistake.

How polyinstantiation occurs. Either type of polyinstantiation can
occur in basically two different ways, which we call visible and invisible
polyinstantiation for mnemonic convenience:

496 Information Security

1. Visible polyinstantiation occurs when a high user1attempts to in-
sert data in a field that already contains low data. Since overwrit-
ing the low data in place will result in a downward signaling
channel, the high data is inserted by creating a new tuple to store
it.

2. Invisible polyinstantiation occurs in the opposite situation, where
a low user attempts to insert data in a field that already contains
high data. Since rejecting the update is not a viable option be-
cause it establishes a downward signaling channel, the tuple is
polyinstantiated to reflect the low update.

The next two subsections make visible and invisible polyinstantiation
clearer by considering some examples. The examples illustrate attribute
polyinstantiation only; examples illustrating entity polyinstantiation can
be constructed similarly.

Visible polyinstantiation example. Let us now consider a concrete ex-
ample to make visible and invisible polyinstantiation clearer. Consider
the following relation SOD where Starship is the apparent primary key:

Starship Objective Destination

Enterprise U Exploration U Null U

Now consider the following scenario:

1. A U-user updates the destination of the Enterprise to be Talos.
The relation is therefore modified as follows:

Starship Objective Destination

Enterprise U Exploration U Talos U

2. Next an S-user attempts to modify the destination of the Enter-

prise to be Rigel. Since we do not wish to deny entry of legitimate
secret data, this update is not rejected. However, since we cannot

1Strictly speaking, we should be saying subject rather than user. For the most

part, we will loosely use these terms interchangeably. Where the distinction is
important, we will be appropriately precise.

Solutions to the Polyinstantiation Problem 497

overwrite the destination in place because that would create a
downward signaling channel, we polyinstantiate and modify the
relation to appear as follows, respectively, for U- and S-users (note
that U-users see no change):

Starship Objective Destination

Enterprise U Exploration U Talos U

Starship Objective Destination

Enterprise U Exploration U Talos U

Enterprise U Exploration U Rigel S

What are we to make of the last relation above? There are at least two

reasonable interpretations:

• Cover story. The destination of Talos may be a cover story for the
real destination of Rigel. In this case, the database is accurately
mimicking the duplicity of the real world. There are, however,
other ways of incorporating cover stories besides polyinstantia-
tion. For example, we may have two attributes, one for the cover-
story destination and one for the real destination. Debate on the
relative merits and demerits of these techniques is outside the
scope of this essay.

• Temporary inconsistency. We may have a temporary inconsistency
in the database that needs to be resolved. For instance, the in-
consistency may be resolved as follows: The S-user who inserted
the Rigel destination later logs in at the U level and nullifies the
Talos value, so thereafter the relation appears respectively as fol-
lows to U- and S-users:

Starship Objective Destination

Enterprise U Exploration U Null U

Starship Objective Destination

Enterprise U Exploration U Rigel S

498 Information Security

It is important to understand that this scheme does not create a
downward signaling channel from one subject to another. The
nullification of the destination at the U level is being done by a U-
subject. One might argue that there is a downward signaling
channel with a human in the loop. The human is, however,
trusted not to let the channel be exercised without good cause.
The real threat is to entity integrity: The U-user who executed
step 1 of the scenario may again try to enter Talos as the destina-
tion, which brings us within the scope of invisible polyinstantia-
tion.

Invisible polyinstantiation example. Our example for invisible poly-
instantiation is similar to the visible polyinstantiation example, with the
difference that the two update operations occur in the opposite order.
So again consider the following relation SOD, where Starship is the ap-
parent primary key:

Starship Objective Destination

Enterprise U Exploration U Null U

This time consider the following scenario:

1. An S-user modifies the destination of the Enterprise to be Rigel.
The relation is modified to appear respectively as follows to U- and
S-users (U-users see no change in the relation):

Starship Objective Destination

Enterprise U Exploration U Null U

Starship Objective Destination

Enterprise U Exploration U Rigel S

2. A U-user updates the destination of the Enterprise to be Talos.

We cannot reject this update on the grounds that a secret desti-
nation for the Enterprise already exists, because that amounts to
establishing a downward signaling channel. Thus we have only

Solutions to the Polyinstantiation Problem 499

one of two options left. The first option is that we can overwrite
the destination field in place at the cost of destroying secret data.
This would give us the following relation for both U- and S-users:

Starship Objective Destination

Enterprise U Exploration U Talos U

For obvious reasons this alternative has not been seriously con-
sidered by most researchers. That leaves us the option of polyin-
stantiation, which will modify the relation at the end of step 1 to
the following for U- and S-users respectively:

Starship Objective Destination

Enterprise U Exploration U Talos U

Starship Objective Destination

Enterprise U Exploration U Talos U

Enterprise U Exploration U Rigel S

This is exactly the same relation as obtained at the end of step 2 in our
visible polyinstantiation example. The possible interpretations are
therefore similar — that is, we have either a temporary inconsistency or
a cover story. The temporary inconsistency can be corrected by having a
U-subject (possibly created by an S-user logged in at the U level) nullify
the Talos destination. But the inconsistency may recur again and again.

A simple but unacceptable solution to polyinstantia-
tion

There are two obvious “secure’’ alternatives to both visible and invisi-
ble polyinstantiations. These alternatives are secure in the sense of se-
crecy and information flow, and preserve primary key requirements in
multilevel relations; but unfortunately, they suffer from denial-of-service
and other integrity problems:

1. Whenever a high user makes an update that violates the unique-
ness requirement, we simply refuse that update.

500 Information Security

2. Whenever a low user makes a change that conflicts with the
uniqueness requirement, the conflicting high data is overwritten
in place by the low data.

It is not difficult to see that this simple solution preserves the
uniqueness requirement in multilevel relations. This solution is secure
in the sense of secrecy and information flow. It is our view that while
this solution may be acceptable in some specific situations, it is clearly
unacceptable as a general solution; it can lead to serious denial-of-
service and integrity problems. Therefore, we now look for other alterna-
tives that do not suffer from these problems.

An example

The next section will describe several solutions to the polyinstantia-
tion dilemma. Some allow polyinstantiation in multilevel relations,
while others seek to eliminate polyinstantiation completely. To help in
appreciation of the differences among various solutions, this section de-
velops an example in more detail. Consider once again the relation
SOD, which has three attributes: Starship, Objective, and Destination,
with Starship being the primary key.

If we were living in a single-level world, for each starship there would
be at most one tuple in this relation giving us that starship’s unique ob-
jective and unique destination. For example, the tuple <Enterprise, Ex-
ploration, Talos> would denote that the starship Enterprise has set out
to explore Talos. We say that this entire tuple gives us the mission of
the Enterprise.

Next consider a multilevel relation that attempts to represent the
same information — that is, the objective and destination of a starship
— but in a multilevel world where some facts are classified. Assume that
there are just two levels, U for unclassified and S for secret. To further
simplify the example, let us say the Starship attribute is always unclas-
sified. Therefore, the classification range of the Starship attribute has
lower and upper bounds of U. On the other hand, let the classification
range of the Objective and Destination attributes have a lower bound of
U and an upper bound of S. Let us call the resulting schema SOD,
which is summarized in Figure 4. In this section, we will, for conven-
ience, augment a relation scheme with a tuple class or TC attribute.
This attribute is computed to be the least upper bound of the classifica-
tions of the individual data elements in the tuple. Thus, the value of TC
gives the classification of the entire tuple.

The apparent primary key of SOD is specified as Starship. Intuitively
this means that if only unclassified data is stored in SOD, then Starship
would be the actual primary key of the relation. Similarly, if only secret
data is stored in the Objective and Destination attributes, Starship

Solutions to the Polyinstantiation Problem 501

would be the actual primary key. On the other hand, if a mix of secret
and unclassified data is stored in these attributes, the actual primary
key of SOD is Starship along with the attribute classifications. Instance
8 of Figure 5 contains four tuples for the starship Enterprise. What
makes each tuple distinct is the classification of the Objective and Des-
tination attributes.

Attribute

Classification
Range

Starship [U, U]

Objective [U, S]

Destination [U, S]

Tuple class (TC) [U, S]

Figure 4. Schema for the multilevel relation SOD.

An instance of SOD is likely to contain different tuples at different

levels. Therefore, it is important to distinguish between the U-instance
of SOD, visible to Unclassified users, and the S-instance, visible to Se-
cret users. As a user’s clearance increases, it is reasonable to keep all
previously visible information intact and perhaps add some new facts
visible only at that level. To be concrete, consider the U-instance of
SOD given in Figure 6. It contains exactly one tuple, telling us that, as
far as Unclassified users are concerned, the starship Enterprise has set
out to explore Talos. The eight different S-instances of SOD enumer-
ated in Figure 5 are all consistent with the U-instance of Figure 6. Their
common property is that the single tuple of the U-instance appears in
all eight S-instances. We regard each tuple in an instance of SOD as
defining a mission for the starship in question. A U-instance of SOD al-
lows only one mission per starship. S-instances, on the other hand, al-
low up to four missions per starship, three of which are secret and one
unclassified.

We now demonstrate there is a practically useful and intuitively rea-
sonable interpretation for each of the eight S-instances of Figure 5.
Consider each S-instance in turn, as follows:

1. The S-instance is identical to the U-instance. There is therefore no
secret aspect to the Enterprise. This is the simplest case and
needs little explanation.

502 Information Security

No. Starship Objective Destination TC

1 Enterprise U Exploration U Talos U U

2 Enterprise U Exploration U Talos U U

 Enterprise U Spying S Talos U S

3 Enterprise U Exploration U Talos U U

 Enterprise U Exploration U Rigel S S

4 Enterprise U Exploration U Talos U U

 Enterprise U Spying S Rigel S S

5 Enterprise U Exploration U Talos U U

 Enterprise U Exploration U Rigel S S

 Enterprise U Spying S Rigel S S

6 Enterprise U Exploration U Talos U U

 Enterprise U Spying S Talos U S

 Enterprise U Spying S Rigel S S

7 Enterprise U Exploration U Talos U U

 Enterprise U Spying S Talos U S

 Enterprise U Exploration U Rigel S S

8 Enterprise U Exploration U Talos U U

 Enterprise U Spying S Talos U S

 Enterprise U Exploration U Rigel S S

 Enterprise U Spying S Rigel S S

Figure 5. Eight S-instances of SOD.

Starship Objective Destination TC

Enterprise U Exploration U Talos U U

Figure 6. A U-instance of SOD.

In each of the next three cases there is a single tuple in the S-instance
in addition to the tuple of the U-instance. This secret tuple defines a
secret mission for the Enterprise in addition to its unclassified mission.

Solutions to the Polyinstantiation Problem 503

2. The S-instance reveals the secret mission to be spying on Talos. Pre-
sumably, the unclassified exploration mission to Talos is a cover
story to hide the secret spying mission. To maintain the integrity
of the cover story, the Enterprise will probably expend resources
on exploring Talos. Conceivably, the bulk of its resources might be
devoted to useful exploration of Talos, with the secret spying mis-
sion added on as a low-profile, low-marginal-cost, and opportunis-
tic effort. We obviously cannot resolve this issue without further
knowledge about the real situation, such as a competent user
might have. The main point is that the Enterprise does have two
distinct missions: the unclassified one of exploring Talos and the
secret one of spying there.

3. The S-instance reveals the secret mission to be exploration of Rigel.
This case is very similar to the previous one in that only one at-
tribute has a secret value. Clearly the desire to explore Rigel un-
der cover of exploring Talos is a realistic one, not only in the
national security arena but also in a competitive commercial con-
text.

4. The S-instance reveals the secret mission to be spying on Rigel. This
case is similar to the previous two in that there is only one secret
mission. It is different in that the objective and destination of the
secret mission are now both classified.

Each of the three preceding cases presents a distinctly different secret
mission — secretly spying on Talos, secretly exploring Rigel, and secretly
spying on Rigel. These three secret missions do share the common
property that exploring Talos is an acceptable unclassified cover story.
The next three cases present situations where two of these three se-
cret missions are concurrently in progress.

5. The S-instance reveals two secret missions: to explore Rigel and to
spy on Rigel. Both secret missions are concerned with Rigel.
Whether the principal one is to explore it or spy there, or the two
missions are equally important, cannot be ascertained without
further information. The secret exploration of Rigel may simply be
a convenient damage-control story, should the secret destination
of the Enterprise be leaked. Conversely, spying on Rigel may be an
opportunistic and relatively unimportant add-on to its secret ex-
ploration.

6. The S-instance reveals two secret missions: to spy on Talos and to
spy on Rigel. This is similar to the previous case, and once again
we cannot a priori decide which, if any, is the principal secret mis-
sion.

7. The S-instance reveals two secret missions: to spy on Talos and to
explore Rigel. This may appear strange at first, but it is perfectly

504 Information Security

proper. For instance, there may be no life-forms on Rigel worth
spying on, while there are indications of vast quantities of ura-
nium. This S-instance does point out problems with simple rules
such as “give the value with the highest classification for each at-
tribute.’’ Such a rule would manufacture the secret mission of
spying on Rigel, which does not exist in the relation.

As the reader may have guessed by now, our final S-instance specifies
that the three secret missions identified in instances 2, 3, and 4 are all
concurrently in progress.

8. The S-instance reveals three secret missions: to spy on Talos, to ex-
plore Rigel, and to spy on Rigel. As before, without further informa-
tion and knowledge, we cannot say very much about the relation
of these three secret missions to one another. All we know is that
they share the same cover story of exploring Talos.

To summarize, the eight S-instances of SOD can be partitioned into
three classes as follows:

1. Instance 1 has no polyinstantiation and is therefore straightfor-
ward.

2. Instances 2, 3, and 4 are also relatively straightforward. Instance 2
has a cover story for the objective, but the U destination is correct.
Instance 3, on the other hand, has a cover story for the destina-
tion, while the objective is correct. Instance 4 has a cover story for
both the destination and the objective.

3. Instances 5, 6, 7, and 8 are confusing to interpret if it is assumed
that the higher level data correctly represent the real world.
Nonetheless, it is possible to give a meaningful and consistent in-
terpretation and update semantics for both the objective and the
destination.

Solutions to the polyinstantiation problem

There are a number of different approaches to implementing polyin-
stantiation in a database management system, reflecting divergent per-
spectives on the meaning and uses of polyinstantiation within an MLS
environment. Each approach has its proponents and detractors, and
each is suited to particular types of applications. It is not our intent to
promote certain approaches or to dismiss others, but instead to discuss
the perspective motivating each of them. It is our belief that different
organizations and real-world enterprises will choose to model their un-
derstandings of multilevel data in distinct ways. Our goal here is to pre-

Solutions to the Polyinstantiation Problem 505

sent multiple approaches and their rationales so that each organization
can choose the most appropriate implementation for its requirements.

This section starts with approaches that view polyinstantiation (and
the concomitant addition of tuples) as an integral part of an MLS data-
base. Next, the section presents strategies that compose new tuples to
answer queries based on the security levels of underlying tuples. Fi-
nally, it discusses approaches that include explicit restrictions on users’
views of data.

Propagation of polyinstantiated tuples. One perspective on deal-
ing with the tension between multilevel security and data semantics is
to regard polyinstantiation as an inevitable and integral part of multi-
level secure information. Users at different security levels may see dif-
ferent attribute values for the same real-world tuple (for example, secret
versus unclassified objectives for the same starship), and the users must
be allowed to update these values differently. This perspective leads to
an approach to polyinstantiation in which new tuples are added to re-
flect the combinatorial explosion of attribute values. For simplicity, we
will call this approach the propagation approach to polyinstantiation.

The propagation approach faces two key challenges:

1. ensuring that keys still function to identify distinct real-world en-
tities, and

2. controlling the propagation of tuples to include only meaningful
combinations of attribute values.

The first challenge is met by augmenting the apparent key with a secu-
rity level and enforcing the standard key uniqueness property over this
augmented key. The second challenge is more complex, and researchers
are still debating which types of combinations are meaningful. In gen-
eral, multivalued dependencies [DATE83] are used to define the particu-
lar combinations allowed by a specific solution. While many variants are
possible, the SeaView project [DENN87; DENN88a, b; LUNT89c; LUNT90;
LUNT90b] and the modifications proposed by Jajodia and Sandhu
[JAJO90c] provide the basis of this approach. First we present the origi-
nal SeaView approach, then Jajodia and Sandhu’s proposed modifica-
tion, and finally some new techniques proposed by the SeaView project.

The SeaView project began as a joint effort by SRI International and
Gemini Computers with the goal of designing and prototyping an MLS
relational database management system that satisfies the Trusted
Computer System Evaluation Criteria for class A1 [DOD85]. Currently
the project is in the final phase of a prototype implementation using
GEMSOS as the underlying trusted computing base, along with the
Oracle relational DBMS [LUNT90].

506 Information Security

SeaView solves the problem of polyinstantiation of key attributes
themselves by defining an entity integrity property. This property re-
quires all attributes in a key to be uniformly classified. That is, for any
instance Rc of a multilevel relation schema, for any tuple t ∈ Rc, and for
any attributes Ai and Aj in the apparent primary key KR of R, t [Ci] = t [Cj].
Notice that this means it is possible simply to define a single attribute
CK to represent the classification level of all attributes in the apparent
primary key. Further, no tuples may have null values for key attributes.
This restriction ensures that keys can be meaningfully specified and
checked for uniqueness. In addition, all nonkey classification attributes
must dominate CK. This restriction guarantees that if a user can see
any part of a tuple, then he or she can see the key.

To meet the first challenge, that of using keys to determine when tu-
ples model distinct real-world entities, SeaView defines a polyinstantia-
tion integrity property. The formulation of polyinstantiation integrity in
SeaView consists of two distinct parts. The first part consists of a func-
tional dependency component whose effect is to prohibit polyinstantia-
tion within the same access class. The second part consists of a
multivalued dependency requirement.

SeaView polyinstantiation integrity property. A multilevel relation Rc
satisfies polyinstantiation integrity (PI) if and only if for every Rc there
are for all Ai ∈ KR

1. KR, CK, Ci → Ai
2. KR, CK →→ Ai, Ci

The PI property can be regarded as implicitly defining what is meant by
the primary key in a multilevel relation. The primary key of a multilevel
relation is KR ∪ CK ∪ CR (where CR is the set of classification attributes
for data attributes not in KR), since from PI it follows that the functional
dependency KR → AR holds (where AR consists of all attributes that are
not in KR).

Of the eight instances defined in Figure 5, this definition of polyin-
stantiation integrity allows only two combinations of these eight in-
stances within a single relation scheme [JAJO90c]. Specifically, a
SeaView relation can accommodate either instances 1, 2, 3, and 8 or
instances 1 and 4 within a single scheme in the absence of the uniform
classification constraint. SeaView admits only instances 1 and 4 if the
Objective and Destination attributes are uniformly classified (that is,
either both are classified U or both S).

The inclusion of the multivalued dependency in the definition of poly-
instantiation integrity means that one update may result in a number of
tuples being added to the relation. To illustrate, consider the situation
in which an S-user attempts to go from S-instance 1 to S-instance 4 in

Solutions to the Polyinstantiation Problem 507

Figure 5 by inserting the secret tuple specifying the secret mission of
spying on Rigel. SeaView will interpret this as a request to go from S-
instance 1 to S-instance 8, thereby manufacturing two additional mis-
sions for the Enterprise. Unfortunately, this increases the potential for
such additional information, which may not reflect true data, to be re-
trieved from the database by users with higher clearances.

It is easy to see that, in the worst case, the number of manufactured
tuples grows at the rate of |security-lattice|k, where k is the number of
nonkey attributes in the relation. For example, Figure 7 shows a TS-
instance of a relation similar to SOD, except that it has a range of four
security levels for the Objective and Destination attributes. The particu-
lar TS instance shown describes four missions for the Enterprise, one
each at the unclassified, confidential, secret, and top-secret levels. The
definition of polyinstantiation integrity in SeaView requires that this
information be represented by the 16 missions shown in Figure 8. Users
with clearances U, C, S, and TS will respectively see 1, 4, 9, and 16 mis-
sions with the SeaView approach.

Starship Objective Destination TC

Enterprise U Exploration U Talos U U

Enterprise U Mining C Sirius C C

Enterprise U Spying S Rigel S S

Enterprise U Coup T
S

Orion T
S

TS

Figure 7. A TS-instance of SOD with four missions.

Jajodia and Sandhu [JAJO90c] proposed dropping the multivalued

dependency from the polyinstantiation integrity property defined in the
SeaView model. They argued that the multivalued dependency prohibits
the existence of relation instances desirable in practice. Specifically, it
is possible to accommodate all eight instances of Figure 5. Jajodia and
Sandhu also gave formal operational semantics for update operations in
multilevel relations [JAJO91b, c].

Based on this proposal, the SeaView team began a reexamination of
the SeaView definition of polyinstantiation integrity. Lunt and Hsieh
[LUNT90b] developed a semantics for the basic database manipulation
operations (insert, update, and delete). Based on these semantics, they
proposed a different definition for polyinstantiation integrity consisting
of two separate pieces: a state property containing the same functional

508 Information Security

dependency component and a transition property concerning a new dy-
namic multivalued dependency component. Although Lunt and Hsieh
do not define the latter property precisely, the basic idea can be illus-
trated informally by way of an example from their work [LUNT90b].

Consider the multilevel relation scheme R (A1, C1, A2, C2, A3, C3, TC),
where each Ai is an attribute, each Ci is the classification attribute for
Ai, and TC is the tuple class attribute. The attribute A1 is the apparent
primary key of R. An instance Rc at a classification level c is assumed to
satisfy the two constraints of the PI property.

Starship Objective Destination TC

Enterprise U Exploration U Talos U U

Enterprise U Exploration U Sirius C C

Enterprise U Mining C Talos U C

Enterprise U Mining C Sirius C C

Enterprise U Exploration U Rigel S S

Enterprise U Mining C Rigel S S

Enterprise U Spying S Talos U S

Enterprise U Spying S Sirius C S

Enterprise U Spying S Rigel S S

Enterprise U Exploration U Orion T
S

TS

Enterprise U Mining C Orion T
S

TS

Enterprise U Spying S Orion T
S

TS

Enterprise U Coup T
S

Talos U TS

Enterprise U Coup T
S

Sirius C TS

Enterprise U Coup T
S

Rigel S TS

Enterprise U Coup T
S

Orion T
S

TS

Figure 8. The SeaView materialization with 16 missions.

Solutions to the Polyinstantiation Problem 509

Now, consider the following relation instance RU:

A1 C1 A2 C2 A3 C3 TC

a U b U x U U

Suppose a Confidential user changes the value of A2 to d, as shown
here:

A1 C1 A2 C2 A3 C3 TC

a U b U x U U

a U d C x U C

Under Lunt and Hsieh’s update semantics, whenever an update in-
volves some, but not all, of the nonkey attributes, certain dynamic mul-
tivalued dependencies are enforced in the multilevel relations. In the
example, the dynamic multivalued dependencies are

A1, C1 →→ A2, C2 | A3, C3

where the notation X →→ Y | Z denotes the multivalued dependencies
X →→ Y and X →→ Z.

Next, suppose a Top Secret user updates the value of A3 to equal v. As
before, since this update involves some (but not all) of the nonkey at-
tributes, the dynamic multivalued dependency property causes two
more tuples to be added to the relation:

A1 C1 A2 C2 A3 C3 TC

a U b U x U U

a U d C x U C

a U b U v TS TS

a U d C v U TS

At this point suppose a Secret user changes the value of the second

attribute to q. The following relation instance results:

510 Information Security

A1 C1 A2 C2 A3 C3 TC

a U b U x U U

a U d C x U C

a U b U v TS TS

a U d C v U TS

a U q S x U TS

a U d C v U TS

According to Lunt and Hsieh [LUNT90b], the way in which an update
occurs determines whether or not the multivalued dependency should
be enforced. Essentially, if two or more attributes were updated in a sin-
gle update statement, the multivalued dependency would not be en-
forced. However, if the two attributes were updated in two independent
operations, the multivalued dependency would be enforced.

This dynamic approach is not yet formalized, nor is it being incorpo-
rated in the SeaView prototype.

Derived values:. A second perspective on polyinstantiation is that al-
though a multilevel relation may have several tuples for the same real-
world entity, there should be only one such tuple per classification
level. Instead of a classification level Ci for each attribute Ai, the
schema Rc includes a single classification level for each tuple, TC. When
a user wants to update only certain attributes at a particular level, the
values of the other attributes are derived from values at lower security
levels.

Consider the following relation SOD where Starship is the key:

Starship Objective Destination TC

Enterprise Exploration Talos U

Now suppose an S-user wishes to modify the destination of the Enter-
prise to be Rigel. He or she can simply do so by inserting a new secret
tuple to SOD, as follows:

(Enterprise, $U , Rigel, S)

The symbol $U is to be interpreted as follows: For this S-tuple, the
value of the Objective field is identical to the corresponding value in the
U-tuple of SOD. As a consequence, when an S-user asks for the SOD
relation to be materialized, he or she will see the following:

Solutions to the Polyinstantiation Problem 511

Starship Objective Destination TC

Enterprise Exploration Talos U

Enterprise Exploration Rigel S

The relation will appear unchanged to the U-user.
The Lock Data Views (LDV) project [HAIG90a] follows this derived data

approach.: The derived data approach has been implemented for the US
Transportation Command Air Mobility Command MLS Global Decision
Support System (GDSS) [NELS91]. This implementation, the MLS GDSS,
limits polyinstantiation in a multilevel relation to at most one tuple per
security class. Information is labeled at one of two levels, U or S. The
design is based on the organization’s assumption that when S and U
data are integrated into a single S response the S data takes prece-
dence over the U data. This design can be extended to environments
with more than two strictly ordered security levels. Organizations for
which this strict hierarchical rule does not apply, such as those with
many compartmented environments, would have to incorporate sub-
stantial changes into this design in order to use it.

In the MLS GDSS application, trusted application software function-
ally extends the commercial off-the-shelf (COTS) MLS DBMS to manage
tuple-level polyinstantiation. Before inserting an S-tuple, the trusted
software ensures that a U-tuple exists with the same key. If it does not
exist, the insertion of an S-tuple is not permitted. If a U-tuple with the
same apparent primary key does exist, the trusted application software
examines each S-tuple attribute value, except the apparent key value,
and determines if it replicates the attribute’s value in the U-tuple. If so,
the value is not replicated in the S-tuple but instead is set to null,
minimizing data replication. The U-tuple thus serves as the foundation
upon which the S-tuple is built. The MLS GDSS solution is best ex-
plained with several examples.

Consider the following relation:

Starship Objective Destination TC

Enterprise Exploration Talos U

512 Information Security

Now suppose an S-user wishes to modify the destination of the Enter-
prise to Rigel. The S-user directs the system, through the trusted soft-
ware, to insert an S-tuple into the SOD, as follows:

S-USER:
 Insert into
 (Starship, Objective, Destination)
 Values (‘Enterprise’, ‘Exploration’, ‘Rigel’)

The U- and S-tuples are now stored in the relation as:

Starship Objective Destination TC

Enterprise Exploration Talos U

Enterprise Null Rigel S

Reducing the replication of data across polyinstantiated tuples im-

proves the probability of maintaining the integrity of the database. Addi-
tionally, except for the key value, the sensitivity levels of all attribute
values contained within the stored tuple are equivalent to the TC
value. Given this equivalence to the TC value, trusted application soft-
ware derives attribute value labels from the TC value. Users operating at
the U level are presented with a display showing the derived attribute
value labels, as follows:

Starship Objective Destination

Enterprise U Exploration U Talos U

Users operating at the S level are presented with a single composite dis-
play of a materialized tuple. This materialized tuple comprises S and U
data, as follows:

Starship Objective Destination

Enterprise U Exploration U Rigel S

Solutions to the Polyinstantiation Problem 513

One of the major impacts of the polyinstantiation approach as imple-
mented in the MLS GDSS involves the DBMS join operator at the S
level. Figure 9 illustrates the simplest form of the problem. A typical join
operation between two tables matches and retrieves rows based on the
primary key Starship. To retrieve data residing at the same security level
and thus permit proper collapsing of the rows into a materialized tuple,
the join is further qualified by the row’s security label attribute TC:

S-USER:
 Select *
 FROM Table1, Table2
 where Table1.Starship = Table2.Starship
 and Table1.TC = Table2.TC

Case 1:

Starship Objective Destination TC

Enterprise Exploration Talos U

Enterprise Null Rigel S

Starship Type Propulsion TC

Enterprise Starship Photon U

Enterprise Battlestar Queller drive S

Starship Objective Destination Type Propulsion

Enter-

prise U

Exploration U Ri-

gel S

Bat-

tlestar S

Queller drive S

Case 2:

Starship Objective Destination TC

Enterprise Exploration Talos U

Enterprise Null Rigel S

Starship Type Propulsion TC

Enterprise Starship Photon U

Starship Objective Destination Type Propulsion

514 Information Security

Enter-

prise U

Exploration U Ta-

los U

Star-

ship U

Pho-

ton U

Figure 9. Joins in GDSS.

An important functional requirement in the MLS GDSS is that S-

users expect to see S data as the end product of a retrieval, if S data
exists; otherwise, U data is returned. Case 1 in Figure 9 shows a join
between two tables that produces the correct materialized tuple for an
S-user. Case 2 illustrates the anomaly associated with the join. In this
case, the second table contains only U data. Since the query requires
that the tuple labels match, the query does not return the S row of the
first table joined with the U row of the second table. Thus, if data does
not exist at the same security levels in each table, then S information
may be lost during the join operation.

In this simplified example, one might argue that removing the qualifi-
cation that the tables be joined by tuple labels would permit joins. Do-
ing this would return two rows in Case 2, one containing only U
information, the other containing S and U information. If this approach
were taken, the tuple materialization process would become more com-
plex and would need to extract multiple tuple labels and assign them to
the appropriate columns in the row that was returned. Also, the join
example shown in Case 1 would result in four rows of data returned
from the server, instead of just two. The complexity of the problem and
the work required of the DBMS server would increase significantly as
more tables were joined. Database server performance would decrease
accordingly, perhaps to unacceptable levels.

To ensure the correct materialization of a logical joined tuple, the
MLS GDSS system does not currently use the join capabilities of the
COTS MLS DBMS. Instead, tuples are selected from individual tables,
and then joined outside the DBMS by trusted application software.
While this operation does result in some processing overhead, it en-
sures that data are not accidentally excluded from the S-user.

Visible restrictions. The third perspective on polyinstantiation is
that users are aware that data are restricted to certain levels. In prac-
tice, this means users know the levels of data that they can see and
update. The goal is to provide a more “honest’’ database without com-
promising security. This perspective can lead to many different strate-
gies; this section presents four different approaches.

The belief approach. One approach to polyinstantiation is motivated by
the idea that data at each level reflects the “beliefs’’ of users at that

Solutions to the Polyinstantiation Problem 515

level about the real world [KENS92]. For simplicity, we will call this work
the belief approach:. The belief approach differentiates between data
that a user sees and data that a user believes. Updates reflect beliefs
about the real world; they are regulated by the following property:

Update access property: Data at a particular level can be in-
serted, modified, or deleted only by users at that level.

Thus, data at each level reflects the beliefs of the users who maintain
it. Users can see the data that they believe as well as data believed by
users at lower levels (that is, users see all data that they could read un-
der the Bell-LaPadula model).

At the heart of this property is a model that takes a stand between
entity- and attribute-level polyinstantiation. Keys may be classified at a
different level than other attributes within the same tuple, but all non-
key attributes within a single tuple share a classification level.

Given a relation schema R, the multilevel relation Rc used in the belief
model includes two additional classification attributes: a key classifica-
tion level (Kc) and a tuple classification level (Tc). The model imposes
two restrictions:

1. In any tuple, Tc must dominate Kc.
2. For the set of key attributes K and for all nonkey attributes Ai, ...,

An in Rc,

K, Kc, Tc → Ai, ..., An

Intuitively, then, tuples with the same values for key attributes but

different key classification levels refer to different real-world entities.
Tuples that are identical in key attributes and key classification levels
but differ in tuple classification levels represent different beliefs about
the same real-world entities. To maintain this distinction, users at a
particular level are not allowed to reuse key attribute values for new
entities.

Given the relation SOD in Figure 10, U-users believe the first and sec-
ond tuples. C-users believe the third tuple, and S-users believe the
fourth and fifth tuples. The second and third tuples in Figure 10 refer to
the same real-world starship, but U- and C-users have different beliefs
about its objective and destination. The first and fifth tuples refer to dif-
ferent starships.

516 Information Security

Starship Kc Objective Destination Tc

Voyager U Shipping Mars U

Enterprise U Exploration Vulcan U

Enterprise U Diplomacy Romulus C

Zardor S Warfare Romulus S

Voyager S Spying Rigel S

Figure 10. Example of SOD in the belief model.

U-users can see only the first two tuples in Figure 10, C-users can see

the first three tuples, and S-users can see all five tuples.
Although users are allowed to see all tuples at levels dominated by

their belief levels, the query language includes the optional keyword
BELIEVED BY to allow users to further restrict queries. Thus, S-users
can ask to see all allowable tuples, or only those believed by C- and S-
users, and so on.

The query “Display the destination of all starships named Enterprise’’
is expressed as

SELECT Destination
FROM SOD
WHERE Starship = ‘Enterprise’
BELIEVED BY ANYONE

The result of this query when issued against the relation in Figure 10 is

Destination TC

Vulcan U

for a U-user, and

Destination TC

Vulcan U

Romulus C

for all users at levels C or higher.

Solutions to the Polyinstantiation Problem 517

The query “Display the beliefs of U-users as to the destination of all
starships named Enterprise’’ is expressed as

SELECT Destination
FROM SOD
WHERE Starship = ‘Enterprise’
BELIEVED BY U

The result of this query when issued against the relation in Figure 10 is

Destination TC

Vulcan U

for all users.

The query “Display the classification level and destination of all star-
ships named Voyager’’ is expressed as

SELECT Kc, Destination
FROM SOD
WHERE Starship = “Voyager’’
BELIEVED BY ANYONE

The result of this query when issued against the relation in Figure 10 is

Kc Destination Tc

U Mars U

for U- and C-users, and

Kc Destination Tc

U Mars U

S Rigel S

for all users at levels S or higher.

The insert-low approach. Another variation of explicit restriction, the
insert-low approach, has been adopted by the SWORD project at the
Royal Signals and Radar Establishment in England [WISE90]. Briefly, this
approach works as follows.

Each relation is assigned at the time of its creation a table usage clas-
sification, abbreviated as table class. Each attribute is assigned a column
classification that must dominate the table class. The purpose of the

518 Information Security

table class is twofold: First, any insertion or deletion of tuples in a rela-
tion can be made by those users whose clearances equal the table class
of the relation. Second, the table class controls exactly how the updates
involving an access class that dominates the table class are made to the
relation. This will be explained in greater detail below.

Consider once again the relation schema SOD. Say the table classifi-
cation of SOD is U. A typical instance of SOD is given as follows:

Starship Objective Destination

Enterprise U Exploration U Talos U

Voyager U Spying S Rigel T
S

In this case, SWORD will show the entire relation to TS-users, while for
those at lower levels SWORD will substitute <not cleared> whenever a
user has insufficient clearance to view a value. Thus, for example, a C-
user will see the following instance:

Starship Objective Destination

Enterprise U Exploration U Talos U

Voyager U <not
cleared>

S <not
cleared>

T
S

To see how SWORD avoids tuple polyinstantiation, consider once

again the relation SOD with U as its table class. Suppose the initial da-
tabase state is as follows:

Starship Objective Destination

Enterprise U Exploration U Talos U

Suppose some U-user inserts the tuple (Voyager, S, Spying, U, Talos, U)
in SOD. SWORD allows lower level users to insert values at higher lev-
els as long as the attribute value classifications are dominated by the
appropriate column classification. In this example, the column classifi-
cation for Starship would have to be S or higher. Furthermore, since the

Solutions to the Polyinstantiation Problem 519

table classification of SOD is U, this constitutes a legal insertion, and as
a result U-users and S-users will see the following states respectively:

Starship Objective Destination

Enterprise U Exploration U Talos U

<not
cleared>

S Spying U Talos U

Starship Objective Destination

Enterprise U Exploration U Talos U

Voyager S Spying U Talos U

At this point, suppose a U-user wants to make an insertion (Freedom,

U, Mining, U, Mars, U) to SOD. Since the Starship attributes of all tuples
in SOD are not visible to the U-user, there is always a possibility that
the Starship value of the tuple to be inserted equals that of the existing
high tuple, leading to attribute polyinstantiation (or tuple polyinstantia-
tion, in the case of attributes constituting the primary key). SWORD
avoids this by prohibiting U-users from inserting or modifying values in
this attribute. In the case of key attributes, like Starship, this means
that all further insertions by U-users are forbidden. However, since the
table classification is U, only U-users can insert tuples into SOD. As a
consequence, no further insertions can be made into SOD at all. In
SWORD applications, then, the column classifications for all attributes
constituting the primary key must equal the table class, or users may be
able to prohibit future insertions.

The following instance illustrates in more detail how attribute polyin-
stantiation is avoided in SWORD:

Starship Objective Destination

Enterprise U Exploration U Talos U

Next, suppose a TS-user wishes to modify the destination of the Enter-
prise to be Rigel. This is accomplished in two steps. First, the TS-user
must log in as a U-user and change the classification of Talos from U to
TS. Having done so, the TS-user can log in at his level and then make

520 Information Security

the desired update. As a result, the U-instance and TS-instance will be-
come as follows:

Starship Objective Destination

Enterprise U Exploration U <not
cleared>

T
S

Starship Objective Destination

Enterprise U Exploration U Rigel T
S

Given the database state shown immediately above, suppose an S-

user wants to insert a secret destination for the Enterprise. He may do
so by first logging in as a U-user, changing the classification of the at-
tribute Destination from TS to S. As a result of this change, all users,
including the TS-user, will see the following relation:

Starship Objective Destination

Enterprise U Exploration U <not
cleared>

S

Now, the S-user can log in at classification level S and make the appro-
priate change.

Prevention:. The third variation of explicit restriction relies on prevent-
ing polyinstantiation completely. Jajodia and Sandhu [JAJO91d,
SAND91, SAND92b] have described three basic techniques for eliminat-
ing entity polyinstantiation:

1. Make all the keys visible. In this method, the apparent primary key
is required to be labeled at the lowest level at which a relation is
visible. For example, suppose the designer requires that all keys
be unclassified. Consequently, the relation

Starship Objective Destination TC

Enterprise U Exploration U Talos U U

Enterprise S Spying S Rigel S S

Solutions to the Polyinstantiation Problem 521

would be forbidden. Note that the two relations called USOD and
SSOD in Figures 11 and 12 represent the same information. In
other words, USOD and SSOD horizontally partition the original
SOD relation, with all the U-Starships in USOD and all the S-
Starships in SSOD.

2. Partition the domain of the primary key. Another way to eliminate
entity polyinstantiation is to partition the domain of the primary
key among the various access classes possible for the primary key.
For our example, suppose that the application requires that star-
ships whose names begin with A through E are unclassified, star-
ships whose names begin with F through T are secret, and so on.
Whenever a new tuple is inserted, the system enforces this re-
quirement as an integrity constraint. In this case, the secret En-
terprise must be renamed, perhaps as follows:

Starship Objective Destination TC

Enterprise U Exploration U Talos U U

Freedom S Spying S Rigel S S

The DBMS can now reject any attempt by a U-user to insert a
starship whose name begins with F through Z, without causing
any information leakage or integrity violation.

3. Limit insertions to be done by trusted subjects. A third way to
eliminate entity polyinstantiation is to require that all insertions
are done by a system-high user, with a write-down occurring as
part of the insert operation. (Strictly speaking, it is only necessary
to have a relation-high user — that is, a user to whom all tuples
are visible.) In the context of the example, this means that a U-
user who wishes to insert the tuple (Enterprise, Exploration, Ta-
los) must ask an S-user to do the insertion. The S-user does so by
invoking a trusted subject that can check for key conflict and, if
there is none, insert a U-tuple by writing down. If there is a con-
flict, the S-user informs the U-user about it, so the U-user can, for
example, change the name of the starship to Voyager.

U-Starship Objective Destination TC

Enterprise U Exploration U Talos U U

Figure 11. USOD.

522 Information Security

S-Starship Objective Destination TC

Enterprise S Spying S Rigel S S

Figure 12. SSOD.

The first approach is available in any MLS DBMS that allows a range

of access classes for individual attributes (or attribute groups), by simply
limiting the classification range of the apparent key to be a singleton
set. The second approach is available to any DBMS that can enforce
domain constraints with adequate generality. The third approach is al-
ways available but requires the use of trusted code. Note that although
there is some leakage of information, it is with a human in the loop.
This type of information flow cannot be completely eliminated [DOD85].
The best approach will depend on the characteristics of the MLS DBMS
and the application, particularly concerning the frequency and source of
insertions.

The prevention approach also proposes techniques to prevent attrib-
ute polyinstantiation without compromising on confidentiality, integrity,
or denial-of-service requirements. The basic idea is to introduce a spe-
cial symbol denoted by “Restricted’’ as the possible value of a data ele-
ment. The value “Restricted” is distinct from any other value for that
element and is also different from “Null.’’ In other words, the domain of a
data element is its natural domain extended with “Restricted’’ and
“Null.’’ Then we can define the semantics of “Restricted’’ so as to be able
to eliminate both visible and invisible polyinstantiation [SAND91].

Consider again the visible polyinstantiation scenario presented ear-
lier, beginning with the following relation:

Starship Objective Destination TC

Enterprise U Exploration U Talos U U

Next, suppose an S-user attempts to modify the destination of the En-

terprise to be Rigel. This update does not cause any security violation.
But now suppose that the new destination is classified Secret. The pre-
vention approach requires the S-user first to log in as a U-user2 and to

2Alternately, the S-user logs in at the U level and asks some properly author-

ized U-user to carry out this step. Communication of this request from the S-

Solutions to the Polyinstantiation Problem 523

mark the destination of the Enterprise as “Restricted,’’ giving the follow-
ing relation:

Starship Objective Destination TC

Enterprise U Exploration U Restricted U U

The meaning of <Restricted, U> is that this field can no longer be

updated by an ordinary U-user.3 U-users can therefore infer that the
true value of Enterprise’s destination is classified at some level not
dominated by U. The S-user then logs in as an S-subject and enters the
destination of the Enterprise as Rigel, giving us the following relations at
the U- and S-levels respectively:

Starship Objective Destination TC

Enterprise U Exploration U Restricted U U

Starship Objective Destination TC

Enterprise U Exploration U Restricted U U

Enterprise U Exploration U Rigel S S

Note that this protocol does not introduce a signaling channel from an

S-subject to a U-subject. There is an information flow, but from an S-
user (logged in as a U-subject) to a U-subject. This is an important dis-
tinction. As mentioned in the Orange Book [DOD85], there is the possi-
bility that subjects may themselves constitute Trojan horses. This type
of information flow, which includes humans in the process, cannot be
completely eliminated.

Next consider how the invisible polyinstantiation scenario presented
earlier works with the restricted requirement. In this case, the Enter-
prise can have a secret destination only if the destination has been
marked as being restricted at the unclassified level. Thus, one possibil-
ity is that the S- and U-users respectively see the following instances of
SOD:

user to U-user may also occur outside the computer system, say by direct per-
sonal communication or a secure telephone call.

3Only those U-users with the “unrestrict’’ privilege for this field can update it
[SAND91].

524 Information Security

Starship Objective Destination TC

Enterprise U Exploration U Restricted U U

Enterprise U Exploration U Rigel S S

Starship Objective Destination TC

Enterprise U Exploration U Restricted U U

Alternatively, both S- and U-users may see the following instance:

Starship Objective Destination TC

Enterprise U Exploration U Null U U

In the former event, an attempt by a U-user to update the destination of
the Enterprise to Talos will be rejected, whereas in the latter event the
update will be allowed (without causing polyinstantiation).

The concept of the “Restricted” mark is straightforward, so long as the
classification lattice is totally ordered. In the general case of a partially
ordered lattice, some subtleties arise. How to completely eliminate poly-
instantiation using “Restricted” has been discussed at length elsewhere
[SAND91]. In general, updating the value of an attribute to “Restricted”
cannot cause polyinstantiation. On the other hand, updating the value
of an attribute to a data value, say, at the C level, can be the cause of
polyinstantiation. If polyinstantiation is to be completely prohibited, this
update must require that the data element is restricted at all levels
which do not dominate C. The fact that the data element is restricted at
all levels below C can be verified by the usual integrity checking mecha-
nisms in a DBMS [SAND91]. However, it is tricky to guarantee this at
levels incomparable with C. In preparing to enter a data value at the C
level, the system would need to start a system-low (really data-element-
low) process, which could then write up. A protocol for this purpose has
been described [SAND91].4

4It should be noted this protocol works for an arbitrary lattice, and does not

require any trusted subjects. The use of trusted subjects will allow simpler pro-
tocols for this purpose.

Solutions to the Polyinstantiation Problem 525

Explicit alternatives approach. The fourth approach described here al-
lows the application developer to choose among explicit alternatives: for
polyinstantiation. Sandhu and Jajodia [SAND92c] brought together a
number of their previously published ideas, along with some new ones,
to define a particular semantics for polyinstantiation called polyinstan-
tiation for cover stories (PCS). PCS allows two alternatives for each at-
tribute (or attribute group) of a multilevel tuple:

1. no polyinstantiation, or
2. polyinstantiation at the explicit request of a user to whom the

polyinstantiation is visible.

PCS strictly limits the extent of polyinstantiation by requiring that
each real-world entity be modeled in a multilevel relation by at most
one tuple per security class. The goal of PCS is to provide a natural, in-
tuitive, and useful technique for implementing cover stories, with run-
time flexibility regarding their use. A particular attribute may be used for
cover stories for some tuples and not for others. Even for the same real-
world entity, a particular attribute may be polyinstantiated at some time
and not at other times.

PCS combines the “one tuple per tuple class’’ concept with the “Re-
stricted’’ concept presented earlier. The basic motivation for PCS can be
appreciated by considering the following instance of SOD:

Starship Objective Destination TC

Enterprise U Restricted U Talos U U

Enterprise U Spying S Rigel S S

In this case, the Destination attribute of the Enterprise is polyinstanti-
ated so that <Talos, U> is a cover story for the real S destination of Ri-
gel. The Objective is not polyinstantiated.

Consider the occurrence of polyinstantiation due to invisible polyin-
stantiation, as discussed by example earlier. This example begins with
S- and U-users respectively having the following views of SOD:

Starship Objective Destination TC

Enterprise U Exploration U Rigel S S

Starship Objective Destination TC

526 Information Security

Enterprise U Exploration U Null U U

So far, there is no polyinstantiation. Polyinstantiation occurs in the ex-
ample when a U-user updates the destination of the Enterprise to be
Talos.

PCS takes a slightly different approach to this example. According to
the PCS approach, polyinstantiation does exist in the S-instance of
SOD given above. PCS shows this instance as:

Starship Objective Destination TC

Enterprise U Exploration U Null U U

Enterprise U Exploration U Rigel S S

In this approach, polyinstantiation already exists prior to the U-user up-
dating the destination of the Enterprise to be Talos. This update merely
modifies an already polyinstantiated relation instance to be:

Starship Objective Destination TC

Enterprise U Exploration U Talos U U

Enterprise U Exploration U Rigel S S

With this approach, element polyinstantiation can occur only due to

visible polyinstantiation. Invisible polyinstantiation simply cannot be the
cause of element polyinstantiation. Consequently, polyinstantiation will
occur only by the deliberate action of a user to whom the polyinstantia-
tion is immediately available. In other words, polyinstantiation does not
occur as a surprise.

The PCS approach treats null values like any other data value (except
in the apparent key fields where “Null’’ should not occur). Previous work
on the semantics of null in polyinstantiated databases has taken the
view that nulls are subsumed by nonnull values independent of the ac-
cess class [JAJO90c, SAND90]. In this case, the first tuple in the follow-
ing relation available to S-users

Starship Objective Destination TC

Solutions to the Polyinstantiation Problem 527

Enterprise U Exploration U Null U U

Enterprise U Exploration U Rigel S S

is subsumed by the second tuple, resulting in the following relation for
S-users used in the earlier invisible polyinstantiation example:

Starship Objective Destination TC

Enterprise U Exploration U Rigel S S

Under the explicit alternative approach, the former relation is com-
pletely acceptable. The latter can be acceptable, but only if the lower
limit on the classification of the Destination attribute is S.

To further illustrate the semantics of null in PCS, consider the follow-
ing relation:

Starship Objective Destination TC

Enterprise U Exploration U Null U U

Enterprise U Exploration U Null S S

PCS considers this to be a polyinstantiated relation. The fact that there
are nulls rather than data values in the polyinstantiated field has no
bearing on the treatment of this relation. The semantics of null [JAJO90c,
SAND90] require all null values to be classified at the level of the apparent
key (U in this case), thereby deeming the second tuple illegal.

The PCS approach leaves many of the choices of whether or not to
polyinstantiate to the application designer. It differentiates between
updates that cannot cause polyinstantiation and those that can. The
PCS design uses two different keywords (UPDATE and PUPDATE) to
make the distinction explicit. The PCS approach also relies on the dis-
tinguished data value “Restricted.’’ The meaning of this data value is
that users at the associated classification level cannot modify the value
of the restricted attribute. As in the prevention approach presented ear-
lier, PCS includes special privileges for imposing and lifting such restric-
tions.

528 Information Security

Architectural considerations

The architecture of an MLS DBMS affects the choices of polyinstantia-
tion strategies available to the database administrator (DBA). There are
two fundamentally different architectural alternatives available in build-
ing an MLS DBMS. The details of these architectures [SCHA83] are be-
yond the scope of this essay, but we present them briefly to point out
their implications for polyinstantiation.

Figures 13 and 14 illustrate the two approaches (which are also dealt
with in Essay 19). Figure 13 shows the trusted computing base (TCB)
subset architecture. In this architecture, data at each classification level
are stored in a separate database. Users at each level interact with a
separate DBMS, and each DBMS has access to all databases at its level
or lower.

Figure 13. Trusted computing base subset architecture.
Figure 14 illustrates the trusted subject architecture. In this architec-

ture, data at multiple levels are stored in the same database. Users at
multiple levels interact with the same DBMS, and the DBMS is trusted
to protect the data according to their classification levels.

Solutions to the Polyinstantiation Problem 529

Figure 14. Trusted subject architecture.

The potential for polyinstantiation is inherent in the TCB subset ar-

chitecture. The DBMS running at the lower level has no knowledge of
data stored in higher level fragments, unless all keys are classified at
the same (low) level. Unless specific measures are taken to cope with
the problem (as, for example, in the approach described in the section
“Visible restrictions”), polyinstantiation due to low users cannot be pre-
vented. Attribute polyinstantiation may be allowed by defining logical
relations that span multiple levels. The underlying databases would
store single-level fragments of the relations. Restrictions on fragmenta-
tion are the first method to control the types of polyinstantiation se-
mantics allowed within a system.

Various polyinstantiation strategies have been proposed to control the
recomposition of relations at the time of data retrieval. The DBMS must
determine how to combine the data received from the underlying data-
bases into a single answer for the user. The approach may be to perform
joins and return combinations of data (as in the SeaView approach, pre-
sented in the section entitled “Propagation of polyinstantiated tuples”),
to choose the data with the highest classification level whenever there
are polyinstantiated data (as in the MLS GDSS approach, in the section
entitled “Derived values”), to return data at the classification levels ex-
plicitly requested by the user (as in the belief approach, in the section
entitled “Visible restrictions”), or to use some other strategy.

Under the trusted subject architecture, a DBA has more flexibility to
trade strict security enforcement for data integrity. If the DBA chooses to
use polyinstantiation rather than to permit disclosure channels, then
the trusted DBMS must enforce its own barriers between data at differ-
ent levels. In effect, the barriers that were imposed by the TCB subset
architecture are reinstated through software in the trusted DBMS. Un-
der the trusted subject architecture, the DBA may also choose to allow
lower level users to see some information about the existence of higher
level data in order to enforce data integrity. Since the trusted DBMS has
access to data at all levels, it is able to impose restrictions on lower level
updates.

530 Information Security

Conclusion

The design of an MLS DBMS must take into account the problem of
polyinstantiation. When data items exist at multiple classification lev-
els, there is the potential for inconsistent values for the same data item
at different levels. Polyinstantiation may occur over tuples or attributes,
and it may arise through updates at low or high classification levels. Re-
searchers have developed a number of different approaches to polyin-
stantiation; no one solution is best for all applications. This essay
outlined approaches in which the system:

• propagates polyinstantiated tuples to reflect valid combinations of
values,

• shows users derived tuples based on underlying polyinstantiated
tuples, or

• informs users explicitly of restrictions or inconsistencies present
in the data so that polyinstantiation can be controlled.

Acknowledgment

The work of S. Jajodia and R.S. Sandhu was partially supported by the
US Air Force, Rome Laboratory, under contract #F30602-92-C-0002. We
are indebted to Joe Giordano for his support and encouragement, which
made this work possible.

