Basics of Differential Privacy

Zhenjie Zhang

Advanced Digital Sciences Center, Singapore (Thanks to Xiaokui Xiao for contributing slides)

Formulation of Privacy

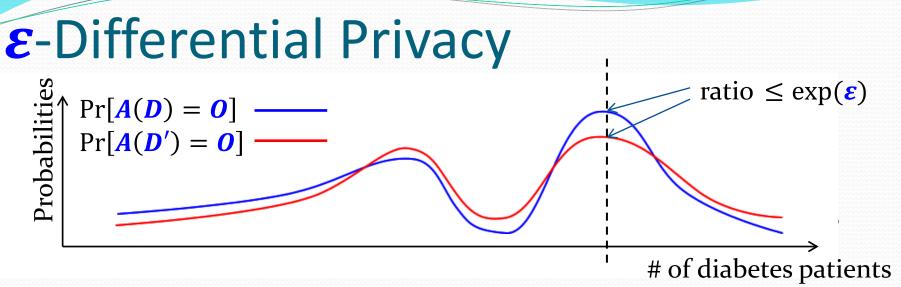
- What information can be published?
 - Average height of US people
 - Height of an individual
- Intuition:
 - If something is insensitive to the change of any individual tuple, then it should not be considered private
- Example:
 - Assume that we arbitrarily change the height of an individual in the US
 - The average height of US people would remain roughly the same
 - i.e., The average height reveals little information about the exact height of any particular individual

ɛ-Differential Privacy

- Definition:
 - Neighboring datasets: Two datasets *D* and *D'*, such that
 D' can be obtained by changing one single tuple in *D*
 - A randomized algorithm A satisfies ε-differential privacy, iff for any two neighboring datasets D and D' and for any output O of A,

 $\Pr[\mathbf{A}(\mathbf{D}) = \mathbf{0}] \le \exp(\mathbf{\varepsilon}) \cdot \Pr[\mathbf{A}(\mathbf{D}') = \mathbf{0}]$

Name	Gender	Age	Diabetes	Name	Gender	Age	Diabetes
Alice	F	28	Y	Alice	F	28	Y
Bob	М	19	Y	Bob	М	19	Y
Chris	М	25	Ν	Chris	М	23	Y
Doug	М	30	Ν	Doug	М	30	Ν



- Definition:
 - Neighboring datasets: Two datasets *D* and *D'*, such that
 D' can be obtained by changing one single tuple in *D*
 - A randomized algorithm A satisfies ε-differential privacy, iff for any two neighboring datasets D and D' and for any output O of A,

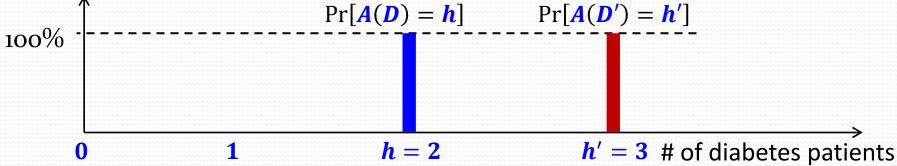
 $\Pr[\mathbf{A}(\mathbf{D}) = \mathbf{O}] \le \exp(\mathbf{\varepsilon}) \cdot \Pr[\mathbf{A}(\mathbf{D}') = \mathbf{O}]$

• The value of ε decides the degree of privacy protection

Name	Gender	Age	Diabetes	Name	Gender	Age	Diabetes
Alice	F	28	Y	Alice	F	28	Y
Bob	М	19	Y	Bob	М	19	Y
Chris	М	25	Ν	Chris	М	23	Y
Doug	Μ	30	Ν	Doug	М	30	Ν

It won't work if we release the number directly:

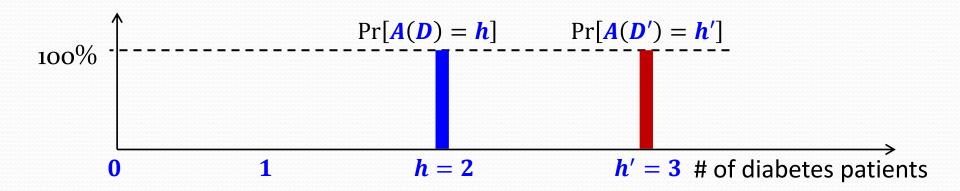
- **D** : the original dataset
- D': modify an arbitrary patient in D
- Pr[A(D) = 0] ≤ exp(ε) · Pr[A(D') = 0] does not hold for any ε



Name	Gender	Age	Diabetes	Name	Gender	Age	Diabetes
Alice	F	28	Y	Alice	F	28	Y
Bob	М	19	Y	Bob	М	19	Y
Chris	М	25	Ν	Chris	М	23	Y
Doug	М	30	Ν	Doug	М	30	Ν

Idea:

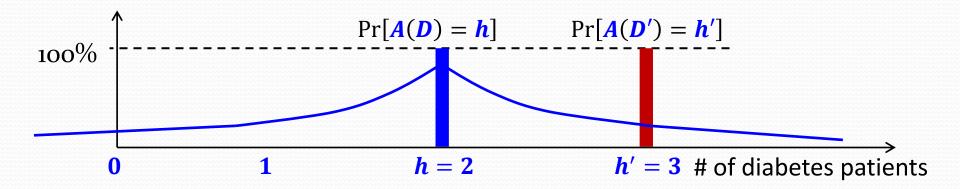
Perturb the number of diabetes patients to obtain a smooth distribution



Name	Gender	Age	Diabetes	Name	Gender	Age	Diabetes
Alice	F	28	Y	Alice	F	28	Y
Bob	Μ	19	Y	Bob	Μ	19	Υ
Chris	М	25	Ν	Chris	М	23	Y
Doug	Μ	30	Ν	Doug	М	30	Ν

Idea:

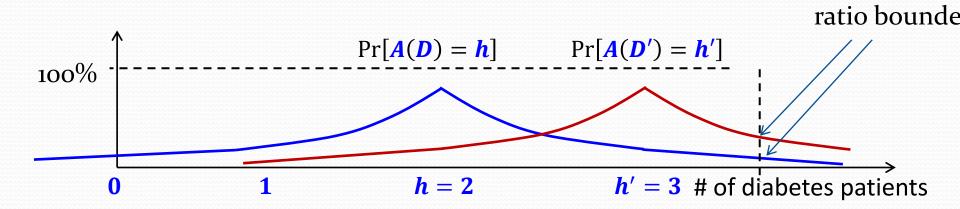
Perturb the number of diabetes patients to obtain a smooth distribution



Name	Gender	Age	Diabetes	Name	Gender	Age	Diabetes
Alice	F	28	Y	Alice	F	28	Y
Bob	Μ	19	Y	Bob	Μ	19	Y
Chris	М	25	Ν	Chris	М	23	Y
Doug	Μ	30	Ν	Doug	М	30	Ν

Idea:

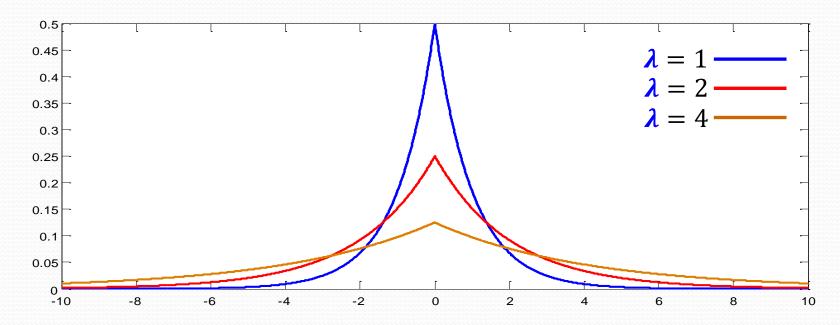
Perturb the number of diabetes patients to obtain a smooth distribution



Laplace Distribution

•
$$pdf(\mathbf{x}) = \exp\left(-\frac{|\mathbf{x}|}{\lambda}\right)/2\lambda;$$

- increase/decrease x by 1
- $\rightarrow pdf(\mathbf{x})$ changes by a factor of $\exp\left(-\frac{1}{\mathbf{x}}\right)$
- λ is referred as the *scale*

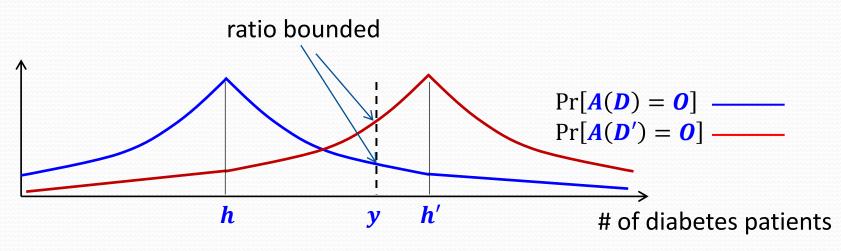


- Dataset: A set of patients
- Objective: Release # of diabetes patients with ε -differential privacy $Pr[A(D) = 0] \le exp(\varepsilon) \cdot Pr[A(D') = 0]$
- Method: Release the number + Laplace noise

$$pdf(\mathbf{x}) = \exp\left(-\frac{|\mathbf{x}|}{\lambda}\right)/2\lambda$$

- Rationale:
 - **D** : the original dataset;
 - D': modify a patient in D;

of diabetes patients = h
of diabetes patients = h'

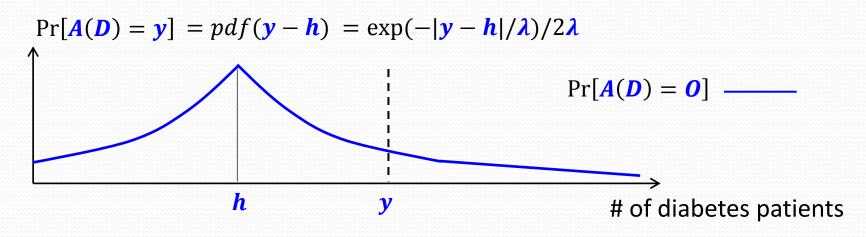


- Dataset: A set of patients
- Objective: Release # of diabetes patients with $\boldsymbol{\varepsilon}$ -differential privacy $\Pr[\boldsymbol{A}(\boldsymbol{D}) = \boldsymbol{O}] \le \exp(\boldsymbol{\varepsilon}) \cdot \Pr[\boldsymbol{A}(\boldsymbol{D}') = \boldsymbol{O}]$
- Method: Release the number + Laplace noise

$$pdf(\mathbf{x}) = \exp\left(-\frac{|\mathbf{x}|}{\lambda}\right)/2\lambda$$

- Rationale:
 - **D** : the original dataset;
 - D': modify a patient in D;

of diabetes patients = h
of diabetes patients = h'



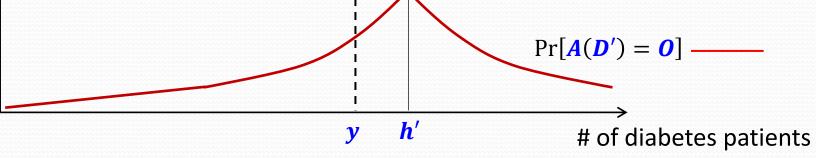
- Dataset: A set of patients
- Objective: Release # of diabetes patients with $\boldsymbol{\varepsilon}$ -differential privacy $\Pr[\boldsymbol{A}(\boldsymbol{D}) = \boldsymbol{O}] \le \exp(\boldsymbol{\varepsilon}) \cdot \Pr[\boldsymbol{A}(\boldsymbol{D}') = \boldsymbol{O}]$
- Method: Release the number + Laplace noise

$$pdf(\mathbf{x}) = \exp\left(-\frac{|\mathbf{x}|}{\lambda}\right)/2\lambda$$

- Rationale:
 - **D** : the original dataset;

- # of diabetes patients = h
- D': modify the height of an individual in D; # of diabetes patients = h'

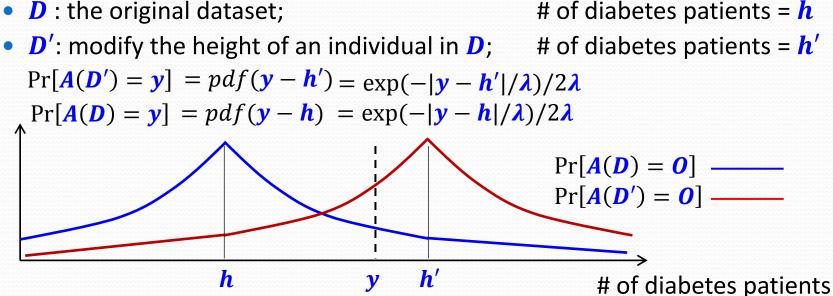
 $\Pr[\mathbf{A}(\mathbf{D}') = \mathbf{y}] = pdf(\mathbf{y} - \mathbf{h}') = \exp(-|\mathbf{y} - \mathbf{h}'|/\lambda)/2\lambda$



- A set of patients Dataset:
- Objective: Release # of diabetes patients with ε -differential privacy $\Pr[\mathbf{A}(\mathbf{D}) = \mathbf{O}] \le \exp(\mathbf{\varepsilon}) \cdot \Pr[\mathbf{A}(\mathbf{D}') = \mathbf{O}]$
- Release the number + Laplace noise Method:

$$pdf(\mathbf{x}) = \exp\left(-\frac{|\mathbf{x}|}{\lambda}\right)/2\lambda$$

- Rationale:
 - **D** : the original dataset;

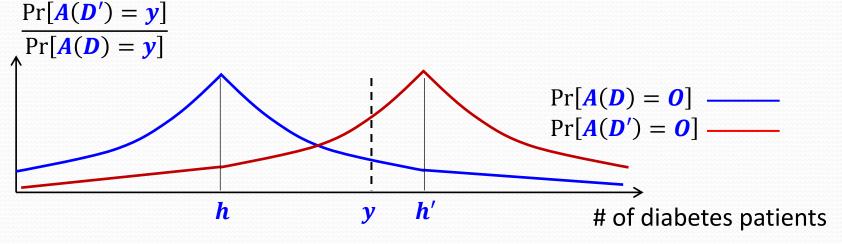


- Dataset: A set of patients
- Objective: Release # of diabetes patients with $\boldsymbol{\varepsilon}$ -differential privacy $\Pr[\boldsymbol{A}(\boldsymbol{D}) = \boldsymbol{O}] \le \exp(\boldsymbol{\varepsilon}) \cdot \Pr[\boldsymbol{A}(\boldsymbol{D}') = \boldsymbol{O}]$
- Method: Release the number + Laplace noise

$$pdf(\mathbf{x}) = \exp\left(-\frac{|\mathbf{x}|}{\lambda}\right)/2\lambda$$

- Rationale:
 - **D** : the original dataset;
 - D': modify the height of an individual in D;

of diabetes patients = h
of diabetes patients = h'

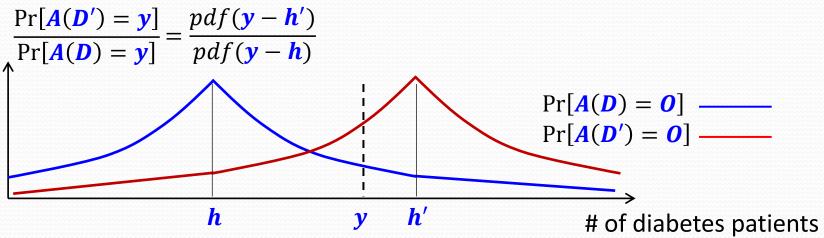


- Dataset: A set of patients
- Objective: Release # of diabetes patients with $\boldsymbol{\varepsilon}$ -differential privacy $\Pr[\boldsymbol{A}(\boldsymbol{D}) = \boldsymbol{O}] \le \exp(\boldsymbol{\varepsilon}) \cdot \Pr[\boldsymbol{A}(\boldsymbol{D}') = \boldsymbol{O}]$
- Method: Release the number + Laplace noise

$$pdf(\mathbf{x}) = \exp\left(-\frac{|\mathbf{x}|}{\lambda}\right)/2\lambda$$

- Rationale:
 - **D** : the original dataset;
 - D': modify the height of an individual in D;

of diabetes patients = h
of diabetes patients = h'

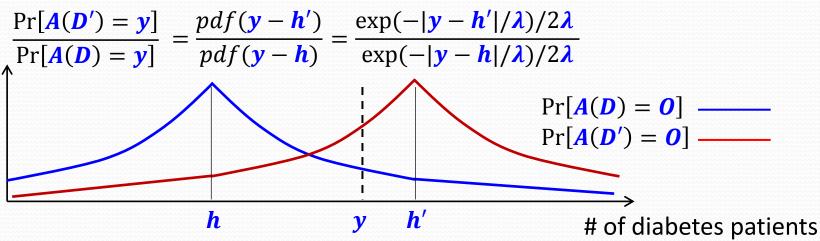


- Dataset: A set of patients
- Objective: Release # of diabetes patients with $\boldsymbol{\varepsilon}$ -differential privacy $\Pr[\boldsymbol{A}(\boldsymbol{D}) = \boldsymbol{O}] \le \exp(\boldsymbol{\varepsilon}) \cdot \Pr[\boldsymbol{A}(\boldsymbol{D}') = \boldsymbol{O}]$
- Method: Release the number + Laplace noise

$$pdf(\mathbf{x}) = \exp\left(-\frac{|\mathbf{x}|}{\lambda}\right)/2\lambda$$

- Rationale:
 - **D** : the original dataset;

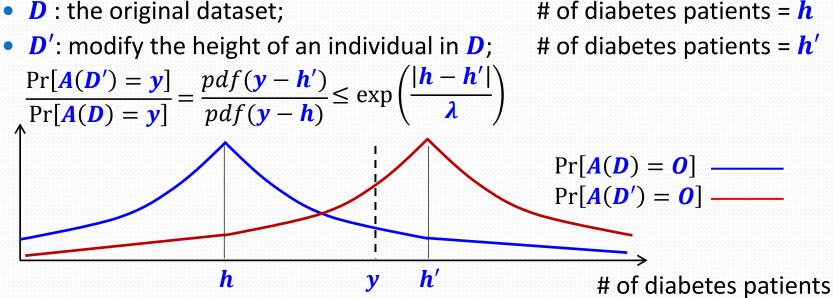
- # of diabetes patients = **h**
- D': modify the height of an individual in D; # of diabetes patients = h'



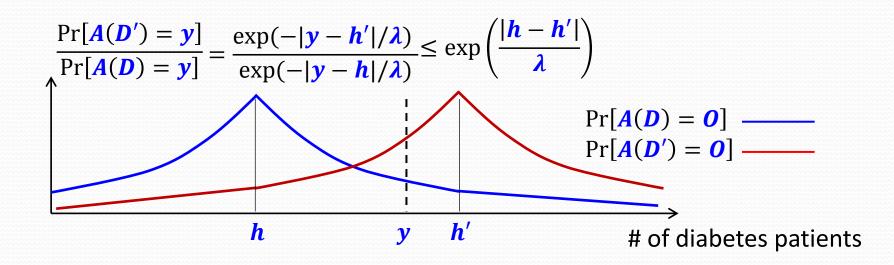
- A set of patients Dataset:
- **Objective:** Release # of diabetes patients with ε -differential privacy $\Pr[\mathbf{A}(\mathbf{D}) = \mathbf{O}] \le \exp(\mathbf{\varepsilon}) \cdot \Pr[\mathbf{A}(\mathbf{D}') = \mathbf{O}]$
- Release the number + Laplace noise Method:

$$pdf(\mathbf{x}) = \exp\left(-\frac{|\mathbf{x}|}{\lambda}\right)/2\lambda$$

- Rationale:
 - **D** : the original dataset;



- We aim to ensure ε-differential privacy
- How large should λ be?
 - Change of a patient's data would change the number of diabetes patients by at most 1, i.e.,
- Conclusion: Setting $\lambda \ge \frac{|h h'|}{\epsilon}$ would ensure ϵ -differential privacy



General Mechanism with Laplace Noise

- In general, if the query result v is a real number
 - Add Laplace noise into v
- To decide the scale λ of Laplace noise
 - Look at the maixmum change that can occur in v (when we change one tuple in the dataset)
 - Set λ to be proportional to the maximum change

Name	Gender	Age	Diabetes	Name	Gender	Age	Diabetes
Alice	F	28	Y	Alice	F	28	Y
Bob	Μ	19	Y	Bob	М	19	Y
Chris	М	25	Ν	Chris	М	23	Y
Doug	М	30	Ν	Doug	М	30	Ν

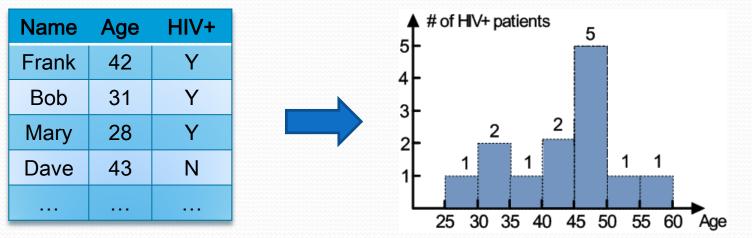
General via Laplace Noise

- What if we have multiple queries?
 - Add Laplace noise to each value
- How do we decide the noise scale?
 - Look at the total change that can occur in the values when we modify one tuple in the data
 - Total change: sum of the absolute change in each value (i.e., differences in L1 norm)
 - Set the scale of the noise to be proportional to the maximum total change
- The maximum total change is referred to as the sensitivity of the values
- Theorem [Dwork et al. 2006]: Adding Laplace noise of scale λ to each value ensures ε-differential privacy, if

 $\lambda \geq (\text{the sensitivity of the values})/\varepsilon$

Sensitivity of Queries

- Histogram
 - Sensitivity of the bin counts: 2
 - Reason: When we modify a tuple in the dataset, at most two bin counts would change; furthermore, each bin count would change by at most 1
 - Scale of Laplace noise required:



- For more complex queries, the derivation of sensitivity can be much more complicated
 - Example: Parameters of a logistic model

Exponential Mechanism

- What if the query result is on discrete space?
 - Example: Which one is a more important factor to diabetic, age or gender?
- Given k items, each item is associated with a score S(I, D), how to pick the one with maximal score under differential privacy?
- Adding Laplace noise is a feasible solution

Name	Gender	Age	Diabetes
Alice	F	28	Y
Bob	Μ	19	Y
Chris	М	25	Ν
Doug	М	30	Ν

S(Gender,D)=Corr(Gender,Diabetes)

S(Age,D)=Corr(Age,Diabetes)

Exponential Mechanism

- Using exponential mechanism, we can directly manipulate the probability of item pickup.
- For each item I_j, the probability is proportional to $\exp(S(I,D)/\lambda)$

S(Gender,D) = Corr(Gender,Diabetes) = 0.5

S(Age,D) = Corr(Age,Diabetes) = 0.3

Name	Gender	Age	Diabetes	Pr(Gender)=0.71
Alice	F	28	Y	Pr(<i>Age</i>)=0.39
Bob	Μ	19	Y	
Chris	Μ	25	Ν	
Doug	М	30	Ν	

Exponential Mechanism

- Advantage: Improve skewedness on the probabilities
- Limitation: Needs to iterate all possible answers in the solution space. It is thus not applicable when the solution space is too large.
- Example: Pick up the best order of k items with maximal score. The number of possible orders is k!.

Variants of Differential Privacy

- Alternative definition of neighboring dataset:
 - Two datasets *D* and *D'*, such that *D'* is obtained by adding/deleting one tuple in *D*
- $\Pr[A(D) = 0] \le \exp(\varepsilon) \cdot \Pr[A(D') = 0]$
 - Even if a tuple is added to or removed from the dataset, the output distribution of the algorithm is roughly the same
 - i.e., the output of the algorithm does not reveal the presence of a tuple
- Refer to this version as "unbounded" differential privacy, and the previous version as "bounded" differential privacy

Variants of Differential Privacy

• Bounded:

•

- **D**' is obtained by changing the values of one tuple in **D**
- Unbounded: **D**' is obtained by adding/removing one tuple in **D**
- Observation 1
 - Change of a tuple can be regarded as removing a tuple from the dataset and then inserting a new one
 - Indication: Unbounded *ɛ*-differential privacy implies bounded (2*ɛ*)-differential privacy
 - Proof: $\Pr[A(D_1) = 0] \le \exp(\varepsilon) \cdot \Pr[A(D_2) = 0]$ $\le \exp(\varepsilon) \cdot \exp(\varepsilon) \cdot \Pr[A(D_3) = 0]$

Variants of Differential Privacy

• Bounded:

•

- **D**' is obtained by changing the values of one tuple in **D**
- **D**' is obtained by adding/removing one tuple in **D**
- Observation 2

Unbounded:

 Bounded differential privacy allows us to directly publish the number of tuples in the dataset

 $\Pr[\mathbf{A}(\mathbf{D}) = \mathbf{0}] \le \exp(\mathbf{\varepsilon}) \cdot \Pr[\mathbf{A}(\mathbf{D}') = \mathbf{0}]$

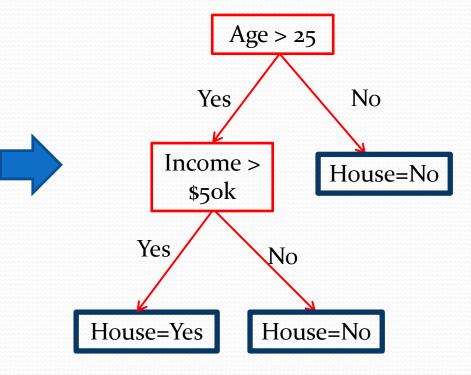
Unbounded differential privacy does not allow this

Limitations of Differential Privacy

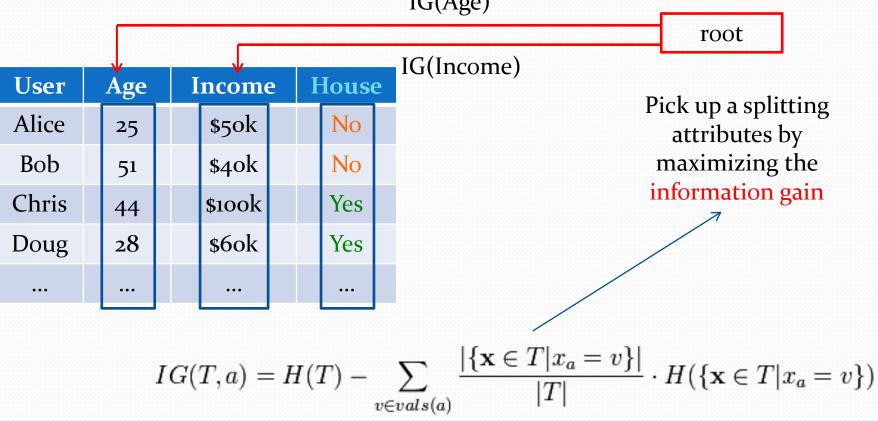
- Differential privacy tends to be less effective when there exist correlations among the tuples
- Example (from [Kifer and Machanavajjhala 2011]):
 - Bob's family includes 10 people, and all of them are in a database
 - There is a highly contagious disease, such that if one family member contracts the disease, then the whole family will be infected
 - Differential privacy would underestimate the risk of disclosure
- Summary: Amount of noise needed depends on the correlations among the tuples, which is not captured by differential privacy

Problem Definition

User	Age	Income	House
Alice	25	\$50k	No
Bob	51	\$40k	No
Chris	44	\$100k	Yes
Doug	28	\$60k	Yes
			•••



• Attribute Selection [Friedman, 2010]



IG(Age)

- How to enforce differential privacy in the selection?
 - Laplace Mechanism
 - Exponential Mechanism

Attribute	Info. Gain		A	ttribute	Info. Ga	in
Age	3.5	Laplace		Age	2.9	
Income	2.2]	ncome	2.7	
					•••	

Budget consumption: $\varepsilon \times m$

- How to enforce differential privacy in the selection?
 - Laplace Mechanism
 - Exponential Mechanism

Attribute	Info. Gain		Attribute	Probability
Age	3.5	Exponential	Age	0.7
Income	2.2	,	Income	0.2
	•••			

Budget consumption: ε

Conclusion

- Differential Privacy is a new and robust criterion of privacy detection
- There are simple algorithms enforcing differential privacy
- For a specific query engine, we need to carefully pick up the appropriate place to insert noise.