
Hiding Data Accesses in Steganographic File System

Xuan ZHOU1 HweeHwa PANG2 Kian-Lee TAN1

1Department of Computer Science 2Institute for Infocomm Research
National University of Singapore 21 Heng Mui Keng Terrace
3 Science Dr 2, Singapore 117543 Singapore 119613

Abstract

To support ubiquitous computing, the underlying data
have to be persistent and available anywhere-anytime. The
data thus have to migrate from devices local to individ-
ual computers, to shared storage volumes that are acces-
sible over open network. This potentially exposes the data
to heightened security risks. We propose two mechanisms,
in the context of a steganographic file system, to mitigate
the risk of attacks initiated through analyzing data accesses
from user applications. The first mechanism is intended to
counter attempts to locate data through updates in between
snapshots – in short, update analysis. The second mech-
anism prevents traffic analysis – identifying data from I/O
traffic patterns. We have implemented the first mechanism
on Linux and conducted experiments to demonstrate its ef-
fectiveness and practicality. Simulation results on the sec-
ond mechanism also show its potential for real world appli-
cations.

1. Introduction

Ubiquitous computing entails the permeation of comput-
ing in every facet of our lives, be it work, personal or leisure,
to a point where users take it for granted and stop to notice
it. The data that underlie the ubiquitous services have to
be persistent and available anywhere-anytime. This means
that the data must migrate from devices local to individ-
ual computers, to shared network storage. A development
that would facilitate this migration is the emergence of data
grids (e.g. see [1, 7]), which enable arrays of storage nodes,
possibly separated over long distances, to function together
as a single integrated block-access volume. Another sup-
porting development is the recent interest in building reli-
able logical storage volumes on unreliable nodes in a peer-
to-peer platform (e.g. [10]).

While shared network storage provides the availability

needed for ubiquitous computing, it introduces new chal-
lenges in data security – Since data reside on open networks,
there are several avenues from which an attacker could at-
tempt to steal user data. Even if data is encrypted, the ex-
istence of protected data could itself be useful information
to the attacker (see [6] for examples); the attacker may try
to guess the decryption password, or even coerce the owner
to disclose the data. The protected data could be discovered
through the directory structures on the storage volume, by
looking for changes in between snapshots, or by analyzing
I/O traffic patterns.

In [12], we introduced a steganographic file system that
foils attempts to deduce the existence of hidden data or to
locate hidden data through the directory structure. In this
paper, we propose additional mechanisms to protect against
attacks initiated through analyzing data accesses from user
applications. The first mechanism is intended to counter
attempts to locate data through updates in between snap-
shots – in short, update analysis. It works by relocating
data blocks systematically, and by introducing updates to
dummy blocks. To prevent traffic analysis – identifying
data from I/O traffic patterns – we design an oblivious stor-
age that employs a multi-tiered buffer to mask off any reg-
ular I/O patterns inherent in the user applications.

The mechanisms are constructed to balance between
three different objectives: (a) security: an attacker cannot
deduce whether the blocks involved in any observable up-
dates or traffic patterns contain genuine data; (b) integrity:
the data relocations and dummy updates should not compro-
mise the integrity of the hidden files, resulting in irrecover-
able data loss; and (c) performance: any performance degra-
dation from the overheads introduced should be minimized.

The remainder of this paper is organized as follows. Sec-
tion 2 summarizes related work on steganographic file sys-
tems and traffic analysis. Section 3 gives an overview of
update and traffic analysis attacks, and defines our system
model. We introduce the mechanism to guard against up-
date analysis in Section 4, while Section 5 presents our

1

oblivious storage for countering traffic analysis. Follow-
ing that, Section 6 describes the system implementation
and performance evaluation results. Finally, Section 7 con-
cludes the paper and discusses directions for future work.

2. Related Work

This section first summarizes previous work on stegano-
graphic file systems, then reviews some related work on
traffic analysis.

2.1. Steganographic File system

User access control and encryption are traditional pro-
tection mechanisms for file systems. However, as they leave
evidence of the existence of valuable data, they may prompt
an adversary to attempt to circumvent the protection, or
even to coerce the owner into disclosing the access key.
The steganographic file system provides a higher level of
protection, by hiding the very existence of the files. This
kind of file system grants access to the protected files only
if the correct access keys are supplied. Without them, an
adversary could get no information about whether the pro-
tected directory/file ever exists, even though the adversary
understands the hardware and software of the file system
completely, and is able to scour through its data structures
and the content on the raw disks. With such a file system, if
the owner is compelled by an adversary to disclose data, he
can deny their existence without arousing suspicion. This is
called plausible deniability, and is especially useful in safe-
guarding sensitive information.

Classical approaches to steganography are concerned
with embedding relatively small messages within large
cover texts, e.g. using the least significant bit of the pixels in
an image to hide copyright information. While some prod-
ucts apply these approaches directly to secure data files, e.g.
DriveCrypt [2] is capable of hiding entire disk volumes in
music files, the resulting overhead in storage space is unac-
ceptable for a general-purpose file system that needs to hold
large volumes of data with high space usage efficiency.

In [6], Ross Anderson et al presented the first two
schemes for a steganographic file system that hide data di-
rectly on a raw disk volume. However, both schemes pro-
posed in this work are not satisfactory for real-life applica-
tion due to their high processing overhead and/or risks of
data loss. In [12], we proposed a practical StegFS solution
that overcame those limitations.

In a StegFS, a number of randomly selected blocks are
initially filled with random data and abandoned by the sys-
tem. After that, the data blocks of useful files, which are
encrypted under the files’ access keys, are scattered across
the storage space in such a way that they can only be located
through the access keys. Therefore, an attacker without the

files’ access keys cannot distinguish between useful blocks
of hidden files and abandon blocks, and thus cannot deduce
the existence of the files. As StegFS was designed for local
storage devices, it does not address the additional risk of up-
date analysis or traffic analysis that shared network storage
encounters.

2.2. Traffic Analysis and Related Problems

Even with a steganographic file system, an attacker who
is monitoring the storage might be able to analyze the pat-
terns of the update or data traffic activities, and from there
deduce the existence of hidden files. This is the traffic anal-
ysis problem [14].

Traffic analysis has been studied extensively in the con-
text of privacy-providing systems, such as the MIX net-
works [5, 13]. While all these techniques serve to pre-
vent private information from being released to adversaries
through the data traffic or access patterns, different mecha-
nisms are adopted according to the peculiar objectives and
requirements of individual systems. Two privacy protection
mechanisms that could be adapted to solve our problems are
oblivious RAM [9] and private information retrieval (PIR)
[8].

PIR enables users to privately retrieve their informa-
tion from a secondary storage system, such as a database.
With such a mechanism, user data are stored into multiple
databases that are not aware of each other, so that a user can
retrieve data without revealing them. However, all the exist-
ing schemes of PIR [8, 11] only concentrate on reducing the
communication complexity, but ignore the I/O overheads.
Specifically, most of them need to scan the entire storage
volume for every query, and are too expensive for a generic
file system.

Oblivious RAM is a tamper-resistant cryptographic pro-
cessor that serves to protect code privacy and prohibit soft-
ware copyright violation. Even an attacker who can look
into the memory and monitor the memory accesses (reads
or writes) cannot gain any useful information about what
is being computed and how it is being computed. In [9],
the oblivious RAM’s processing overhead is reduced to
O((log t)3) where t is the number of computation steps
of the RAM. Our proposed counter-measure against traf-
fic analysis, oblivious storage, is inspired by the oblivious
RAM (see Section 5.1).

3. Overview of Update and Traffic Analysis

In this section, we first give an overview of the problems
of update analysis and traffic analysis. Following that, we
outline the model for the steganographic file system that we
designed to counter those attacks.

2

810,000
Alice
Bob

after updatebefore update

200,000

update from disk’s view

update from user’s view

useful data
existence of
difference means

1000 1001

update from table’s view

before update after update

200,000
910,000

Alice
Bob

Set Salary += 100,000
Where name = "Bob"

Update Sal_table

011101110111011110010101
011011011011110111110000

011010011111011110011010
101011011011011010011001
011011011011110111110000
011101110111011110010101
110111110111011111100001

100110110110110011010011
011010001111011110011010
100110110110110011010011

110111110111011111100001

101011011011011010011001

Figure 1. Hidden Data is Exposed by Update

3.1. Problem Definition

Existing steganographic file systems are primarily de-
signed to ensure that an attacker cannot easily deduce the
existence of hidden files by examining the directory struc-
tures in local storage devices. They do not address the addi-
tional risk faced by shared network storage. Specifically, if
an attacker can compare consecutive snapshots, he can de-
tect changes on blocks that do not belong to any plain files,
and conclude that one or more hidden files exist. We call
this attack update analysis.

Figure 1 illustrates the update analysis problem. A small
update on Sal table leads to a difference between the snap-
shot taken before the update and the next snapshot after the
update. This difference suggests that the DBMS has up-
dated some hidden data, and can be used by an attacker as
evidence to coerce the user to disclose the table being up-
dated.

Besides update analysis, an attacker may also be able to
gain access to the activity log, or even trap the requests at

1000 1001

11000010

0110

Set Salary += 100,000
Where name = "Bob"

Update Sal_table
Dummy Update

Dummy Update

Snapshot 1 Snapshot 2

1001

011101110111011110010101

011010011111011110011010
101011011011011010011001
011011011011110111110000
011101110111011101100101
110111110111011111100001

100110110110110011010011

110111110111011111100001

100110110110001011010011

011011011011110111110000
101011011011011010011001
011010001111011110011010

Figure 2. Effect of Dummy Accesses

runtime, then analyze the I/O operations for hints of hid-
den files. This second attack is commonly known as traffic
analysis.

To hide data accesses from the above attacks, we could
issue a stream of purposeless accesses on the storage. If
these dummy accesses could be made to appear indistin-
guishable from the data accesses, they would prevent the
attacker from deducing the existence of hidden data from
any updates or I/O traffic. As figure 2 shows, since the sys-
tem has been conducting dummy updates on the storage pe-
riodically, the attacker cannot tell whether a changed block
is due to a real or dummy update. This is the basic idea for
the extensions to our steganographic file system.

3.2. System Model

In this subsection, we describe a model of the stegano-
graphic file system that is able to hide data accesses. We
also give a security notion to measure the effectiveness of
hiding data accesses.

Raw StorageAgentUsers

Figure 3. Model of Steg File System

3.2.1. System. Figure 3 shows the model. The users on
the left hand of figure 3 have their data files stored in the
raw storage. Between the users and the storage is an agent
that is fully trusted by the users and is authorized to access
the storage directly. Whenever users need to access their
data files in the raw storage, they have to route the requests
through the agent. Upon receiving the requests, the agent

3

translates them to corresponding I/O operations, and after-
ward returns the results to the users. When there is no ac-
tive workload, the agent would issue dummy I/O operations
on the raw storage. Therefore, any attacker who might be
monitoring the raw storage would not be able to isolate user
activities from dummy requests, and thus cannot deduce the
existence of hidden files.

Commonly, the users and the agent can communicate
through some trusted channels deliberately, whereas the
raw storage is the shared resource in the network, which is
always in an unsecured environment. Hence it is necessary
to protect the traffic between the agent and the raw storage.
Common practical scenarios for such a model include
shared storage area networks (SAN), data grids [1, 7],
peer-to-peer storage platforms [10], and storage services
hosted by external data centers.

3.2.2. Attacker. Attackers of such a steganographic file
system are classified into two groups. The first group of at-
tackers are able to scan the whole raw storage repeatedly, so
they can identify any updates conducted on the raw storage.
The second group of attackers are able to observe the I/O
requests between the agent and the storage, either from the
activity log or by trapping requests directly at runtime, and
could deduce the existence of hidden files through traffic
analysis. Both groups have a complete understanding of
the scheme running in the system. However, they do not
know any secret access keys held by users or the agent.
Neither can they observe the real-time operations within
the agent and the interactions between the agent and users.
We assume that the users can communicate with the agent
through a secure channel. We also assume that the agent
is a computer that is properly shielded from external probes.

3.2.3. Memory. The raw storage is the only permanent
mass storage in the system. However, we allow the clients
and the agent to have some local cache. A user should keep
track of the access key(s) to his hidden files, through which
the agent can authenticate the user’s identity and locate the
corresponding hidden files. The access keys may be com-
mitted to the user’s memory, or stored within a tamper-proof
device like a smartcard. The agent needs some working
memory to carry out its processing. Its working memory
is volatile and thus leaves behind no information to attack-
ers. We distinguish between an agent that has a non-volatile
memory for storing some secret information about the file
system, and one that does not:

• Non-volatile Agent This category of agent runs in a
very safe environment that is immune to any attacks.
It possesses a non-volatile memory for keeping some
secrets on the file system. The shortcoming is that the
system administrator could be at risk of being coerced
by attacker to disclose the hidden data.

• Volatile Agent This category of agent does not re-
tain user information in persistent memory, and is less
likely to compromise the system even if the protection
around the agent is breached. The trade-off is that there
is a higher maintenance cost.

While the user machines and the agent are allowed to have
some local cache, they are not of the same order of mag-
nitude as the raw storage. Thus, user data still have to be
stored on the raw storage.

securemoderateinsecure

pattern of the observed accesses
pattern of dummy accesses

Figure 4. Effectiveness of Hiding Accesses

3.2.4. Definition of Security. To conceal the existence
of files, the agent can encrypt the files, introduce random
data, and scatter them across the storage space just like the
StegFS in [12]. At the same time, the agent should hide
user accesses by mixing in dummy traffic. As illustrated
in figure 4, the data access pattern, should appear the same
as the pattern of dummy accesses. (The access pattern is
usually expressed as the probability distribution of the ac-
cesses.) Otherwise, an attacker may be able to isolate the
data accesses and prove the existence of hidden files. Here
we give the definition of security for hiding data accesses in
a steganographic file system.

Definition 1: Let X denote the sequence of accesses the
agent performs on the raw storage. Its probability distribu-
tion is PX . Y denotes the set of access requests users submit
to the agent, and when there is no request, Y = Ø. PX|Y is
the conditional probability distribution of X given a particu-
lar Y . (Thus, PX|Ø is the probability distribution of dummy
accesses.) A system is secure if and only if, whatever Y is,
PX|Y and PX|Ø are so similar that it is computationally in-
feasible for an attacker to distinguish between them from a
sufficiently large set of samples. A system is perfectly se-
cure if and only if PX|Y and PX|Ø are exactly the same.
�

4. Mechanism to Counter Update Analysis

This section presents the first mechanism to equip
our steganographic file system to counter update analysis,
where attackers might take multiple snapshots of the raw

4

Data Field

Dummy BlockData Block

Dummy File

Block

File Header

Hidden FileIV

Disk

Figure 5. File System Construction

storage and detect updates on hidden files. We make a
strong assumption that attackers can observe all the updates
in the raw storage, although not all the attackers are so pow-
erful in reality. The task of the agent is to hide the data
updates from attackers by introducing dummy updates.

For simplicity, the agent’s dummy updates are generated
from a random process. However, as users’ update opera-
tions could exhibit some regular patterns, e.g. table scans,
an attacker might be able to isolate the data updates through
some statistical methods. The proposed mechanism coun-
ters this threat, by changing the location of data blocks sys-
tematically to remove any regular pattern in the update op-
erations.

We begin with a construction that works with a non-
volatile agent, and subsequently extend the mechanism to
work with a volatile agent.

4.1. Construction 1: Non-Volatile Agent

A non-volatile agent is able to retain some critical user
information, so that it has a complete view of the file system
at any time and can freely reorganize it. This simplifies the
task of hiding updates and system maintenance.

4.1.1. Data blocks. Figure 5 shows the basic construction
of this scheme. As in conventional file systems, it parti-
tions the raw storage into standard-size blocks, and clas-
sifies them into data blocks that contain useful data and
dummy blocks that contain only random bytes. Both groups
of blocks are scattered randomly across the storage volume.

As figure 5 shows, each block contains an initial vector
(IV) and a data field. The data field contains real data in
the case of a data block, and random bytes if it is a dummy
block. For each block in the raw storage, whether a data
block or a dummy block, its data field is encrypted by the
agent using a CBC (Cipher Block Chaining) block cipher
with the IV as seed. Whenever the agent re-encrypts a
block, it resets the IV so that the content of the whole

encrypted block changes. This enables the agent to carry
out dummy updates on any block, by simply changing
its IV. An attacker without the encryption key cannot tell
whether the data field is actually modified.

4.1.2. Hidden files. A hidden file is a set of data blocks
that are organized in a tree structure, with the file header as
the root note. This structure of hidden file is similar to that
of StegFS in [12]. The location of the header of a hidden
file is derivable from its access key FAK and path name.
Once these are provided by the owner, the agent can recover
the file content from the raw storage. An attacker without
the FAK would not be able to deduce the existence of the
hidden file even if he scours through the raw storage.

All the dummy blocks in the raw storage belong to a
single dummy file, a hidden file whose FAK is held by the
agent. Hence the agent keeps two keys in its non-volatile
memory. One is the FAK of the dummy file, the other is
the secret key for encrypting all the storage blocks.

4.1.3. Dummy updates. Whenever there is no user activity,
the agent would issue dummy updates on randomly selected
blocks in the storage volume. In each dummy update, the
agent reads in the selected block, decrypts it, assigns a new
random number to its IV, re-encrypts it, and then writes it
back. The dummy updates are completely random, i.e., ev-
ery data block has the same probability of being selected.
The dummy updates do not compromise data integrity since
only the IVs are changed.

As the data blocks are encrypted, without the agent’s
encryption key, an attacker cannot differentiate a dummy
update that only changes the IV from an update that modi-
fies the data content. As the dummy updates are inserted
in between data updates, their frequencies are similar so
the attacker cannot isolate the data updates through any
variance in update frequency.

4.1.4. Data updates. The introduction of dummy updates
alone is not enough to hide the existence of data updates.
The pattern of data updates must also be made similar to
that of a random process. We achieve that by relocating a
data block each time it is updated, so that the access pattern
for a logical data block cannot be established by attackers.

When there is a request to update a data block, the agent
first randomly selects a block within the storage volume. If
the selected block is exactly the same block that is being
updated, the agent simply performs the required update on
it. If the selected block is a dummy block, the agent swaps
it with the data block and updates its content in the process.
Otherwise, if another data block is selected, the agent does
a dummy update on it, and starts over again to look for an-
other block. The update algorithm, given in figure 6, com-
bines the procedures for dummy update and data update.

5

func update ()
if there is a request to update block B1, then

Re: randomly pick up a block B2 from the storage space;
if B2 = B1, then

read in B1, decrypt it,
update B1’s IV and data field,
encrypt B1, write it back;

else if B2 is a dummy block, then
read in B1,
substitute B2 for B1,
update B2’s IV and data field,
encrypt B2, write it back;

else
read in B2, decrypt it,
update B2’s IV ,
encrypt B2, write it back;
goto Re;

else // dummy update
randomly pick up a block B3 from the storage space;
read in B3, decrypt it,
update B3’s IV ,
encrypt B3, write it back;

func end

Figure 6. Update Algorithm

Now, we prove that this scheme is perfectly secure.

Proof: For a data update, each block in the storage
space has the same probability of being selected to hold the
new data. Hence the data updates produce random block
I/Os, and follow exactly the same pattern as the dummy
updates. Therefore, whether there is any data update or not,
the updates on the raw storage follow the same probability
distribution as that of dummy updates. According to the
definition in Section 3.2.4, the scheme is perfectly secure.
Without knowing the agent’s encryption key, attackers can
get no information on the hidden data no matter how long
they monitor the raw storage. �

4.1.5. Processing Overhead. An update in a conventional
file system would incur two I/O operations – read in the
block, update it and write it back. With our scheme, the
agent needs to repeat a block selection procedure until it
successfully completes the update. Each iteration in this
procedure incurs two I/Os – to read in a block and write out
the block. Therefore, the processing overhead is decided by
the number of iterations. Suppose the raw storage has N

blocks, out of which D are dummy blocks. The probability
that a randomly selected block is a dummy block is p =
D

N
, and the probability that i iterations are needed is (1 −

p)i−1p. Thus the expected overhead, defined as the total
number of I/Os in our scheme divided by the number of
I/Os in a conventional file system, depends on the fraction

of dummy blocks in the storage volume:

E = p + 2 × (1 − p)p + 3 × (1 − p)2p + ... =
N

D

If at least half of the storage space is occupied by dummy
blocks, i.e., the space utilization is kept below 50%, the ex-
pected overhead is 2 at the very most. As storage space
is cheap today, it makes sense to sacrifice some space to
achieve better processing throughput.

Another overhead of our scheme is the block relocation
upon each update. As each data block is traced through its
file header, we need to update the header whenever a block
is relocated. However, since the file header is always placed
in the cache and is written out only when the file is saved,
this overhead will not add significantly to the response time.

4.2. Construction 2: Volatile Agent

While the above construction for non-volatile agent
protects against update analysis on the raw storage, the
encryption key for all the data and the FAK for the
dummy file are kept centrally in the persistent memory
of the agent. This could subject the administrator of the
agent to coercion from attackers. In this subsection, we
extend the construction to work with a volatile agent that
does not use a persistent memory to store any secret about
the file system, so that attackers cannot elicit any useful
information from the administrator. In this second scheme,
the encryption key of the hidden files are retained by the
owners, and each user possesses his own dummy file(s).
The encryption key and the FAK of the dummy file(s) are
disclosed to the agent only when the user logs on.

4.2.1. Distributing secrets to users. Instead of using the
agent’s key to encrypt all the blocks, this construction as-
signs each hidden file encrypting keys. Actually, the FAK

of each hidden file comprises 3 components – the location
of the file header, a header key for encrypting the header in-
formation, and a content key for encrypting the file content.
Moreover, dummy blocks in the raw storage are organized
into dummy files of approximately the size of data files, and
distributed to the users. Within the FAK of a dummy file,
only the location of the header and the header key are used;
the content key is not utilized because the file contains only
random bytes.

With this scheme, a user who is being compelled to
disclose his hidden files can just expose some dummy files
and remain silent on his hidden data. He can even reveal
the header key for a hidden file but give a wrong content
key, and claim that the file is a dummy.

4.2.2. Operations of the volatile agent. The volatile agent
performs updates on the raw storage in the same way as

6

the non-volatile agent, except that here the agent can only
update files that users have disclosed to it.

When the agent starts up, it has zero knowledge of the
hidden and dummy files in the raw storage. As each user
logs on to the system, he shares the FAKs to his hidden
files and dummy files with the agent. As more users log
in, the agent would discover more hidden files and dummy
blocks to carry out dummy updates on. Thus, while an
attacker may find part of the raw storage being accessed
at any one time, this does not disclose any meaningful
information since the updated blocks do not necessarily
contain useful data.

4.2.3. Key management. Most security systems pro-
vide key management mechanisms to carry out the opera-
tions like key generation, verification and backup. But our
steganographic file system lets each individual user to man-
age their own keys. Whenever the FAK of a hidden file is
generated, the user keeps it in his local memory and uses his
local key management facility to maintain his FAKs. Some-
times, he can also refer to some third-party key management
service outside the steganographic file system.

5. Mechanism to Counter Traffic Analysis

Having tackled update analysis, we turn our attention to
the threat of traffic analysis, carried out by attackers who
can observe the I/O traffic between the agent and the raw
storage. To prevent the read and write operations from ex-
posing the existence of hidden files, the agent needs to mix
in dummy reads and writes on the raw storage to conceal
the data traffic.

Our solution to the traffic analysis problem works by ran-
domizing the physical I/Os that arise from data reads and
writes. Write operations can be masked in the same way as
updates: a data block is written to a randomly selected po-
sition each time it is updated, so that the data writes follow
the pattern of dummy writes. Read operations are more dif-
ficult to hide, since data have to be retrieved from specific
locations and the read pattern is determined by the user ap-
plications. Thus, we need another way to mould the read
pattern into the pattern of dummy reads. A naive solution
is to scan through the entire storage for each dummy and
data read operation. This is perfectly secure but way too
expensive.

In this section, we propose an oblivious storage scheme
for hiding data read operations, which draws inspiration
from the oblivious RAM [9]. We carve out a partition on
the raw storage and construct it to be an oblivious storage
(shown in figure 7), which serves as a cache of the file sys-
tem. The remaining space on the storage is used for the
StegFS (steganographic file system) partition. All the hid-
den files and dummy files are stored in the StegFS partition

size: BAgent’s Buffer

...

Level 2

Level k size: N

size: 4B

lo
g(

N
/B

)
le

ve
ls Level 1 size: 2B

Figure 7. Structure of Oblivious Storage

as before; the update operations are performed in this par-
tition as well. The difference is that here read operations
are diverted to the oblivious storage. As both the oblivious
storage and the StegFS partition are parts of the raw storage,
both two of them are visible to attackers.

As will be explained shortly, the oblivious storage works
by shuffling data blocks frequently. Hence it can only serve
as a cache, but not the persistent storage because the FAKs
of hidden files are not available before their owners log in,
and until then the agent has no way of updating their head-
ers to reflect any block relocations. This is why we need a
separate StegFS partition for persistent storage.

5.1. System Construction

Here, we introduce the agent’s operations on the StegFS
partition and the oblivious storage.

5.1.1. StegFS partition. The StegFS partition is con-
structed in the same manner as the one that can hide up-
dates. Update operations are conducted in the same way as
before. But read operations are conducted at most once for
each data block, as the retrieved blocks will be cached in
the oblivious storage subsequently. Dummy reads are also
mixed in to conceal the real reads.

Figure 8 (a) gives the algorithm of the read operations
on the StegFS partition. When the system starts up, the
oblivious storage is empty. Only when the data blocks are
required by users, they are copied from the StegFS partition
to the oblivious storage. Each dummy read operation is
random. As data blocks are scattered randomly across the
storage space and each data block needs to be read only
once, the real read operation in figure 8 (a) is also random.
Therefore, the process of data retrieval from the StegFS
partition looks like a random process and does not expose
any information to attackers.

5.1.2. Oblivious storage. The oblivious storage can hide
any access pattern on its data blocks by distorting the data

7

accesses into a random process. Therefore, dummy reads
and data reads on the oblivious storage can be mixed seam-
lessly and simply: To satisfy a dummy read, a randomly
selected block is retrieved; whereas in the case of a data
read, the required block is retrieved. As the oblivious stor-
age exposes no access pattern, attackers cannot distinguish
between dummy reads and data reads, and cannot deduce
the happening of data read from the observed read opera-
tions. The following paragraphs give an overview of the
construction and operations of the oblivious storage.

Figure 7 shows the oblivious storage, which is made up
of a hierarchy of memories. The first level is twice as large
as the agent’s buffer cache, and each subsequent level dou-
bles in size until the last level is enough to accommodate all
the data blocks that could be read by users. The last level
contains all the data blocks that can be found in the obliv-
ious storage, and the other levels may also contain some
copies of these blocks. To hide access patterns, the obliv-
ious storage periodically shuffles each level, so that users’
access patterns can be distorted and concealed.

The algorithm for a read operation of the oblivious stor-
age is shown in figure 8 (b). To read a data block, the agent
first looks in its buffer. If the block is not there, the agent
retrieves it from the highest level in the oblivious storage
where it can be found. At the same time, it issues a read on
a randomly selected block from each of the other levels. Af-
ter a data block is read, it is added to the agent’s buffer until
it becomes full, at which time all its blocks are flushed into
the first level of the oblivious storage, then all the blocks
in that level are re-encrypted and re-ordered (shuffled) to
an arbitrary permutation. Similarly, when Leveli of the
oblivious storage is full, all its data blocks are flushed into
Leveli+1, and the blocks there are then re-encrypted and
re-ordered. Consequently, within each level of the oblivi-
ous storage, any given data block will be read at most once
before the blocks in that level is re-ordered. To an attacker,
it appears that every time the agent would read a randomly
selected block from each level of the oblivious storage, so
there is no way to deduce whether the observed read oper-
ation serves for a data read or a dummy read. Proof of the
security of the oblivious storage can be carried out similarly
as that of the oblivious RAM in [9]. As the oblivious RAM
is computationally secure, this scheme of oblivious storage
satisfies our secure definition in section 3.2.4.

Write/update operations on data blocks within the obliv-
ious storage can be hidden in the same way as reads. The
writes would also need to be repeated on the StegFS parti-
tion to ensure consistency.

A secondary hash index is built for each level for locating
its data blocks. If these indices are too big to be accommo-
dated by the agent’s memory, the agent can encrypt them
using a temporary key and store each of them in the front of
the corresponding level. Each hash index has to be rebuilt

/ * steg-store - StegFS partition whose size is M
obli-store - oblivious storage whose size is N
S - the set of data blocks already in obli-store * /

func read stegfs ()
if a block B1 is required but not in obli-store, then

Re: generate a random number X that 0 ≤ X < M ;
if X< sizeof(S), then

randomly pick up a block B2 from S;
read B2 from steg-store;
goto Re;

else
copy B1 from steg-store to obli-store;

else // dummy read
randomly pick up a block B3 from steg-store;
read B3 from steg-store;

func end

(a) Read on StegFS Partition

func dump (i)
if i = k-1, then

re-order levelk;
empty leveli;

else
if leveli+1 is full, then call dump (i+1);
copy leveli into leveli+1;
re-order leveli+1;
empty leveli;

func end

func read oblivious (block B1)
if B1 is in the buffer, then

read B1 from the buffer;
return;

for i = from 1 to k, do
if B1 is in leveli, then

read B1 from leveli;
break;

else
read a random block from leveli;

end loop;
for j = from i to k, do

read a random block from levelj ;
end loop;
add B1 to buffer;
if buffer is full, then

if level1 is full, then call dump (1);
copy buffer into level1;
re-order level1;
empty buffer;

func end

(b) Read on Oblivious Storage

Figure 8. Read Algorithms

8

whenever the corresponding level is re-ordered. The key for
the hash index is composed of the block’s logical address
and a random number generated when the hash index is re-
built. Therefore, attackers could not detect anything from
the accesses to the indices.

For re-ordering a particular level, we should be able to
re-order it to a random permutation in a concealed way. (Ar-
guments for this can be found in [9].) Here, we apply the
external merge sort algorithm.

5.2. Processing overhead

Let B denote the size of the buffer, and N the size of the
lowest level of the oblivious storage. Thus N = 2k × B,
where k is the number of levels. Whenever a data block
is to be read, the agent would locate and retrieve a block
from every level. This incurs a retrieving overhead that
is proportional to 2k. Moreover, the oblivious storage is
re-ordered periodically, and this incurs a sorting overhead.
The ith level of size 2i ×B is sorted at a frequency of once
per 2i−1 × B reads. If we employ external merge sort,
the sorting cost for Leveli is 2i+1B × dlogB2i + 1e, and
the average sorting cost for each read would be less than
4k×dlogB2k +1e. Therefore, the overall cost for each read
in the oblivious storage is 2k + 4k × dlogB2k + 1e where
k = log N

B
. For a normal file system whose N is 20GB and

B is 80MB, the average cost is about 14 + 28 × 2 = 70
times that of a read operation in a conventional file system.
In real-world systems, the sorting overhead is smaller than
the retrieving overheads although it incurs more I/Os, as its
I/Os are mostly sequential I/Os. This will be further dis-
cussed in the performance evaluation subsequently.

To lower the performance penalty, it is possible to relax
the security requirement and reduce the storage’s height or
the frequency that the blocks are re-sorted. Optimization
issues such as this will be addressed in future work.

6. Implementation and Evaluation

We have implemented a steganographic file system
based on the volatile agent scheme introduced in Section
4.2. We also simulated the non-volatile agent and the obliv-
ious storage, and conducted experiments to evaluate their
performance. This section begins by describing the imple-
mentation, then presents results from some interesting ex-
periments.

6.1. System Implementation

We implemented our file system in Linux. Figure 9
shows the architecture of the implementation. It consists of
three components: the client, the agent and the storage. The
client component provides an interface through which users

Server

ClientsUsers

Agent

Storage

Figure 9. System Architecture

can access their hidden files in a similar way as in a con-
ventional file system. The agent component acts as a server
that processes all the client requests and manages the stor-
age. The storage component provides storage resources and
may be located either on the same machine as the agent, on
a different machine, or on a networked storage system like
OceanStore [10]. We use AES [3] for the block cipher, and
the pseudo-random number generator is constructed from
SHA256 [4].

6.2. Experiments on Countering Update Analysis

We first conduct experiments to evaluate the I/O perfor-
mance of the schemes that can counter update analysis (see
Section 4). The platform we used for the experiments is an
Intel PC, whose key parameters are listed in Table 1. And
Table 2 summarizes the workload parameters. For compari-
son, we use as baselines the native Linux file system and the
previous steganographic file system in [12]. The notations
for the various file systems are shown in Table 3.

Parameter Value
Model of the CPU Intel Pentium 4
Clock speed of the CPU 1.6 GHz
Type of the hard disk Ultra ATA/100
Capacity of the hard disk 20 GB

Table 1. Physical Resource Parameters

Parameter Default
Size of each disk block 4 KBytes
Size of each file (4, 8] MBytes
Capacity of the disk volume 1 GBytes
Space Utilization (0, 50%]

Table 2. Workload Parameters

StegHide indicates the volatile agent scheme which
we have implemented as a real file system. We installed
the file system on the Intel PC, with the agent and the

9

0

5

10

15

20

25

30

2 4 6 8 10

ac
ce

ss
 ti

m
e

(S
)

file size (MB)

StegHide
StegHide*

StegFS
FragDisk

CleanDisk

0

100

200

300

400

500

600

1 2 4 8 16 32

ac
ce

ss
 ti

m
e

(S
)

concurrency

StegHide
StegHide*

StegFS
FragDisk

CleanDisk

(a) Sensitivity to File Size (b) Sensitivity to Concurrency

Figure 10. Performance on Data Retrieval

Parameter Meaning
StegHide Construction 2: volatile agent
StegHide∗ Construction 1: non-volatile agent
StegFS The former StegFS in [12]
CleanDisk A fresh Linux file system
FragDisk A well-used Linux file system with

fragmentation

Table 3. Algorithm Indicators

storage components running together on the PC. StegHide*
indicates the non-volatile agent scheme we have simulated.
The simulation is conducted on a 1GB disk volume. We
use a bitmap to mark data blocks against dummy blocks,
and conduct updates on randomly selected data blocks,
using the algorithm in Figure 6. StegFS is our former
steganographic file system introduced in [12]. CleanDisk
and FragDisk are native file systems in Linux - CleanDisk
is a fresh file system, whose files reside on contiguous data
blocks. FragDisk is a well used file system whose storage
are fragmented, and we simulate it by breaking each file
into fragments of 8 blocks.

6.2.1. Performance on data retrieval. The first group
of experiments aims to study the performance of retriev-
ing files from the steganographic file system. We vary the
file size and the number of concurrent users, and study how
they affect the access time of retrieving a file from various
file systems. Figure 10 (a) shows the access times of re-
trieving files of different sizes in a single user environment.
Figure 10 (b) shows the sensitivity of the access time to the
number of concurrent users.

StegHide, StegHide* and StegFS display similar per-
formance in data retrieval, since their data blocks are
distributed across the storage in the same manner. In a
single user environment, FragDisk and CleanDisk outper-
form the three steganographic file systems, as they can

perform sequential I/O on their contiguously located data
blocks. But their advantage diminishes as the degree of
concurrency increases. As shown in figure 10 (b), when
the number of users increases to 16 onward, random I/Os
dominate the whole process, the access times of the five
systems become very close.

6.2.2. Performance on updates. Having demonstrated our
file system’s performance on data retrieval, we proceed to
profile its update performance.

As our system intends to counter update analysis, it in-
troduces extra overhead to update operations. This over-
head is affected by the space utilization, which is explained
in Section 4.1.5. Thus we first study the sensitivity of the
update performance to space utilization. We vary the space
utilization from 10% to 50%, and plot the access time of up-
dating a randomly selected data block of a file. The results
are shown in figure 11 (a).

The update overheads of StegHide and StegHide* in-
crease with increasing space utilization. This matches
our analysis in Section 4.1.5, where we state that
E(overhead) = N

D
. As the storage space is cheap today, it

is feasible to use extra storage space to exchange for a bet-
ter update performance. Actually, in our implementation,
we limit the space utilization to below 50%.

Sometimes an update is performed on a large range of
data which may occupy more than one consecutive data
blocks. In the second set of experiments, we study the sen-
sitivity of update performance to the number of consecu-
tive blocks being updated. We fix the space utilization of
StegHide and StegHide* to 25%, and vary the update range
from 1 to 5 data blocks. The results are shown in figure 11
(b). The access times of FragDisk and CleanDisk do not
vary significantly with the increasing update range because
of the benefits of sequential I/O, while those of the three
steganographic file systems increase linearly with the num-
ber of updated blocks.

10

0

10

20

30

40

50

60

70

80

0.1 0.2 0.3 0.4 0.5

ac
ce

ss
 ti

m
e

(m
s)

space utilization

StegHide
StegHide*

StegFS
FragDisk

CleanDisk

(a) Sensitivity to Space Utilization

0

20

40

60

80

100

120

140

1 2 3 4 5

ac
ce

ss
 ti

m
e

(m
s)

consecutive blocks

StegHide
StegHide*

StegFS
FragDisk

CleanDisk

(b) Sensitivity to Update Range

0

1

2

3

4

1 2 4 8 16 32

ac
ce

ss
 ti

m
e

(S
)

concurrency

StegHide
StegHide*

StegFS
FragDisk

CleanDisk

(c) Sensitivity to Concurrency

Figure 11. Performance on Update

The third set of experiments aims to study the perfor-
mance of updates in a multi-user environment. We fix the
update range to 5 data blocks, and plot the access times of
various file systems for different degree of concurreny. Fig-
ure 11 (c) shows the results. Like the experimental results
on data retrieval, FragDisk and CleanDisk lose their advan-
tage in utilizing sequential I/O when the degree of concur-
rency is high.

In summary, as a multi-user file system, StegHide and
StegHide* can effectively counter update analysis without
incurring heavy overhead over general file systems.

6.3. Experiments on Oblivious Storage

We also simulated the oblivious storage and conducted
experiments to estimate its potential for real world applica-
tions. The hardware parameters of our simulation are listed
in table 1. We construct an oblivious storage on a 2GBytes
partition of the hard disk, where the size of the last level
is 1GBytes. Besides, we use another 1GBytes partition as
sorting space for reordering the oblivious storage. The sort
algorithm we adopt is the external merge sort.

We vary the agent’s buffer size from 8MBytes to
128MBytes, and see how it affects the oblivious storage’s
performance. Table 4 shows the oblivious storage’s height
and its overhead factor according to different buffer sizes.
When the buffer size is 8MBytes, the oblivious storage con-
tains 7 levels, and its overhead factor is 70, which means it
takes averagely 70 I/O operations to satisfy one I/O request.
When the buffer size is as large as 128MBytes, its height is
reduced to 3, and the overhead factor is reduced to 30.

buffer size 8M 16M 32M 64M 128M

height 7 6 5 4 3
overhead 70 60 50 40 30

Table 4. Overhead factor vs. Buffer size

The first set of experiments reads through the whole
oblivious storage to measure the average access time for
retrieving a single data block. We compare it against the
StegFS in [12]. Figure 12 (a) shows the results. The perfor-
mance of oblivious storage improves linearly with the size
of agent’s buffer. Generally, retrieving a data block from
an oblivious storage spends 5 to 12 times of the cost of re-
trieving a data block from StegFS. This is better than the
theoretic result, for we utilized sequential I/Os.

As we have mentioned in section 5.1, the overhead of
the oblivious storage is composed of two parts - retrieving
overhead and sorting overhead. In the second set of ex-
periments, we intend to gauge the proportion each of the
two overheads takes. Figure 12 (b) shows the contrast. Al-
though the sorting overhead costs a larger fraction of I/O
operations, it incurs less time. As shown in our results, the

11

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

8 16 32 64 128

ac
ce

ss
 ti

m
e

(s
)

buffer size (Mbytes)

Obli-Store
StegFS

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

8 16 32 64 128

buffer size (Mbytes)

fr
ac

tio
n

of
 a

cc
es

s
tim

e

sorting overhead

retrieving overhead

(a) Access Time vs. Buffer Size (b) Proportion of Overheads

Figure 12. Performance of Oblivious Storage

sorting overhead occupies less than 30% of the total access
time. This is because the sorting process mostly produces
sequential I/Os on contiguous data blocks, while the retriev-
ing process performs random I/Os most of the time.

7. Conclusion

In this paper, we propose two mechanisms for a stegano-
graphic file system to mitigate the risk of attacks initiated
through analyzing data accesses from user applications.
Both of them introduce dummy accesses into the system
to conceal the existence of real data accesses. The first
mechanism is intended to counter update analysis, which
attempts to locate data through updates in between snap-
shots. Two constructions are built for this mechanism, one
for a non-volatile agent and the other for a volatile agent.
The second mechanism aims to prevent traffic analysis that
tries to identify data from I/O traffic patterns. It utilizes
an oblivious storage that can mask off any perceivable I/O
patterns inherent in the user applications. We implemented
the volatile agent scheme to hide updates, and simulated the
non-volatile agent scheme and the oblivious storage mecha-
nism. Our performance study showed their reasonable per-
formance and potential for real world applications.

For future work, we plan to optimize the oblivious stor-
age scheme. We will also extend the proposed mechanisms
to various kinds of networked storage systems, such as a
P2P storage that does not have a centralized controller.

References

[1] The datagrid project. http://eu-datagrid.web.cern.ch/eu-
datagrid/.

[2] Drivecrypt secure hard disk encryption.
http://www.drivecrypt.com.

[3] Advanced Encryption Standard. National Institute of Sci-
ence and Technology. FIPS 197, 2001.

[4] Secure Hashing Algorithm. National Institute of Science and
Technology. FIPS 180-2, 2001.

[5] M. Abe. Mix-network on permutation networks. In Ad-
vances in cryptology - ASIACRYPT’99, volume 1716, pages
258–273, Springer-Verlag, 1999.

[6] R. Anderson, R. Needham, and A. Shamir. The stegano-
graphic file system. In Information Hiding, 2nd Interna-
tional Workshop, D. Aucsmith, Ed., Portland, Oregon, USA,
April 1998.

[7] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and
S. Tuecke. The data grid: Towards an architecture for
the distributed management and analysis of large scientific
datasets. In Journal of Network and Computer Applications,
volume 23, pages 187–200, 2001.

[8] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private
information retrieval. In Journal of the ACM, volume 45,
pages 965–982, November 1998.

[9] O. Goldreich and R. Ostrovsky. Software protection and
simulation on oblivious rams. In Journal of the ACM, vol-
ume 43, pages 431–473, May 1996.

[10] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer,
C. Wells, and B. Zhao. Oceanstore: An architec-
ture for global-scale persistent storage. In Proceed-
ings of ACM ASPLOS. ACM, November 2000. cite-
seer.nj.nec.com/kubiatowicz00oceanstore.html.

[11] R. Ostrovsky and V. Shoup. Private information storage. In
Proceedings of the 29th Annual ACM Symposium on Theory
of Computing, pages 294–303, New York, May 1997.

[12] H. Pang, K. Tan, and X. Zhou. Stegfs: A steganographic
file system. In Proceedings of the 19th International Con-
ference on Data Engineering, pages 657–668, Bangalore,
India, March 2003.

[13] C. Rackoff and D. R. Simon. Cryptographic defense against
traffic analysis. In Proceedings of the Twenty-Fifth Annual
ACM Symposium on the Theory of Computing, pages 672–
681, San Diego, California, May 1993.

[14] J.-F. Raymond. Traffic analysis: Protocols, attacks, design
issues and open problems. In Proceedings of Workshop on
Design Issues in Anonymity and Unobservability, volume
TR-00-011, pages 7–26, ICSI, July 2000.

12

