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Essay 21 

Solutions to the 
Polyinstantiation Problem 

Sushil Jajodia, Ravi S. Sandhu, and Barbara T. Blaustein 

What distinguishes a multilevel database from ordinary single-level 
ones? In a multilevel world, as we raise a user’s clearance new facts 
emerge; conversely, as we lower a user’s clearance some facts get hid-
den. Therefore, users with different clearances see different versions of 
reality. Moreover, these different versions must be kept coherent and 
consistent — both individually and relative to each other — without in-
troducing any downward signaling channels. 

The caveat of “no downward signaling channels’’ poses a major new 
problem in building multilevel secure database management systems 
(DBMSs) as compared with ordinary single-level DBMSs. Its considera-
tions have led to the notion of polyinstantiation in multilevel relations. 
The need for polyinstantiation was first identified by T.H. Hinke and M. 
Schaefer [HINK75]; the term “polyinstantiation’’ was coined by the 
SeaView project [DENN87]. Polyinstantiation comes in several different 
flavors [DENN87; HAIG90a; JAJO90c, d, f; JAJO91a-c; LUNT90; LUNT90b; 
SAND90; SAND91; SAND92b, c]. There are significant differences among 
these approaches, and debate continues about the correct definition of 
polyinstantiation and its operational semantics. However, in each case 
polyinstantiation significantly complicates the semantics of multilevel 
relations (particularly for high users). As a result, recently some solu-
tions have appeared that attempt to do away with polyinstantiation 
completely [BURN90, SAND91, WISE90]. In this essay, we carefully re-
view how the need for polyinstantiation arises in multilevel relations, 
then survey methods that have been developed for dealing with it. 

This essay is organized as follows. First we review the concept of poly-
instantiation from an intuitive point of view, with the objective of identi-
fying the sources of polyinstantiation. Next we present as a straw man a 
simple but unacceptable solution. After we introduce an example for 
comparison, we discuss different approaches to polyinstantiation and 
the architectural considerations that affect it. 
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What is polyinstantiation? 

In this section we show by examples how polyinstantiation arises. We 
assume that readers are familiar with the basic concepts of the standard 
(single-level) as well as multilevel relations, as explained in Essay 20. 

In multilevel relations, access classes can be assigned to data stored 
in relations in four different ways. One can assign access classes to rela-
tions, to individual tuples in a relation, to individual attributes (col-
umns) of a relation, or to individual data elements of the tuples of a 
relation. Polyinstantiation does not arise explicitly when access classes 
are assigned to relations or individual attributes of a relation; therefore, 
we consider the cases when access classes are attached to tuples or the 
data elements themselves. 

Types of polyinstantiation. A multilevel relation is said to be poly-
instantiated when it contains two or more tuples with the same appar-
ent primary key values [DENN87, JAJO91b]. There are two different 
types of polyinstantiation: 

• entity polyinstantiation, and 
• attribute polyinstantiation. 

Entity polyinstantiation occurs when a relation contains multiple tuples 
with the same apparent primary key values, but having different access 
class values for the apparent primary key. As an example, consider the 
relation SOD given in Figure 1. 
 
 

Starship Objective Destination 

Enterprise U Exploration U Talos U 

Enterprise S Spying S Rigel S 

 
Figure 1. A multilevel relation with entity polyinstantiation. 

 
 
In Figure 1, as in most of our examples, each attribute in a tuple not 

only has a value but also a classification. We assume that the attribute 
Starship is the apparent primary key of SOD. 

Now, the relation given in Figure 1 contains two tuples for the same 
starship Enterprise, resulting in entity polyinstantiation. These tuples 
can be regarded as pertaining to two different real-world entities or a 
single real-world entity. We cannot tell immediately by looking at the 
relation which is really the case. 
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The relation in Figure 2 illustrates attribute polyinstantiation. With 
attribute polyinstantiation, a relation contains two or more tuples with 
identical apparent primary key and the associated access class values, 
but having different values for one or more remaining attributes, as 
shown in Figure 2. In the figure, both tuples refer to a single starship 
Enterprise; an S-user sees different values for its objective and destina-
tion. 

As we indicated, explicit polyinstantiation can occur with tuple-level 
labeling instead of element-level labeling. Let us consider the same ex-
ample when access classes are associated with each tuple instead of 
each element. The S-user will see the multilevel relation shown in Fig-
ure 3. 

 
 

Starship Objective Destination 

Enterprise U Exploration U Talos U 

Enterprise U Spying S Rigel S 

 
Figure 2. A multilevel relation with attribute polyinstantiation. 

 
 

Starship Objective Destination TC 

Enterprise Exploration Talos U 

Enterprise Spying Rigel S 

 
Figure 3. A multilevel relation with tuple-level labeling. 

 
 
Notice that with tuple-level labeling, we can no longer distinguish the 

entity polyinstantiation from attribute polyinstantiation. In our example 
relation, it is possible that both tuples relate to the same starship En-
terprise; the U-tuple is merely the cover story. At the same time, it is 
also possible that there are two completely different starships; however, 
they have been given the same name, possibly by mistake. 

How polyinstantiation occurs. Either type of polyinstantiation can 
occur in basically two different ways, which we call visible and invisible 
polyinstantiation for mnemonic convenience: 
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1. Visible polyinstantiation occurs when a high user1attempts to in-
sert data in a field that already contains low data. Since overwrit-
ing the low data in place will result in a downward signaling 
channel, the high data is inserted by creating a new tuple to store 
it. 

2. Invisible polyinstantiation occurs in the opposite situation, where 
a low user attempts to insert data in a field that already contains 
high data. Since rejecting the update is not a viable option be-
cause it establishes a downward signaling channel, the tuple is 
polyinstantiated to reflect the low update. 

The next two subsections make visible and invisible polyinstantiation 
clearer by considering some examples. The examples illustrate attribute 
polyinstantiation only; examples illustrating entity polyinstantiation can 
be constructed similarly. 

Visible polyinstantiation example. Let us now consider a concrete ex-
ample to make visible and invisible polyinstantiation clearer. Consider 
the following relation SOD where Starship is the apparent primary key: 

 
 

Starship Objective Destination 

Enterprise U Exploration U Null U 

 
 
Now consider the following scenario: 

1. A U-user updates the destination of the Enterprise to be Talos. 
The relation is therefore modified as follows: 

 
 

Starship Objective Destination 

Enterprise U Exploration U Talos U 

 
 
2. Next an S-user attempts to modify the destination of the Enter-

prise to be Rigel. Since we do not wish to deny entry of legitimate 
secret data, this update is not rejected. However, since we cannot 

                                                
1Strictly speaking, we should be saying subject rather than user. For the most 

part, we will loosely use these terms interchangeably. Where the distinction is 
important, we will be appropriately precise. 
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overwrite the destination in place because that would create a 
downward signaling channel, we polyinstantiate and modify the 
relation to appear as follows, respectively, for U- and S-users (note 
that U-users see no change): 

 

Starship Objective Destination 

Enterprise U Exploration U Talos U 

 

Starship Objective Destination 

Enterprise U Exploration U Talos U 

Enterprise U Exploration U Rigel S 

 
 
What are we to make of the last relation above? There are at least two 

reasonable interpretations: 

• Cover story. The destination of Talos may be a cover story for the 
real destination of Rigel. In this case, the database is accurately 
mimicking the duplicity of the real world. There are, however, 
other ways of incorporating cover stories besides polyinstantia-
tion. For example, we may have two attributes, one for the cover-
story destination and one for the real destination. Debate on the 
relative merits and demerits of these techniques is outside the 
scope of this essay. 

• Temporary inconsistency. We may have a temporary inconsistency 
in the database that needs to be resolved. For instance, the in-
consistency may be resolved as follows: The S-user who inserted 
the Rigel destination later logs in at the U level and nullifies the 
Talos value, so thereafter the relation appears respectively as fol-
lows to U- and S-users: 

 
 

Starship Objective Destination 

Enterprise U Exploration U Null U 

 

Starship Objective Destination 

Enterprise U Exploration U Rigel S 
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It is important to understand that this scheme does not create a 
downward signaling channel from one subject to another. The 
nullification of the destination at the U level is being done by a U-
subject. One might argue that there is a downward signaling 
channel with a human in the loop. The human is, however, 
trusted not to let the channel be exercised without good cause. 
The real threat is to entity integrity: The U-user who executed 
step 1 of the scenario may again try to enter Talos as the destina-
tion, which brings us within the scope of invisible polyinstantia-
tion. 
 

Invisible polyinstantiation example. Our example for invisible poly-
instantiation is similar to the visible polyinstantiation example, with the 
difference that the two update operations occur in the opposite order. 
So again consider the following relation SOD, where Starship is the ap-
parent primary key: 

 
 

Starship Objective Destination 

Enterprise U Exploration U Null U 

 
 
This time consider the following scenario: 

1. An S-user modifies the destination of the Enterprise to be Rigel. 
The relation is modified to appear respectively as follows to U- and 
S-users (U-users see no change in the relation): 

 
 

Starship Objective Destination 

Enterprise U Exploration U Null U 

 

Starship Objective Destination 

Enterprise U Exploration U Rigel S 

 
 
2. A U-user updates the destination of the Enterprise to be Talos. 

We cannot reject this update on the grounds that a secret desti-
nation for the Enterprise already exists, because that amounts to 
establishing a downward signaling channel. Thus we have only 
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one of two options left. The first option is that we can overwrite 
the destination field in place at the cost of destroying secret data. 
This would give us the following relation for both U- and S-users: 

 
 

Starship Objective Destination 

Enterprise U Exploration U Talos U 

 
 

For obvious reasons this alternative has not been seriously con-
sidered by most researchers. That leaves us the option of polyin-
stantiation, which will modify the relation at the end of step 1 to 
the following for U- and S-users respectively: 

 
 

Starship Objective Destination 

Enterprise U Exploration U Talos U 

 

Starship Objective Destination 

Enterprise U Exploration U Talos U 

Enterprise U Exploration U Rigel S 

 
 

This is exactly the same relation as obtained at the end of step 2 in our 
visible polyinstantiation example. The possible interpretations are 
therefore similar — that is, we have either a temporary inconsistency or 
a cover story. The temporary inconsistency can be corrected by having a 
U-subject (possibly created by an S-user logged in at the U level) nullify 
the Talos destination. But the inconsistency may recur again and again. 

A simple but unacceptable solution to polyinstantia-
tion 

There are two obvious “secure’’ alternatives to both visible and invisi-
ble polyinstantiations. These alternatives are secure in the sense of se-
crecy and information flow, and preserve primary key requirements in 
multilevel relations; but unfortunately, they suffer from denial-of-service 
and other integrity problems: 

1. Whenever a high user makes an update that violates the unique-
ness requirement, we simply refuse that update. 
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2. Whenever a low user makes a change that conflicts with the 
uniqueness requirement, the conflicting high data is overwritten 
in place by the low data. 

It is not difficult to see that this simple solution preserves the 
uniqueness requirement in multilevel relations. This solution is secure 
in the sense of secrecy and information flow. It is our view that while 
this solution may be acceptable in some specific situations, it is clearly 
unacceptable as a general solution; it can lead to serious denial-of-
service and integrity problems. Therefore, we now look for other alterna-
tives that do not suffer from these problems. 

An example 

The next section will describe several solutions to the polyinstantia-
tion dilemma. Some allow polyinstantiation in multilevel relations, 
while others seek to eliminate polyinstantiation completely. To help in 
appreciation of the differences among various solutions, this section de-
velops an example in more detail. Consider once again the relation 
SOD, which has three attributes: Starship, Objective, and Destination, 
with Starship being the primary key. 

If we were living in a single-level world, for each starship there would 
be at most one tuple in this relation giving us that starship’s unique ob-
jective and unique destination. For example, the tuple <Enterprise, Ex-
ploration, Talos> would denote that the starship Enterprise has set out 
to explore Talos. We say that this entire tuple gives us the mission of 
the Enterprise. 

Next consider a multilevel relation that attempts to represent the 
same information — that is, the objective and destination of a starship 
— but in a multilevel world where some facts are classified. Assume that 
there are just two levels, U for unclassified and S for secret. To further 
simplify the example, let us say the Starship attribute is always unclas-
sified. Therefore, the classification range of the Starship attribute has 
lower and upper bounds of U. On the other hand, let the classification 
range of the Objective and Destination attributes have a lower bound of 
U and an upper bound of S. Let us call the resulting schema SOD, 
which is summarized in Figure 4. In this section, we will, for conven-
ience, augment a relation scheme with a tuple class or TC attribute. 
This attribute is computed to be the least upper bound of the classifica-
tions of the individual data elements in the tuple. Thus, the value of TC 
gives the classification of the entire tuple. 

The apparent primary key of SOD is specified as Starship. Intuitively 
this means that if only unclassified data is stored in SOD, then Starship 
would be the actual primary key of the relation. Similarly, if only secret 
data is stored in the Objective and Destination attributes, Starship 
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would be the actual primary key. On the other hand, if a mix of secret 
and unclassified data is stored in these attributes, the actual primary 
key of SOD is Starship along with the attribute classifications. Instance 
8 of Figure 5 contains four tuples for the starship Enterprise. What 
makes each tuple distinct is the classification of the Objective and Des-
tination attributes. 

 
 

 
Attribute 

Classification 
Range 

Starship [U, U] 

Objective [U, S] 

Destination [U, S] 

Tuple class (TC) [U, S] 

 
Figure 4. Schema for the multilevel relation SOD. 

 
 
An instance of SOD is likely to contain different tuples at different 

levels. Therefore, it is important to distinguish between the U-instance 
of SOD, visible to Unclassified users, and the S-instance, visible to Se-
cret users. As a user’s clearance increases, it is reasonable to keep all 
previously visible information intact and perhaps add some new facts 
visible only at that level. To be concrete, consider the U-instance of 
SOD given in Figure 6. It contains exactly one tuple, telling us that, as 
far as Unclassified users are concerned, the starship Enterprise has set 
out to explore Talos. The eight different S-instances of SOD enumer-
ated in Figure 5 are all consistent with the U-instance of Figure 6. Their 
common property is that the single tuple of the U-instance appears in 
all eight S-instances. We regard each tuple in an instance of SOD as 
defining a mission for the starship in question. A U-instance of SOD al-
lows only one mission per starship. S-instances, on the other hand, al-
low up to four missions per starship, three of which are secret and one 
unclassified. 

We now demonstrate there is a practically useful and intuitively rea-
sonable interpretation for each of the eight S-instances of Figure 5. 
Consider each S-instance in turn, as follows: 

1. The S-instance is identical to the U-instance. There is therefore no 
secret aspect to the Enterprise. This is the simplest case and 
needs little explanation. 
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No. Starship Objective Destination TC 

1 Enterprise U Exploration U Talos U U 

2 Enterprise U Exploration U Talos U U 

 Enterprise U Spying S Talos U S 

3 Enterprise U Exploration U Talos U U 

 Enterprise U Exploration U Rigel S S 

4 Enterprise U Exploration U Talos U U 

 Enterprise U Spying S Rigel S S 

5 Enterprise U Exploration U Talos U U 

 Enterprise U Exploration U Rigel S S 

 Enterprise U Spying S Rigel S S 

6 Enterprise U Exploration U Talos U U 

 Enterprise U Spying S Talos U S 

 Enterprise U Spying S Rigel S S 

7 Enterprise U Exploration U Talos U U 

 Enterprise U Spying S Talos U S 

 Enterprise U Exploration U Rigel S S 

8 Enterprise U Exploration U Talos U U 

 Enterprise U Spying S Talos U S 

 Enterprise U Exploration U Rigel S S 

 Enterprise U Spying S Rigel S S 

 
Figure 5. Eight S-instances of SOD. 

 
 

Starship Objective Destination TC 

Enterprise U Exploration U Talos U U 

 
Figure 6. A U-instance of SOD. 

 
 

In each of the next three cases there is a single tuple in the S-instance 
in addition to the tuple of the U-instance. This secret tuple defines a 
secret mission for the Enterprise in addition to its unclassified mission. 
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2. The S-instance reveals the secret mission to be spying on Talos. Pre-
sumably, the unclassified exploration mission to Talos is a cover 
story to hide the secret spying mission. To maintain the integrity 
of the cover story, the Enterprise will probably expend resources 
on exploring Talos. Conceivably, the bulk of its resources might be 
devoted to useful exploration of Talos, with the secret spying mis-
sion added on as a low-profile, low-marginal-cost, and opportunis-
tic effort. We obviously cannot resolve this issue without further 
knowledge about the real situation, such as a competent user 
might have. The main point is that the Enterprise does have two 
distinct missions: the unclassified one of exploring Talos and the 
secret one of spying there. 

3. The S-instance reveals the secret mission to be exploration of Rigel. 
This case is very similar to the previous one in that only one at-
tribute has a secret value. Clearly the desire to explore Rigel un-
der cover of exploring Talos is a realistic one, not only in the 
national security arena but also in a competitive commercial con-
text. 

4. The S-instance reveals the secret mission to be spying on Rigel. This 
case is similar to the previous two in that there is only one secret 
mission. It is different in that the objective and destination of the 
secret mission are now both classified. 

Each of the three preceding cases presents a distinctly different secret 
mission — secretly spying on Talos, secretly exploring Rigel, and secretly 
spying on Rigel. These three secret missions do share the common 
property that exploring Talos is an acceptable unclassified cover story. 
The next three cases present situations where two of these three se-
cret missions are concurrently in progress. 

5. The S-instance reveals two secret missions: to explore Rigel and to 
spy on Rigel. Both secret missions are concerned with Rigel. 
Whether the principal one is to explore it or spy there, or the two 
missions are equally important, cannot be ascertained without 
further information. The secret exploration of Rigel may simply be 
a convenient damage-control story, should the secret destination 
of the Enterprise be leaked. Conversely, spying on Rigel may be an 
opportunistic and relatively unimportant add-on to its secret ex-
ploration. 

6. The S-instance reveals two secret missions: to spy on Talos and to 
spy on Rigel. This is similar to the previous case, and once again 
we cannot a priori decide which, if any, is the principal secret mis-
sion. 

7. The S-instance reveals two secret missions: to spy on Talos and to 
explore Rigel. This may appear strange at first, but it is perfectly 
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proper. For instance, there may be no life-forms on Rigel worth 
spying on, while there are indications of vast quantities of ura-
nium. This S-instance does point out problems with simple rules 
such as “give the value with the highest classification for each at-
tribute.’’ Such a rule would manufacture the secret mission of 
spying on Rigel, which does not exist in the relation. 

As the reader may have guessed by now, our final S-instance specifies 
that the three secret missions identified in instances 2, 3, and 4 are all 
concurrently in progress. 

8. The S-instance reveals three secret missions: to spy on Talos, to ex-
plore Rigel, and to spy on Rigel. As before, without further informa-
tion and knowledge, we cannot say very much about the relation 
of these three secret missions to one another. All we know is that 
they share the same cover story of exploring Talos. 

To summarize, the eight S-instances of SOD can be partitioned into 
three classes as follows: 

1. Instance 1 has no polyinstantiation and is therefore straightfor-
ward. 

2. Instances 2, 3, and 4 are also relatively straightforward. Instance 2 
has a cover story for the objective, but the U destination is correct. 
Instance 3, on the other hand, has a cover story for the destina-
tion, while the objective is correct. Instance 4 has a cover story for 
both the destination and the objective. 

3. Instances 5, 6, 7, and 8 are confusing to interpret if it is assumed 
that the higher level data correctly represent the real world. 
Nonetheless, it is possible to give a meaningful and consistent in-
terpretation and update semantics for both the objective and the 
destination. 

Solutions to the polyinstantiation problem 

There are a number of different approaches to implementing polyin-
stantiation in a database management system, reflecting divergent per-
spectives on the meaning and uses of polyinstantiation within an MLS 
environment. Each approach has its proponents and detractors, and 
each is suited to particular types of applications. It is not our intent to 
promote certain approaches or to dismiss others, but instead to discuss 
the perspective motivating each of them. It is our belief that different 
organizations and real-world enterprises will choose to model their un-
derstandings of multilevel data in distinct ways. Our goal here is to pre-
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sent multiple approaches and their rationales so that each organization 
can choose the most appropriate implementation for its requirements. 

This section starts with approaches that view polyinstantiation (and 
the concomitant addition of tuples) as an integral part of an MLS data-
base. Next, the section presents strategies that compose new tuples to 
answer queries based on the security levels of underlying tuples. Fi-
nally, it discusses approaches that include explicit restrictions on users’ 
views of data. 

Propagation of polyinstantiated tuples. One perspective on deal-
ing with the tension between multilevel security and data semantics is 
to regard polyinstantiation as an inevitable and integral part of multi-
level secure information. Users at different security levels may see dif-
ferent attribute values for the same real-world tuple (for example, secret 
versus unclassified objectives for the same starship), and the users must 
be allowed to update these values differently. This perspective leads to 
an approach to polyinstantiation in which new tuples are added to re-
flect the combinatorial explosion of attribute values. For simplicity, we 
will call this approach the propagation approach to polyinstantiation. 

The propagation approach faces two key challenges: 

1. ensuring that keys still function to identify distinct real-world en-
tities, and 

2. controlling the propagation of tuples to include only meaningful 
combinations of attribute values. 

The first challenge is met by augmenting the apparent key with a secu-
rity level and enforcing the standard key uniqueness property over this 
augmented key. The second challenge is more complex, and researchers 
are still debating which types of combinations are meaningful. In gen-
eral, multivalued dependencies [DATE83] are used to define the particu-
lar combinations allowed by a specific solution. While many variants are 
possible, the SeaView project [DENN87; DENN88a, b; LUNT89c; LUNT90; 
LUNT90b] and the modifications proposed by Jajodia and Sandhu 
[JAJO90c] provide the basis of this approach. First we present the origi-
nal SeaView approach, then Jajodia and Sandhu’s proposed modifica-
tion, and finally some new techniques proposed by the SeaView project. 

The SeaView project began as a joint effort by SRI International and 
Gemini Computers with the goal of designing and prototyping an MLS 
relational database management system that satisfies the Trusted 
Computer System Evaluation Criteria for class A1 [DOD85]. Currently 
the project is in the final phase of a prototype implementation using 
GEMSOS as the underlying trusted computing base, along with the 
Oracle relational DBMS [LUNT90]. 
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SeaView solves the problem of polyinstantiation of key attributes 
themselves by defining an entity integrity property. This property re-
quires all attributes in a key to be uniformly classified. That is, for any 
instance Rc of a multilevel relation schema, for any tuple t ∈ Rc, and for 
any attributes Ai and Aj in the apparent primary key KR of R, t [Ci ] = t [Cj ]. 
Notice that this means it is possible simply to define a single attribute 
CK to represent the classification level of all attributes in the apparent 
primary key. Further, no tuples may have null values for key attributes. 
This restriction ensures that keys can be meaningfully specified and 
checked for uniqueness. In addition, all nonkey classification attributes 
must dominate CK. This restriction guarantees that if a user can see 
any part of a tuple, then he or she can see the key. 

To meet the first challenge, that of using keys to determine when tu-
ples model distinct real-world entities, SeaView defines a polyinstantia-
tion integrity property. The formulation of polyinstantiation integrity in 
SeaView consists of two distinct parts. The first part consists of a func-
tional dependency component whose effect is to prohibit polyinstantia-
tion within the same access class. The second part consists of a 
multivalued dependency requirement. 

SeaView polyinstantiation integrity property. A multilevel relation Rc 
satisfies polyinstantiation integrity (PI) if and only if for every Rc there 
are for all Ai ∈ KR 

1. KR, CK, Ci → Ai 
2. KR, CK →→ Ai, Ci 

The PI property can be regarded as implicitly defining what is meant by 
the primary key in a multilevel relation. The primary key of a multilevel 
relation is KR ∪ CK ∪ CR (where CR is the set of classification attributes 
for data attributes not in KR), since from PI it follows that the functional 
dependency KR → AR holds (where AR consists of all attributes that are 
not in KR). 

Of the eight instances defined in Figure 5, this definition of polyin-
stantiation integrity allows only two combinations of these eight in-
stances within a single relation scheme [JAJO90c]. Specifically, a 
SeaView relation can accommodate either instances 1, 2, 3, and 8 or 
instances 1 and 4 within a single scheme in the absence of the uniform 
classification constraint. SeaView admits only instances 1 and 4 if the 
Objective and Destination attributes are uniformly classified (that is, 
either both are classified U or both S). 

The inclusion of the multivalued dependency in the definition of poly-
instantiation integrity means that one update may result in a number of 
tuples being added to the relation. To illustrate, consider the situation 
in which an S-user attempts to go from S-instance 1 to S-instance 4 in 
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Figure 5 by inserting the secret tuple specifying the secret mission of 
spying on Rigel. SeaView will interpret this as a request to go from S-
instance 1 to S-instance 8, thereby manufacturing two additional mis-
sions for the Enterprise. Unfortunately, this increases the potential for 
such additional information, which may not reflect true data, to be re-
trieved from the database by users with higher clearances. 

It is easy to see that, in the worst case, the number of manufactured 
tuples grows at the rate of |security-lattice|k, where k is the number of 
nonkey attributes in the relation. For example, Figure 7 shows a TS-
instance of a relation similar to SOD, except that it has a range of four 
security levels for the Objective and Destination attributes. The particu-
lar TS instance shown describes four missions for the Enterprise, one 
each at the unclassified, confidential, secret, and top-secret levels. The 
definition of polyinstantiation integrity in SeaView requires that this 
information be represented by the 16 missions shown in Figure 8. Users 
with clearances U, C, S, and TS will respectively see 1, 4, 9, and 16 mis-
sions with the SeaView approach. 

 
 

Starship Objective Destination TC 

Enterprise U Exploration U Talos U U 

Enterprise U Mining C Sirius C C 

Enterprise U Spying S Rigel S S 

Enterprise U Coup T
S 

Orion T
S 

TS 

 
Figure 7. A TS-instance of SOD with four missions. 

 
 
Jajodia and Sandhu [JAJO90c] proposed dropping the multivalued 

dependency from the polyinstantiation integrity property defined in the 
SeaView model. They argued that the multivalued dependency prohibits 
the existence of relation instances desirable in practice. Specifically, it 
is possible to accommodate all eight instances of Figure 5. Jajodia and 
Sandhu also gave formal operational semantics for update operations in 
multilevel relations [JAJO91b, c]. 

Based on this proposal, the SeaView team began a reexamination of 
the SeaView definition of polyinstantiation integrity. Lunt and Hsieh 
[LUNT90b] developed a semantics for the basic database manipulation 
operations (insert, update, and delete). Based on these semantics, they 
proposed a different definition for polyinstantiation integrity consisting 
of two separate pieces: a state property containing the same functional 
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dependency component and a transition property concerning a new dy-
namic multivalued dependency component. Although Lunt and Hsieh 
do not define the latter property precisely, the basic idea can be illus-
trated informally by way of an example from their work [LUNT90b]. 

Consider the multilevel relation scheme R (A1, C1, A2, C2, A3, C3, TC), 
where each Ai is an attribute, each Ci is the classification attribute for 
Ai, and TC is the tuple class attribute. The attribute A1 is the apparent 
primary key of R. An instance Rc at a classification level c is assumed to 
satisfy the two constraints of the PI property. 

 
 

Starship Objective Destination TC 

Enterprise U Exploration U Talos U U 

Enterprise U Exploration U Sirius C C 

Enterprise U Mining C Talos U C 

Enterprise U Mining C Sirius C C 

Enterprise U Exploration U Rigel S S 

Enterprise U Mining C Rigel S S 

Enterprise U Spying S Talos U S 

Enterprise U Spying S Sirius C S 

Enterprise U Spying S Rigel S S 

Enterprise U Exploration U Orion T
S 

TS 

Enterprise U Mining C Orion T
S 

TS 

Enterprise U Spying S Orion T
S 

TS 

Enterprise U Coup T
S 

Talos U TS 

Enterprise U Coup T
S 

Sirius C TS 

Enterprise U Coup T
S 

Rigel S TS 

Enterprise U Coup T
S 

Orion T
S 

TS 

 
Figure 8. The SeaView materialization with 16 missions. 

 



Solutions to the Polyinstantiation Problem  509 

 
Now, consider the following relation instance RU: 
 
 

A1 C1 A2 C2 A3 C3 TC 

a U b U x U U 

 
Suppose a Confidential user changes the value of A2 to d, as shown 
here: 

 

A1 C1 A2 C2 A3 C3 TC 

a U b U x U U 

a U d C x U C 

 
Under Lunt and Hsieh’s update semantics, whenever an update in-
volves some, but not all, of the nonkey attributes, certain dynamic mul-
tivalued dependencies are enforced in the multilevel relations. In the 
example, the dynamic multivalued dependencies are 

A1, C1 →→ A2, C2 | A3, C3 

where the notation X →→ Y | Z denotes the multivalued dependencies 
X →→ Y and X →→ Z. 

Next, suppose a Top Secret user updates the value of A3 to equal v. As 
before, since this update involves some (but not all) of the nonkey at-
tributes, the dynamic multivalued dependency property causes two 
more tuples to be added to the relation: 

 

A1 C1 A2 C2 A3 C3 TC 

a U b U x U U 

a U d C x U C 

a U b U v TS TS 

a U d C v U TS 

 
At this point suppose a Secret user changes the value of the second 

attribute to q. The following relation instance results: 
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A1 C1 A2 C2 A3 C3 TC 

a U b U x U U 

a U d C x U C 

a U b U v TS TS 

a U d C v U TS 

a U q S x U TS 

a U d C v U TS 

According to Lunt and Hsieh [LUNT90b], the way in which an update 
occurs determines whether or not the multivalued dependency should 
be enforced. Essentially, if two or more attributes were updated in a sin-
gle update statement, the multivalued dependency would not be en-
forced. However, if the two attributes were updated in two independent 
operations, the multivalued dependency would be enforced. 

This dynamic approach is not yet formalized, nor is it being incorpo-
rated in the SeaView prototype. 

Derived values:. A second perspective on polyinstantiation is that al-
though a multilevel relation may have several tuples for the same real-
world entity, there should be only one such tuple per classification 
level. Instead of a classification level Ci for each attribute Ai, the 
schema Rc includes a single classification level for each tuple, TC. When 
a user wants to update only certain attributes at a particular level, the 
values of the other attributes are derived from values at lower security 
levels. 

Consider the following relation SOD where Starship is the key: 
 
 

Starship Objective Destination TC 

Enterprise Exploration Talos U 

 
 

Now suppose an S-user wishes to modify the destination of the Enter-
prise to be Rigel. He or she can simply do so by inserting a new secret 
tuple to SOD, as follows: 

(Enterprise, $U , Rigel, S) 

The symbol $U  is to be interpreted as follows: For this S-tuple, the 
value of the Objective field is identical to the corresponding value in the 
U-tuple of SOD. As a consequence, when an S-user asks for the SOD 
relation to be materialized, he or she will see the following: 
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Starship Objective Destination TC 

Enterprise Exploration Talos U 

Enterprise Exploration Rigel S 

 
 

The relation will appear unchanged to the U-user. 
The Lock Data Views (LDV) project [HAIG90a] follows this derived data 

approach.: The derived data approach has been implemented for the US 
Transportation Command Air Mobility Command MLS Global Decision 
Support System (GDSS) [NELS91]. This implementation, the MLS GDSS, 
limits polyinstantiation in a multilevel relation to at most one tuple per 
security class. Information is labeled at one of two levels, U or S. The 
design is based on the organization’s assumption that when S and U 
data are integrated into a single S response the S data takes prece-
dence over the U data. This design can be extended to environments 
with more than two strictly ordered security levels. Organizations for 
which this strict hierarchical rule does not apply, such as those with 
many compartmented environments, would have to incorporate sub-
stantial changes into this design in order to use it. 

In the MLS GDSS application, trusted application software function-
ally extends the commercial off-the-shelf (COTS) MLS DBMS to manage 
tuple-level polyinstantiation. Before inserting an S-tuple, the trusted 
software ensures that a U-tuple exists with the same key. If it does not 
exist, the insertion of an S-tuple is not permitted. If a U-tuple with the 
same apparent primary key does exist, the trusted application software 
examines each S-tuple attribute value, except the apparent key value, 
and determines if it replicates the attribute’s value in the U-tuple. If so, 
the value is not replicated in the S-tuple but instead is set to null, 
minimizing data replication. The U-tuple thus serves as the foundation 
upon which the S-tuple is built. The MLS GDSS solution is best ex-
plained with several examples. 

Consider the following relation: 
 
 

Starship Objective Destination TC 

Enterprise Exploration Talos U 
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Now suppose an S-user wishes to modify the destination of the Enter-
prise to Rigel. The S-user directs the system, through the trusted soft-
ware, to insert an S-tuple into the SOD, as follows: 

 
S-USER: 
     Insert into 
     (Starship, Objective, Destination) 
     Values (‘Enterprise’, ‘Exploration’, ‘Rigel’) 
 

The U- and S-tuples are now stored in the relation as: 
 
 

Starship Objective Destination TC 

Enterprise Exploration Talos U 

Enterprise Null Rigel S 

 
 
Reducing the replication of data across polyinstantiated tuples im-

proves the probability of maintaining the integrity of the database. Addi-
tionally, except for the key value, the sensitivity levels of all attribute 
values contained within the stored tuple are equivalent to the TC 
value. Given this equivalence to the TC value, trusted application soft-
ware derives attribute value labels from the TC value. Users operating at 
the U level are presented with a display showing the derived attribute 
value labels, as follows: 

 
 

Starship Objective Destination 

Enterprise U Exploration U Talos U 

 
 

Users operating at the S level are presented with a single composite dis-
play of a materialized tuple. This materialized tuple comprises S and U 
data, as follows: 

 
 

Starship Objective Destination 

Enterprise U Exploration U Rigel S 
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One of the major impacts of the polyinstantiation approach as imple-
mented in the MLS GDSS involves the DBMS join operator at the S 
level. Figure 9 illustrates the simplest form of the problem. A typical join 
operation between two tables matches and retrieves rows based on the 
primary key Starship. To retrieve data residing at the same security level 
and thus permit proper collapsing of the rows into a materialized tuple, 
the join is further qualified by the row’s security label attribute TC: 

 
S-USER: 
     Select * 
     FROM Table1, Table2 
     where Table1.Starship = Table2.Starship 
     and Table1.TC = Table2.TC 

Case 1: 
 

Starship Objective Destination TC 

Enterprise Exploration Talos U 

Enterprise Null Rigel S 

 

Starship Type Propulsion TC 

Enterprise Starship Photon U 

Enterprise Battlestar Queller drive S 

 

Starship Objective Destination Type Propulsion 

Enter-

prise     U 

Exploration   U Ri-

gel             S 

Bat-

tlestar      S 

Queller drive  S 

 
 

Case 2: 
 

Starship Objective Destination TC 

Enterprise Exploration Talos U 

Enterprise Null Rigel S 

 

Starship Type Propulsion TC 

Enterprise Starship Photon U 

 

Starship Objective Destination Type Propulsion 
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Enter-

prise     U 

Exploration   U Ta-

los            U 

Star-

ship        U 

Pho-

ton          U 

 
Figure 9. Joins in GDSS. 

 
 
An important functional requirement in the MLS GDSS is that S-

users expect to see S data as the end product of a retrieval, if S data 
exists; otherwise, U data is returned. Case 1 in Figure 9 shows a join 
between two tables that produces the correct materialized tuple for an 
S-user. Case 2 illustrates the anomaly associated with the join. In this 
case, the second table contains only U data. Since the query requires 
that the tuple labels match, the query does not return the S row of the 
first table joined with the U row of the second table. Thus, if data does 
not exist at the same security levels in each table, then S information 
may be lost during the join operation. 

In this simplified example, one might argue that removing the qualifi-
cation that the tables be joined by tuple labels would permit joins. Do-
ing this would return two rows in Case 2, one containing only U 
information, the other containing S and U information. If this approach 
were taken, the tuple materialization process would become more com-
plex and would need to extract multiple tuple labels and assign them to 
the appropriate columns in the row that was returned. Also, the join 
example shown in Case 1 would result in four rows of data returned 
from the server, instead of just two. The complexity of the problem and 
the work required of the DBMS server would increase significantly as 
more tables were joined. Database server performance would decrease 
accordingly, perhaps to unacceptable levels. 

To ensure the correct materialization of a logical joined tuple, the 
MLS GDSS system does not currently use the join capabilities of the 
COTS MLS DBMS. Instead, tuples are selected from individual tables, 
and then joined outside the DBMS by trusted application software. 
While this operation does result in some processing overhead, it en-
sures that data are not accidentally excluded from the S-user. 

Visible restrictions. The third perspective on polyinstantiation is 
that users are aware that data are restricted to certain levels. In prac-
tice, this means users know the levels of data that they can see and 
update. The goal is to provide a more “honest’’ database without com-
promising security. This perspective can lead to many different strate-
gies; this section presents four different approaches. 

The belief approach. One approach to polyinstantiation is motivated by 
the idea that data at each level reflects the “beliefs’’ of users at that 
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level about the real world [KENS92]. For simplicity, we will call this work 
the belief approach:. The belief approach differentiates between data 
that a user sees and data that a user believes. Updates reflect beliefs 
about the real world; they are regulated by the following property: 

Update access property: Data at a particular level can be in-
serted, modified, or deleted only by users at that level. 

Thus, data at each level reflects the beliefs of the users who maintain 
it. Users can see the data that they believe as well as data believed by 
users at lower levels (that is, users see all data that they could read un-
der the Bell-LaPadula model). 

At the heart of this property is a model that takes a stand between 
entity- and attribute-level polyinstantiation. Keys may be classified at a 
different level than other attributes within the same tuple, but all non-
key attributes within a single tuple share a classification level. 

Given a relation schema R, the multilevel relation Rc used in the belief 
model includes two additional classification attributes: a key classifica-
tion level (Kc) and a tuple classification level (Tc). The model imposes 
two restrictions: 

1. In any tuple, Tc must dominate Kc. 
2. For the set of key attributes K and for all nonkey attributes Ai, ..., 

An in Rc, 

K, Kc, Tc → Ai, ..., An 

 
Intuitively, then, tuples with the same values for key attributes but 

different key classification levels refer to different real-world entities. 
Tuples that are identical in key attributes and key classification levels 
but differ in tuple classification levels represent different beliefs about 
the same real-world entities. To maintain this distinction, users at a 
particular level are not allowed to reuse key attribute values for new 
entities. 

Given the relation SOD in Figure 10, U-users believe the first and sec-
ond tuples. C-users believe the third tuple, and S-users believe the 
fourth and fifth tuples. The second and third tuples in Figure 10 refer to 
the same real-world starship, but U- and C-users have different beliefs 
about its objective and destination. The first and fifth tuples refer to dif-
ferent starships. 

 
 
 



516  Information Security 

Starship Kc Objective Destination Tc 

Voyager U Shipping Mars U 

Enterprise U Exploration Vulcan U 

Enterprise U Diplomacy Romulus C 

Zardor S Warfare Romulus S 

Voyager S Spying Rigel S 

 
Figure 10. Example of SOD in the belief model. 

 
 
 
 
U-users can see only the first two tuples in Figure 10, C-users can see 

the first three tuples, and S-users can see all five tuples. 
Although users are allowed to see all tuples at levels dominated by 

their belief levels, the query language includes the optional keyword 
BELIEVED BY to allow users to further restrict queries. Thus, S-users 
can ask to see all allowable tuples, or only those believed by C- and S-
users, and so on. 

The query “Display the destination of all starships named Enterprise’’ 
is expressed as 

 
SELECT    Destination 
FROM     SOD 
WHERE     Starship = ‘Enterprise’ 
BELIEVED BY ANYONE 
 

The result of this query when issued against the relation in Figure 10 is 
 

Destination TC 

Vulcan U 

 
for a U-user, and 

 

Destination TC 

Vulcan U 

Romulus C 

 
for all users at levels C or higher. 
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The query “Display the beliefs of U-users as to the destination of all 
starships named Enterprise’’ is expressed as 

 
SELECT    Destination 
FROM     SOD 
WHERE     Starship = ‘Enterprise’ 
BELIEVED BY U 
 

The result of this query when issued against the relation in Figure 10 is 
 

Destination TC 

Vulcan U 

 
for all users. 

The query “Display the classification level and destination of all star-
ships named Voyager’’ is expressed as 

SELECT    Kc, Destination 
FROM     SOD 
WHERE     Starship = “Voyager’’ 
BELIEVED BY ANYONE 
 

The result of this query when issued against the relation in Figure 10 is 
 

Kc Destination Tc 

U Mars U 

 
for U- and C-users, and 

 

Kc Destination Tc 

U Mars U 

S Rigel S 

 
for all users at levels S or higher. 

The insert-low approach. Another variation of explicit restriction, the 
insert-low approach, has been adopted by the SWORD project at the 
Royal Signals and Radar Establishment in England [WISE90]. Briefly, this 
approach works as follows. 

Each relation is assigned at the time of its creation a table usage clas-
sification, abbreviated as table class. Each attribute is assigned a column 
classification that must dominate the table class. The purpose of the 
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table class is twofold: First, any insertion or deletion of tuples in a rela-
tion can be made by those users whose clearances equal the table class 
of the relation. Second, the table class controls exactly how the updates 
involving an access class that dominates the table class are made to the 
relation. This will be explained in greater detail below. 

Consider once again the relation schema SOD. Say the table classifi-
cation of SOD is U. A typical instance of SOD is given as follows: 

 
 

Starship Objective Destination 

Enterprise U Exploration U Talos U 

Voyager U Spying S Rigel T
S 

 
 

In this case, SWORD will show the entire relation to TS-users, while for 
those at lower levels SWORD will substitute <not cleared> whenever a 
user has insufficient clearance to view a value. Thus, for example, a C-
user will see the following instance: 

 
 

Starship Objective Destination 

Enterprise U Exploration U Talos U 

Voyager U <not 
cleared> 

S <not 
cleared> 

T
S 

 
 
To see how SWORD avoids tuple polyinstantiation, consider once 

again the relation SOD with U as its table class. Suppose the initial da-
tabase state is as follows: 

 
 

Starship Objective Destination 

Enterprise U Exploration U Talos U 

 
 

Suppose some U-user inserts the tuple (Voyager, S, Spying, U, Talos, U) 
in SOD. SWORD allows lower level users to insert values at higher lev-
els as long as the attribute value classifications are dominated by the 
appropriate column classification. In this example, the column classifi-
cation for Starship would have to be S or higher. Furthermore, since the 
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table classification of SOD is U, this constitutes a legal insertion, and as 
a result U-users and S-users will see the following states respectively: 

 
 

Starship Objective Destination 

Enterprise U Exploration U Talos U 

<not 
cleared> 

S Spying U Talos U 

 
 

Starship Objective Destination 

Enterprise U Exploration U Talos U 

Voyager S Spying U Talos U 

 
 
At this point, suppose a U-user wants to make an insertion (Freedom, 

U, Mining, U, Mars, U) to SOD. Since the Starship attributes of all tuples 
in SOD are not visible to the U-user, there is always a possibility that 
the Starship value of the tuple to be inserted equals that of the existing 
high tuple, leading to attribute polyinstantiation (or tuple polyinstantia-
tion, in the case of attributes constituting the primary key). SWORD 
avoids this by prohibiting U-users from inserting or modifying values in 
this attribute. In the case of key attributes, like Starship, this means 
that all further insertions by U-users are forbidden. However, since the 
table classification is U, only U-users can insert tuples into SOD. As a 
consequence, no further insertions can be made into SOD at all. In 
SWORD applications, then, the column classifications for all attributes 
constituting the primary key must equal the table class, or users may be 
able to prohibit future insertions. 

The following instance illustrates in more detail how attribute polyin-
stantiation is avoided in SWORD: 

 
 

Starship Objective Destination 

Enterprise U Exploration U Talos U 

 
 

Next, suppose a TS-user wishes to modify the destination of the Enter-
prise to be Rigel. This is accomplished in two steps. First, the TS-user 
must log in as a U-user and change the classification of Talos from U to 
TS. Having done so, the TS-user can log in at his level and then make 
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the desired update. As a result, the U-instance and TS-instance will be-
come as follows: 

 
 

Starship Objective Destination 

Enterprise U Exploration U <not 
cleared> 

T
S 

 
 

Starship Objective Destination 

Enterprise U Exploration U Rigel T
S 

 
 
Given the database state shown immediately above, suppose an S-

user wants to insert a secret destination for the Enterprise. He may do 
so by first logging in as a U-user, changing the classification of the at-
tribute Destination from TS to S. As a result of this change, all users, 
including the TS-user, will see the following relation: 

Starship Objective Destination 

Enterprise U Exploration U <not 
cleared> 

S 

 
 

Now, the S-user can log in at classification level S and make the appro-
priate change. 

Prevention:. The third variation of explicit restriction relies on prevent-
ing polyinstantiation completely. Jajodia and Sandhu [JAJO91d, 
SAND91, SAND92b] have described three basic techniques for eliminat-
ing entity polyinstantiation: 

1. Make all the keys visible. In this method, the apparent primary key 
is required to be labeled at the lowest level at which a relation is 
visible. For example, suppose the designer requires that all keys 
be unclassified. Consequently, the relation 
 

Starship Objective Destination TC 

Enterprise U Exploration U Talos U U 

Enterprise S Spying S Rigel S S 
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would be forbidden. Note that the two relations called USOD and 
SSOD in Figures 11 and 12 represent the same information. In 
other words, USOD and SSOD horizontally partition the original 
SOD relation, with all the U-Starships in USOD and all the S-
Starships in SSOD. 

2. Partition the domain of the primary key. Another way to eliminate 
entity polyinstantiation is to partition the domain of the primary 
key among the various access classes possible for the primary key. 
For our example, suppose that the application requires that star-
ships whose names begin with A through E are unclassified, star-
ships whose names begin with F through T are secret, and so on. 
Whenever a new tuple is inserted, the system enforces this re-
quirement as an integrity constraint. In this case, the secret En-
terprise must be renamed, perhaps as follows: 
 

Starship Objective Destination TC 

Enterprise U Exploration U Talos U U 

Freedom S Spying S Rigel S S 

 
The DBMS can now reject any attempt by a U-user to insert a 
starship whose name begins with F through Z, without causing 
any information leakage or integrity violation. 

3. Limit insertions to be done by trusted subjects. A third way to 
eliminate entity polyinstantiation is to require that all insertions 
are done by a system-high user, with a write-down occurring as 
part of the insert operation. (Strictly speaking, it is only necessary 
to have a relation-high user — that is, a user to whom all tuples 
are visible.) In the context of the example, this means that a U-
user who wishes to insert the tuple (Enterprise, Exploration, Ta-
los) must ask an S-user to do the insertion. The S-user does so by 
invoking a trusted subject that can check for key conflict and, if 
there is none, insert a U-tuple by writing down. If there is a con-
flict, the S-user informs the U-user about it, so the U-user can, for 
example, change the name of the starship to Voyager. 

 

U-Starship Objective Destination TC 

Enterprise U Exploration U Talos U U 

 
Figure 11. USOD. 
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S-Starship Objective Destination TC 

Enterprise S Spying S Rigel S S 

 
Figure 12. SSOD. 

 
 
The first approach is available in any MLS DBMS that allows a range 

of access classes for individual attributes (or attribute groups), by simply 
limiting the classification range of the apparent key to be a singleton 
set. The second approach is available to any DBMS that can enforce 
domain constraints with adequate generality. The third approach is al-
ways available but requires the use of trusted code. Note that although 
there is some leakage of information, it is with a human in the loop. 
This type of information flow cannot be completely eliminated [DOD85]. 
The best approach will depend on the characteristics of the MLS DBMS 
and the application, particularly concerning the frequency and source of 
insertions. 

The prevention approach also proposes techniques to prevent attrib-
ute polyinstantiation without compromising on confidentiality, integrity, 
or denial-of-service requirements. The basic idea is to introduce a spe-
cial symbol denoted by “Restricted’’ as the possible value of a data ele-
ment. The value “Restricted” is distinct from any other value for that 
element and is also different from “Null.’’ In other words, the domain of a 
data element is its natural domain extended with “Restricted’’ and 
“Null.’’ Then we can define the semantics of “Restricted’’ so as to be able 
to eliminate both visible and invisible polyinstantiation [SAND91]. 

Consider again the visible polyinstantiation scenario presented ear-
lier, beginning with the following relation: 

 

Starship Objective Destination TC 

Enterprise U Exploration U Talos U U 

 
Next, suppose an S-user attempts to modify the destination of the En-

terprise to be Rigel. This update does not cause any security violation. 
But now suppose that the new destination is classified Secret. The pre-
vention approach requires the S-user first to log in as a U-user2 and to 

                                                
2Alternately, the S-user logs in at the U level and asks some properly author-

ized U-user to carry out this step. Communication of this request from the S-
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mark the destination of the Enterprise as “Restricted,’’ giving the follow-
ing relation: 

 

Starship Objective Destination TC 

Enterprise U Exploration U Restricted U U 

 
The meaning of <Restricted, U> is that this field can no longer be 

updated by an ordinary U-user.3 U-users can therefore infer that the 
true value of Enterprise’s destination is classified at some level not 
dominated by U. The S-user then logs in as an S-subject and enters the 
destination of the Enterprise as Rigel, giving us the following relations at 
the U- and S-levels respectively: 

 

Starship Objective Destination TC 

Enterprise U Exploration U Restricted U U 

 

Starship Objective Destination TC 

Enterprise U Exploration U Restricted U U 

Enterprise U Exploration U Rigel S S 

 
Note that this protocol does not introduce a signaling channel from an 

S-subject to a U-subject. There is an information flow, but from an S-
user (logged in as a U-subject) to a U-subject. This is an important dis-
tinction. As mentioned in the Orange Book [DOD85], there is the possi-
bility that subjects may themselves constitute Trojan horses. This type 
of information flow, which includes humans in the process, cannot be 
completely eliminated. 

Next consider how the invisible polyinstantiation scenario presented 
earlier works with the restricted requirement. In this case, the Enter-
prise can have a secret destination only if the destination has been 
marked as being restricted at the unclassified level. Thus, one possibil-
ity is that the S- and U-users respectively see the following instances of 
SOD: 

                                                                                                                     
user to U-user may also occur outside the computer system, say by direct per-
sonal communication or a secure telephone call. 

3Only those U-users with the “unrestrict’’ privilege for this field can update it 
[SAND91]. 
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Starship Objective Destination TC 

Enterprise U Exploration U Restricted U U 

Enterprise U Exploration U Rigel S S 

 

Starship Objective Destination TC 

Enterprise U Exploration U Restricted U U 

 
Alternatively, both S- and U-users may see the following instance: 

 

Starship Objective Destination TC 

Enterprise U Exploration U Null U U 

 
In the former event, an attempt by a U-user to update the destination of 
the Enterprise to Talos will be rejected, whereas in the latter event the 
update will be allowed (without causing polyinstantiation). 

The concept of the “Restricted” mark is straightforward, so long as the 
classification lattice is totally ordered. In the general case of a partially 
ordered lattice, some subtleties arise. How to completely eliminate poly-
instantiation using “Restricted” has been discussed at length elsewhere 
[SAND91]. In general, updating the value of an attribute to “Restricted” 
cannot cause polyinstantiation. On the other hand, updating the value 
of an attribute to a data value, say, at the C level, can be the cause of 
polyinstantiation. If polyinstantiation is to be completely prohibited, this 
update must require that the data element is restricted at all levels 
which do not dominate C. The fact that the data element is restricted at 
all levels below C can be verified by the usual integrity checking mecha-
nisms in a DBMS [SAND91]. However, it is tricky to guarantee this at 
levels incomparable with C. In preparing to enter a data value at the C 
level, the system would need to start a system-low (really data-element-
low) process, which could then write up. A protocol for this purpose has 
been described [SAND91].4 

                                                
4It should be noted this protocol works for an arbitrary lattice, and does not 

require any trusted subjects. The use of trusted subjects will allow simpler pro-
tocols for this purpose. 
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Explicit alternatives approach. The fourth approach described here al-
lows the application developer to choose among explicit alternatives: for 
polyinstantiation. Sandhu and Jajodia [SAND92c] brought together a 
number of their previously published ideas, along with some new ones, 
to define a particular semantics for polyinstantiation called polyinstan-
tiation for cover stories (PCS). PCS allows two alternatives for each at-
tribute (or attribute group) of a multilevel tuple: 

1. no polyinstantiation, or 
2. polyinstantiation at the explicit request of a user to whom the 

polyinstantiation is visible. 

PCS strictly limits the extent of polyinstantiation by requiring that 
each real-world entity be modeled in a multilevel relation by at most 
one tuple per security class. The goal of PCS is to provide a natural, in-
tuitive, and useful technique for implementing cover stories, with run-
time flexibility regarding their use. A particular attribute may be used for 
cover stories for some tuples and not for others. Even for the same real-
world entity, a particular attribute may be polyinstantiated at some time 
and not at other times. 

PCS combines the “one tuple per tuple class’’ concept with the “Re-
stricted’’ concept presented earlier. The basic motivation for PCS can be 
appreciated by considering the following instance of SOD: 

 

Starship Objective Destination TC 

Enterprise U Restricted U Talos U U 

Enterprise U Spying S Rigel S S 

In this case, the Destination attribute of the Enterprise is polyinstanti-
ated so that <Talos, U> is a cover story for the real S destination of Ri-
gel. The Objective is not polyinstantiated. 

Consider the occurrence of polyinstantiation due to invisible polyin-
stantiation, as discussed by example earlier. This example begins with 
S- and U-users respectively having the following views of SOD: 

 
 

Starship Objective Destination TC 

Enterprise U Exploration U Rigel S S 

 
 

Starship Objective Destination TC 
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Enterprise U Exploration U Null U U 

 
 

So far, there is no polyinstantiation. Polyinstantiation occurs in the ex-
ample when a U-user updates the destination of the Enterprise to be 
Talos. 

PCS takes a slightly different approach to this example. According to 
the PCS approach, polyinstantiation does exist in the S-instance of 
SOD given above. PCS shows this instance as: 

 
 

Starship Objective Destination TC 

Enterprise U Exploration U Null U U 

Enterprise U Exploration U Rigel S S 

 
 

In this approach, polyinstantiation already exists prior to the U-user up-
dating the destination of the Enterprise to be Talos. This update merely 
modifies an already polyinstantiated relation instance to be: 

 
 

Starship Objective Destination TC 

Enterprise U Exploration U Talos U U 

Enterprise U Exploration U Rigel S S 

 
 
With this approach, element polyinstantiation can occur only due to 

visible polyinstantiation. Invisible polyinstantiation simply cannot be the 
cause of element polyinstantiation. Consequently, polyinstantiation will 
occur only by the deliberate action of a user to whom the polyinstantia-
tion is immediately available. In other words, polyinstantiation does not 
occur as a surprise. 

The PCS approach treats null values like any other data value (except 
in the apparent key fields where “Null’’ should not occur). Previous work 
on the semantics of null in polyinstantiated databases has taken the 
view that nulls are subsumed by nonnull values independent of the ac-
cess class [JAJO90c, SAND90]. In this case, the first tuple in the follow-
ing relation available to S-users 

 
 

Starship Objective Destination TC 
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Enterprise U Exploration U Null U U 

Enterprise U Exploration U Rigel S S 

 
 

is subsumed by the second tuple, resulting in the following relation for 
S-users used in the earlier invisible polyinstantiation example: 

 
 

Starship Objective Destination TC 

Enterprise U Exploration U Rigel S S 

 
 

Under the explicit alternative approach, the former relation is com-
pletely acceptable. The latter can be acceptable, but only if the lower 
limit on the classification of the Destination attribute is S. 

To further illustrate the semantics of null in PCS, consider the follow-
ing relation: 

 
 

Starship Objective Destination TC 

Enterprise U Exploration U Null U U 

Enterprise U Exploration U Null S S 

 
 

PCS considers this to be a polyinstantiated relation. The fact that there 
are nulls rather than data values in the polyinstantiated field has no 
bearing on the treatment of this relation. The semantics of null [JAJO90c, 
SAND90] require all null values to be classified at the level of the apparent 
key (U in this case), thereby deeming the second tuple illegal. 

The PCS approach leaves many of the choices of whether or not to 
polyinstantiate to the application designer. It differentiates between 
updates that cannot cause polyinstantiation and those that can. The 
PCS design uses two different keywords (UPDATE and PUPDATE) to 
make the distinction explicit. The PCS approach also relies on the dis-
tinguished data value “Restricted.’’ The meaning of this data value is 
that users at the associated classification level cannot modify the value 
of the restricted attribute. As in the prevention approach presented ear-
lier, PCS includes special privileges for imposing and lifting such restric-
tions. 
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Architectural considerations 

The architecture of an MLS DBMS affects the choices of polyinstantia-
tion strategies available to the database administrator (DBA). There are 
two fundamentally different architectural alternatives available in build-
ing an MLS DBMS. The details of these architectures [SCHA83] are be-
yond the scope of this essay, but we present them briefly to point out 
their implications for polyinstantiation. 

Figures 13 and 14 illustrate the two approaches (which are also dealt 
with in Essay 19). Figure 13 shows the trusted computing base (TCB) 
subset architecture. In this architecture, data at each classification level 
are stored in a separate database. Users at each level interact with a 
separate DBMS, and each DBMS has access to all databases at its level 
or lower. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13. Trusted computing base subset architecture. 
Figure 14 illustrates the trusted subject architecture. In this architec-

ture, data at multiple levels are stored in the same database. Users at 
multiple levels interact with the same DBMS, and the DBMS is trusted 
to protect the data according to their classification levels. 
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Figure 14. Trusted subject architecture. 
 
 
The potential for polyinstantiation is inherent in the TCB subset ar-

chitecture. The DBMS running at the lower level has no knowledge of 
data stored in higher level fragments, unless all keys are classified at 
the same (low) level. Unless specific measures are taken to cope with 
the problem (as, for example, in the approach described in the section 
“Visible restrictions”), polyinstantiation due to low users cannot be pre-
vented. Attribute polyinstantiation may be allowed by defining logical 
relations that span multiple levels. The underlying databases would 
store single-level fragments of the relations. Restrictions on fragmenta-
tion are the first method to control the types of polyinstantiation se-
mantics allowed within a system. 

Various polyinstantiation strategies have been proposed to control the 
recomposition of relations at the time of data retrieval. The DBMS must 
determine how to combine the data received from the underlying data-
bases into a single answer for the user. The approach may be to perform 
joins and return combinations of data (as in the SeaView approach, pre-
sented in the section entitled “Propagation of polyinstantiated tuples”), 
to choose the data with the highest classification level whenever there 
are polyinstantiated data (as in the MLS GDSS approach, in the section 
entitled “Derived values”), to return data at the classification levels ex-
plicitly requested by the user (as in the belief approach, in the section 
entitled “Visible restrictions”), or to use some other strategy. 

Under the trusted subject architecture, a DBA has more flexibility to 
trade strict security enforcement for data integrity. If the DBA chooses to 
use polyinstantiation rather than to permit disclosure channels, then 
the trusted DBMS must enforce its own barriers between data at differ-
ent levels. In effect, the barriers that were imposed by the TCB subset 
architecture are reinstated through software in the trusted DBMS. Un-
der the trusted subject architecture, the DBA may also choose to allow 
lower level users to see some information about the existence of higher 
level data in order to enforce data integrity. Since the trusted DBMS has 
access to data at all levels, it is able to impose restrictions on lower level 
updates. 
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Conclusion 

The design of an MLS DBMS must take into account the problem of 
polyinstantiation. When data items exist at multiple classification lev-
els, there is the potential for inconsistent values for the same data item 
at different levels. Polyinstantiation may occur over tuples or attributes, 
and it may arise through updates at low or high classification levels. Re-
searchers have developed a number of different approaches to polyin-
stantiation; no one solution is best for all applications. This essay 
outlined approaches in which the system: 

• propagates polyinstantiated tuples to reflect valid combinations of 
values, 

• shows users derived tuples based on underlying polyinstantiated 
tuples, or 

• informs users explicitly of restrictions or inconsistencies present 
in the data so that polyinstantiation can be controlled. 
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