Encrypted Domain Keywords
Search

Ee-Chien Chang
School of Computing
National University of Singapore

National University
of Singapore

Encrypted Domain keywords
Search

Motivation and Overview

An illustrating example that leaks too much
Secure index with Bloom Filter

Other methods and variants

Conclusion

Reference

S S

1. Motivation & Overview

Problem

* Alice (user) has a set of documents D={d,, d,, ..., d,}that are

to be stored by Bob (server). Periodically, Alice wants to
retrieve all documents that contains a query word w.

* Alice does not fully trust Bob. Ideally, she wants to hide the

qguery, query results and the dataset from Bob.

 The query, query-result, and the dataset D, have to be
protected by some mechanisms.

Alice

transformed query

<

protected query results

>

secret key

Bob

protected
dataset

Performance Requirements

e Alice wants a solution that requires low
communication and computation cost per query, and
low storage overhead.

* The communication requirement rules out the
following meaningless solution:

— the whole dataset is encrypted using a well-accepted
cipher (for e.g. AES) and stored in Bob;

— for each query, Bob sends the the encrypted dataset back
to Alice. Alice decrypts the dataset and then searches for
the results.

Security Requirements

e Itisimportant to clearly specify the security
requirements (also called as security model or

adversary model)

* The security requirements are typically formulated by
describing the types of attacks to be prevented.

* Types of attacks are typically described by specifying

— the attackers’ goals,
— information accessible by the attackers, and

— attackers’ computing resources and capabilities

Our Security Requirements

* Storage privacy:
— Server is unable to get information on the dataset D.

(The above is an over-simplified description. Is it ok to reveal the size of each

document in the dataset? Is it ok to reveal the number of documents in the
dataset? Strong requirements usually take the form of “semantic security”. In
the context of cryptosystem, a semantically secure scheme ensures that any
adversary is unable to distinguish the ciphertexts of two known plaintexts.)

* Query privacy
— Server is unable to get information of the query.

(Again, the above is an over-simplified description. Is it ok to reveal which part
of the dataset a query has accessed?)

Server’s capability

Curious-but-honest server: We consider curious-but-
honest server. That is, the server will carry out the protocol
and computation honestly, but may retain knowledge derived
during the process for malicious purpose. (Question: is this
assumption reasonable?)

Malicious server: We will not consider malicious server
(i.e. dishonest server in contrast to the “curious-but-honest”
model) in this lecture. In general, it is theoretically possible to
have both secure and efficient (communication and storage
overhead) mechanisms using the “fully homomorphic
encryption”, but the computation cost of such generic
mechanisms is extremely high (Two generic constructions [1,3]).

2. A simple illustrating scheme
that leaks too much

 Each document is represented as a set of words, d =
{w,w,, ..., w_}

For e.g. d ={ “cryptography”, “make”, “the”, “world”, “safer” }

Each word is padded to 256 bits by adding spaces,
and then encrypted using a well-accepted
deterministic cipher, say AES, using a secret key k.

To search for a word w, Alice sends the ciphertext

Enc,(w) to Bob. Bob then returns all documents that
contain Enc,(w).

Alice (with a secret key k)

Enc,(“big”) Enc,(d,)=

Bob

Enc,(d;)={ | Enc (“big”) Enc,(“cat”) Enc,(“runs”) |}

Enc (d,)={ @ Enc(“cat”) Enc,(“dog”) Enc, (“lion”) | }

What’s wrong?

* storage privacy?
— For the example in the previous slide, Bob knows that d,
and d, have exactly one common word.

— Use statistical test, Bob may able to infer the ciphertext of

/AN (PN

common words like “the”, “is”, etc

* query privacy?
— Suppose Alice has issued two queries. Bob will know
whether these two queries are the same.

What’s wrong?

* The method is still slow. The whole dataset has to be
scanned for each query.

13

4. Secure index with Bloom
Filter (E.J. Goh [4])

Incorporating Bloom filter and a
technique by Song et al[7].

14

Background — Bloom filter

A Bloom filter is a representation for membership
testing. It represents a set d={w,.., w_}
of mitems using an array of t bits.

The filter uses r hash functions H,, H,, ..., H, to
determine the bit-values in the array. Each hash
function maps an item to an integer in {1, 2,..., t}.

For the set d, the j-th bit of the representing array is
1 iff thereisanitemwind, and ani such that

H; (w)=j.

wiki gives a good description of Bloom Filter http://en.wikipedia.org/wiki/Bloom_filter

Example

Suppose t=10, r=2.
Consider d={ “dog”, “cat” “lion”}.
|f

H,(“dog”) =5 H (“cat”) =1 H,(“lion”) =5

H,(“dog”)=2 H,(“cat’)=1 H,(“lion”)=9

Then, the array is

11 0 0 1 0 0 0 1 O

PO~

cat dog lion

Searching using Bloom Filter

Bloom filter is designed to speedup membership test.

Given an query (word) W and a set d (document),
determine whether wiis in d.

This can be done by first computing the hash of w
h;=H;(w), h, =H,(w), ..., h.=H (w),

and then check whether all the h,, h,, ..., h. —th bits
in the array are 1. If so, declare that wisin d.

Example

Consider two words “bear” and “panda”

Hl(l(panda”) — 2 Hl(llbear”) — 4

H,(“panda”) =9 H,(“bear”) =9

Then, the array is bear

11 0 0 1 0 0 0 1 O

AN

cat dog lion

Example

Consider two words “bear” and “panda”

Hl(l(panda”) — 2 Hl(llbear”) — 4

H,(“panda”) =9 H,(“bear”) =9

Then, the array is panda

11 0 0 1 0 0 0 1 O

AN

cat dog lion

Performance of Bloom Filter

 The membership checking can be done in O(r) time.
The storage space required is t bits.

* The false accept rate is non-zero, i.e. there are chances
that wis not in d, but wrongly declared to be in.

The parameters, r , t can
be adjusted to tradeoff false accept rate, the searching
time and storage size, for a given m

See http://en.wikipedia.org/wiki/Bloom filter for details of the tradeoff.

Bloom filter for a collection of sets

Recall that our original problem is for a collection of
documents:

Given an query (word) q and a collection of sets (documents),
find all the sets (documents) d that contains q.

n
Bloom filter can be extended to a collection of s sets,

represented as an n byt bits array, one set per row.

d,: 00110..01
d,: 01010..10

d: 01011..00

n

Each search is done by checking membership row by row.

r=3, t=10,n=8

1
1 1 1 1
1 1 1 1
1 1 1
1 1 1 1
1 1 1
1 1 1 1
1 1 1 1

Secure index (Goh[])

The scheme consists of two components:

 Setup phase: Given a secret key k, and the set of
documents, Alice builds a Bloom Filter using “hidden”
hash functions. This structure is then sent to Bob, and
removed from Alice’s storage. Alice keeps the key.

* Query phase: Given a query word w and the secret key
k, Alice computes and sends some “trapdoor” keys to
Bob. With the trapdoor keys, Bob can compute the
“hidden” hash functions and thus can conduct the BF
search.

Setup phase — input and parameters

Given a collection of n documents
D={d,d, .. d, U}

where each document is a set of m words, and each
document is associated with an unique identity id. (note

that for simplicity, we assume that every document has exactly m unique words).

* Alice determines the desired Bloom Filter parameters r, t,
and chooses a secure pseudo-random function (for e.g.
base on a well accepted cryptographic hash like SHA2). The parameters
and choices of functions are made public, i.e. they are
not secret.

* Alice generates a secret key k=(k, k,, ..., k.), which
consists of r subkeys.

Setup phase- building the BF

Given a word w and the subkeys, let’s call

f(WI k]_)l f(WI k2)l ©ee) f(W/ kr)
the trapdoor keys for w.

* For a document d with the identity id, Alice
constructs the Bloom Filter by using the following r
hash functions:

H,(w)=f(1id, x;) wherex;= f(w,k,)
H,(w)=f(1id x,) wherex,= f(w,k,)

H, (w) =f.(”id, X,)wherex.= f(w,k,)

* The constructed BF (which is an n by t bits array) are

then sent to Bob. The identities of of the documents
are also sent to Bob.

* Remark: The j-th hash function for the document id
IS

H (w)=f(id, x;) wherex.= f(w, k)

The hash functions are different for different
documents.

Query phase

* Given a query word w. Alice computes the trapdoor
keys and sends them to Bob.

X; = f(w, kj) forj=1,2,..,r.

* From the trapdoor keys, Bob can construct the hash
functions for each document, and thus can perform
the search.

BF for secure index

W
H f H,
1 / \1 | 1
1 171 | 17 h 1
1 1| 1 1 1
1| 1 1 1| 1
1 1 1
1 1 1| 1 1| 1
1 1 1
1 | 1 1| 1 1

each document uses a different set of hash functions!

Original BF

29

Performance

* False accept rate is the same as the original BF.

* For each document, Bob has to compute the hash r
times. Hence, computation load is higher compare to
the original BF.

Security: Storage Privacy

* A security model is given in [4].
“Semantic Security Against Adaptive Chosen Keyword Attack”

It is formulated as a game between an attacker and the
system. The scheme can be proven secured against such
attacker, assuming that the pseudo-random function f () is
secure.

As a consequence, suppose an attacker knows that the
dataset is equally likely to be either a particular D, or D, Even
if the attacker has seen the BF, he is unable to correctly guess
the database with probability more than)2 + a small
noticeable probability.

Security: Query privacy

* Very weak protection. After Bob has seen a query w
(i.e. the trapdoor keys of w), he knows which
documents contain w.

* Note that from the trapdoor keys, it is still
computational hard to find w. However, if Bob
knows the relationship of the documents and the
gueries, he may able to infer some useful
information of w, for e.g. whether it is a common
word.

Remark

* In the technical report[4], page 7. An additional
step-3 is included. This step adds random words to

the table.

What is the consequence if this step is omitted?

Why step-3 is not required in our construction? (we
already assume that each document has exactly n unigue words)

Remark

* If the query asks for documents that contain both w,
and w,, this can be carried out using one search
instead of 2.

* However, if the query asks for documents that
contain either w; or w,, this still has to be carried

out in two searches.

Other methods and Variants.

Other methods: Inverted linked-lists

 Curtomal et al [1] proposed a method that hides the
inverted linked-lists.

W, d, >d;; > d,

W, >1d; 1 d, dy 1 dg

W, > dy; > d,
The linked-lists are “encrypted” and “stored” in a

certain way s.t without the “trapdoor key” to the header,
the server is unable to determine the structure.

e Similar to Goh’s method, it can provide storage
privacy but not query privacy.

Other methods: PIR

* Private Information Retrieval (PIR) are protocols designed
to achieve query privacy. In such schemes, storage
privacy is not taken into consideration and many known

schemes actually store the dataset in clear.

 Known PIR schemes use some form of homomorphic
properties in the encrypted domain, and thus are
computational expensive.

 There are PIR schemes that achieve both query and
storage privacy, for e.g. [8].

Other methods: Oblivious RAM

* Oblivious RAM [6] are schemes that allow writing and
reading items to/from the storage server without
revealing which items being read/written. Known
schemes are “asymptotically” efficient but incur large
hidden constant factors. (i.e. theoretically efficient but practically
infeasible).

(The requirement is similar to PIR. However, unlike PIR, in oblivious RAM,
the storage can be modified after each access.)

By combining oblivious RAM with either Goh’s or
Curtmola et al.'s method query privacy can be achieved.

Other methods: Information theoretic

Another approach uses “bucketization” to achieve
privacy, for e.g [5]. During the process, some
information of the dataset is discarded. These
schemes are information theoretic secure, i.e. even if
the adversaries have sufficiently long computing time
and large memory, they are unable to infer useful
information (note that information is discarded ©) However, it
is difficult to provide strong security guarantee (i.e.

the security models are weak by considering a weak
adversary).

5. Conclusion

41

No secure and practical solution yet.

References

[1] K.M. Chung, Y. Kalai, and S.P. Vadhan. Improved Delegation of Computation Using
Fully Homomorphic Encryption. CRYPTO 2010.

[2] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric
encryption: improved definitions and efficient constructions. Conference on
Computer and Communications Security, 2006.

[3] R. Gennaro, C. Gentry, and B. Parno. Non-interactive Veriable Computing:
Outsourcing Computation to Untrusted Workers. CRYPTO 2010.

[4] E.-). Goh. Secure indexes. Cryptology ePrint Archieve Report 2003/216, 2003.

[5] B. Hore, E.-C. Chang, M. Diallo and S. Mehrotra. Indexing Encrypted Documents for
Supporting Efficient Keyword Search, Secure Data Management 2012.

[6] B. Pinkas and T. Reinman, Oblivious ram revisited. CRYPTO 2010.

[7] D. Song, D. Wagner, and A. Perrig. Practical techniques for searches on encrypted
data. IEEE Symposium on Security and Privacy, 2000.

[8] J. Trostle, A. Parrish. Efficient Computationally Private Information Retrieval from
Anonymity or Trapdoor Groups. ISC 2010.

43

