Take-home exercises:

(You do NOT need to submit these questions!)
The Fibonacci sequence F is defined as follows:

$$
F(n)= \begin{cases}0 & \text { if } n=0 \\ 1 & \text { if } n=1 \\ F(n-1)+F(n-2) & \text { for } n>1\end{cases}
$$

So, the first few Fibonacci numbers are: $0,1,1,2,3,5,8,13,21,34,55,89,144,233, \ldots$
T1. It is known that $\boldsymbol{F}_{\boldsymbol{k}-\mathbf{1}} \times \boldsymbol{F}_{\boldsymbol{k}+\boldsymbol{1}}-\boldsymbol{F}_{\boldsymbol{k}}{ }^{2}=(\mathbf{- 1})^{\boldsymbol{k}}$ for $k \geq 1$. For example, $F_{5} \times F_{7}-F_{6}{ }^{2}=5 \times$ $13-8^{2}=1 ; F_{6} \times F_{8}-F_{7}^{2}=8 \times 21-13^{2}=-1$. Write a program to verify this for values of k in the range [1,20].

T2. It is known that $\boldsymbol{F}_{\boldsymbol{m} \boldsymbol{k}}$ is a multiple of $\boldsymbol{F}_{\boldsymbol{k}}$ for $k, m \geq 1$. For example, $\boldsymbol{F}_{15}=610$ is a multiple of $F_{5}=5$ and $F_{3}=2$. Write a program to verify this for values of m and k in the range [1,4].

T3. It is known that $\mathbf{G C D}\left(\mathbf{F}_{j}, \mathbf{F}_{\boldsymbol{k}}\right)=\mathbf{F}_{\mathbf{G C D}(, \boldsymbol{k})}$. For example, $\operatorname{GCD}\left(\mathrm{F}_{6}, \mathrm{~F}_{12}\right)=\operatorname{GCD}(8,144)=8$ and $\mathrm{F}_{\mathrm{GCD}(6,12)}=\mathrm{F}_{6}=8$. Write a program to verify this for values of j and k in the range [1,20].

T4. Prove the following claim If $z=\operatorname{GCD}(x, y)$, then there is no $w>z$ that divides both x and y.

T5. Prove the following claim
If w divides x and y., then it divides $x-y$.
T6. Verify that the following variant of GCD algorithm, BinaryGCD, is correct:
(a) if $x=y$ then return x.
(b) if x and y are even then return $2 \times \operatorname{BinaryGCD}(x / 2, y / 2)$.
(c) if x is even and y is odd then return BinaryGCD($x / 2, y$).
(d) if x is odd and y is even then return BinaryGCD(x, $y / 2)$.
(e) if x and y are odd then return BinaryGCD $(|x-y| / 2, \min \{x, y\})$.

