Topics

- Problem modeling by graphs
- Basic graph terminology
- Graph representations
- Graph traversal — BFS and DFS
- Shortest paths — one-to-any (single source) and any-to-any (all pairs)
- (All diagrams will be provided during the lecture.)
Vegetarians and Cannibals Crossing River

- Two vegetarians and two cannibals want to cross a river on a boat that can take only two persons.
- At no time must the vegetarians be outnumbered.
- How should they cross the river?
Vegetarians and Cannibals: Hint

vvccB/
vc/Bvc vv/Bcc vvc/Bc cc/Bvv
vvcB/c
c/Bvvcc
ccB/vv vcB/vc
/Bvvcc
Wolf, Goat, Cabbage, Farmer Crossing River

- Wolf eats goat if left alone, goat eats cabbage if left alone.
- The farmer can only take one object with him at a time.
- How should the farmer bring the wolf, goat, and cabbage to the other side of the river?
Wolf, Goat, Cabbage, Farmer Crossing River: Hint

FWGC/

WC/FG

FWC/G
C/FWG W/FGC

FGC/W FWG/C
G/FWC

FG/WC

/FWGC

NOI only
Decanting: \(3 + 5 \rightarrow 1 \)

- A 3-unit bottle and a 5-unit bottle are given.

- Each bottle can be filled from a tap, emptied into a sink, poured into another bottle until itself is empty or the other is filled.

- How to obtain 1-unit of liquid?
Decanting: Hint

<table>
<thead>
<tr>
<th>35</th>
<th>03</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>02</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>04</td>
<td></td>
</tr>
</tbody>
</table>
Decanting : BFS (To be Discussed Later)

#define N 24

int visit[4][6];

int qx[N], qy[N];

int head, tail = 0;
check(int ox, int oy, int x, int y) {
 if(visit[x][y]) return;
 enqueue(x, y);
 visit[x][y] = 1;
 printf("%d %d -> %d %d\n", ox, oy, x, y);
}
enqueue(int x, int y) {
 if((tail+1)%N == head) {
 printf("queue overflow\n"); exit(1);
 }
 qx[tail] = x; qy[tail] = y;
 if(++tail >= N) tail = 0;
}

decqueue(int *x, int *y) {
 if(head == tail) {
 printf("queue underflow\n"); exit(1);
 }
 *x = qx[head]; *y = qy[head];
 if(++head >= N) head = 0;
}
main() {
 int i, j, x, y;

 for(i = 0; i < 4; i++)
 for(j = 0; j < 6; j++)
 visit[i][j] = 0;

 check(0, 0, 0, 0);
while(head != tail) {
 dequeue(&x, &y);
 if(x < 3) check(x,y, 3, y); // fill x
 if(x < 3 && y >= 3-x) check(x,y, 3, y-3+x);
 if(y > 0 && y < 3-x) check(x,y, x+y, 0);
 if(x > 0) check(x,y, 0, y); // empty x

 if(y < 5) check(x,y, x, 5); // fill y
 if(y < 5 && x >= 5-y) check(x,y, x-5+y, 5);
 if(x > 0 && x < 5-y) check(x,y, 0, y+x);
 if(y > 0) check(x,y, x, 0); // empty y
}
}
0 0 \rightarrow 0 0
0 0 \rightarrow 3 0
0 0 \rightarrow 0 5
3 0 \rightarrow 3 5
3 0 \rightarrow 0 3
0 5 \rightarrow 3 2
0 3 \rightarrow 3 3
3 2 \rightarrow 0 2
3 3 \rightarrow 1 5
0 2 \rightarrow 2 0
1 5 \rightarrow 1 0
2 0 \rightarrow 2 5
1 0 \rightarrow 0 1
2 5 \rightarrow 3 4
0 1 \rightarrow 3 1
3 4 \rightarrow 0 4
Basic Graph Terminology: Vertices and Edges

- Mathematically a graph G consists of a vertex set V and an edge set E:

 $$G = (V, E).$$

- An edge has two end-points, each of which must be a vertex.

- A vertex may or may not be an end-point of an edge.

- Unless explicitly specified otherwise, a graph usually means undirected graph.
Incidence

- Incidence is a relation between a vertex and an edge.

- For any vertex \(v \) and any edge \(e \),
 vertex \(v \) is incident on edge \(e \),
 or
 edge \(e \) is incident on vertex \(v \),
 if (and only if)
 \(v \) is an end-point of \(e \).
Vertex Adjacency

- For any distinct vertices u and v,

 u and v are adjacent

 if (and only if)

 they are incident on the same edge.

- Two distinct vertices are adjacent if (and only if) they are the end-points of the same edge.
Edge Adjacency

- For any distinct edges e and f,

 e and f are adjacent

 if (and only if)

 they are incident on the same vertex.

- Two distinct edges are adjacent if (and only if) they share an end-point.
Simple Graphs

- An edge is a loop if (and only if) its two end-points are identical.
- Two edges are parallel if (and only if) they have the same end-points.
- A graph is simple if (and only if) there are no loops and parallel edges.
Vertex Degree

- For any vertex v, the degree of v is the number of times edges incident on v.

- If there are μ loops and ν (non-loop) edges incident on a vertex v, the degree of v is

 $$d(v) = 2\mu + \nu.$$
Isolated Vertices

- A vertex is isolated if (and only if) its degree is zero.

- That is, a vertex is isolated if (and only if) no edges incident on it; equivalently, it is incident on no edges; or no edges are incident on it.
The Handshake Theorem

• For any graph $G = (V, E)$,

$$\sum_{v \in V} d(v) = 2|E|$$

• Proof:

Each edge has two end-points.

$d(v) =$ the number of times v labels an end-point.

$\sum_{v \in V} d(v) =$ number of end-points.
A Corollary

- The number of odd-degree vertices is even.

- Proof:
 \[\sum_{v \in V} d(v) = \sum_{2|d(v)} d(v) + \sum_{2 \not| d(v)} d(v) = 2|E|. \]
Applications

- Is it possible that each of a group of nine people knows exactly five others in the group?

- Is it possible to have a graph of five vertices of degrees 1, 2, 3, 4, 5?
Paths

- Let v_0 and v_1, not necessarily distinct, be vertices of a graph.

- A path from v_0 to v_1 of length n is an alternating sequence of $n + 1$ vertices and n edges of the form:

 $$v_0 e_1 v_1 \cdots v_{n-1} e_n v_n$$

 such that e_i is incident on v_{i-1} and v_i for $i = 1, \ldots, n$.

- For a simple graph, since e_i is completely determined by v_i and v_{i+1}, the path may be written simply as

 $$v_0 v_1 \cdots v_{n-1} v_n$$
Cycles

• A cycle is a path of nonzero length from a vertex to itself with distinct edges.

• A length 1 cycle is a loop.

• A length 2 cycle is two parallel edges.

• A simple cycle is a cycle with distinct vertices (except the first and last).
Connectedness

• A graph $G = (V, E)$ is connected if (and only if) for any distinct vertices $u \in V$ and $v \in V$, there is a path from u to v.
Acyclicity

• A graph is acyclic if (and only if) it has no cycles.
Trees

- A tree is a connected acyclic graph.
Graph Representation 1: Adjacency Matrices

- Number the n vertices of a graph either from 0 to $n - 1$ or from 1 to n.
- The graph can be represented as a matrix $a[i][j]$ such that
 \[a[i][j] = \text{number of edges incident on vertices } i, j. \]
- For a simple graph, we have
 \[a[i][i] = 0 \]
 and
 \[a[i][j] \leq 1. \]
Graph Representation 2: Adjacency Lists

- Number the n vertices of a graph either from 0 to $n - 1$ or from 1 to n.
- Create an array $a[\]$ of lists.
- Array entry $a[i]$ lists the vertices adjacent to vertex i.
- Alternatively, create a 2-dimensional jagged array $a[][]$:

 \[\text{length of } a[i] = d(i).\]

 (Very easily done in Java.)
Adjacency Matrices Versus Adjacency Lists

- **Storage:** $|V|^2$ against $|V| + 2|E|$
- **Access:** direct against serial
Example

• Represent the graph

\[G = (\{1, 2, 3, 4, 5, 6\}, \{\{1, 2\}, \{1, 3\}, \{2, 4\}, \{2, 5\}, \{2, 6\}, \{3, 5\}\}) \]

as an adjacency matrix and as adjacency lists.

• Represent the graph

\[G = (\{1, 2, 3, 4, 5, 6\}, \{e_1, e_2, e_3, e_4, e_5, e_6, e_7\}) \]

where \(f(e_1) = \{6\}, \ f(e_2) = \{1, 5\}, \ f(e_3) = \{1, 5\}, \ f(e_4) = \{2, 4\}, \ f(e_5) = \{3, 4\}, \ f(e_6) = \{3, 4\}, \ f(e_7) = \{1, 1\} \), as an adjacency matrix and as adjacency lists.
Breadth First Search (BFS)

- One way of traversing a graph is to do a breadth first search (BFS).

- BFS can be described as follows:

 visit a vertex
 while there is a least recently visited vertex v do
 visit all unvisited vertices adjacent to v
BFS Pseudo Code

bfs(start) {
 for(i = 0; i < n; i++) visit[i] = false;
 visit[start] = true; show(start); enqueue(start);
 while(! empty()) {
 for(l = adj[dequeue()]; l; l = l->next) {
 v = l->vertex;
 if(!visit[v]) {
 visit[v] = true; show(v); enqueue(v);
 }
 }
 }
}
BFS: The Decanting Example

- A graph modeling the previous decanting example is given as adjacency lists.

- What is the rooted ordered tree obtained by a breadth first search starting with 00 (both bottles are empty)?

- Note that the order of the ordered tree is determined by the vertex order in the adjacency lists.
<table>
<thead>
<tr>
<th>Time</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:00</td>
<td>30, 05</td>
</tr>
<tr>
<td>01:00</td>
<td>31, 10, 05, 00</td>
</tr>
<tr>
<td>02:00</td>
<td>32, 20, 05, 00</td>
</tr>
<tr>
<td>03:00</td>
<td>33, 30, 05, 00</td>
</tr>
<tr>
<td>04:00</td>
<td>34, 31, 05, 00</td>
</tr>
<tr>
<td>05:00</td>
<td>35, 32, 00</td>
</tr>
<tr>
<td>10:00</td>
<td>30, 00, 15, 01</td>
</tr>
<tr>
<td>15:00</td>
<td>35, 33, 05, 10</td>
</tr>
<tr>
<td>20:00</td>
<td>30, 00, 25, 02</td>
</tr>
<tr>
<td>25:00</td>
<td>35, 34, 05, 20</td>
</tr>
<tr>
<td>30:00</td>
<td>00, 35, 03</td>
</tr>
<tr>
<td>31:00</td>
<td>01, 35, 04, 30</td>
</tr>
<tr>
<td>32:00</td>
<td>02, 35, 05, 30</td>
</tr>
<tr>
<td>33:00</td>
<td>03, 35, 15, 30</td>
</tr>
<tr>
<td>34:00</td>
<td>04, 35, 25, 30</td>
</tr>
<tr>
<td>35:00</td>
<td>05, 30</td>
</tr>
</tbody>
</table>
Depth First Search

- Another way of traversing a graph is to do a depth first search (DFS).

- DFS can be described as follows:

\[
dfs(v) \{ \\
 \text{mark } v \text{ as visited} \\
 \text{for each unvisited vertex } u \text{ adjacent to } v \text{ do} \\
 \quad dfs(u) \\
\}
\]
DFS Pseudo Code

dfs_init(start) {
 for(i = 0; i < n; i++) visit[i] = false;
 dfs(start);
}

dfs(start) {
 visit[start] = true; show(start);
 for(l = adj[start]; l; l = l->next) {
 v = l->vertex;
 if(!visit[v]) dfs(v);
 }
}
DFS: The Decanting Example

- Consider the adjacency lists of the graph for the decanting example.

- What is the rooted ordered tree obtained by a depth first search starting with 10?
DFS: The Decanting Example Answer

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/ \</td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>35</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A Remark on the Decanting Problem

- The adjacency lists are not created explicitly and statically. They are created on the flight.

- The possible configurations from the configuration \((x, y)\):

 \[(x, y), x < 3 \rightarrow (3, y)\]

 \[(x, y), x < 3, y \geq 3 - x \rightarrow (3, y + x - 3)\]

 \[(x, y), y > 0, y < 3 - x \rightarrow (x + y, 0)\]

 \[(0, y), x > 0 \rightarrow (0, y)\]
\[(x, y), y < 5 \rightarrow (x, 5)\]
\[(x, y), y < 5, x \geq 5 - y \rightarrow (x + y - 5, 5)\]
\[(x, y), x > 0, x < 5 - y \rightarrow (0, x + y)\]
\[(x, y), y > 0 \rightarrow (x, 0)\]
Weighted Graphs

- A weighted graph G consists of a vertex set V, an edge set E, and a weight function $w : E \rightarrow \mathbb{R}$:

 $$G = (V, E, w).$$

- Every graph can be treated as a weighted graph by taking

 $$w(e) = 1$$

 for any edge $e \in E$.

Some Observations on Weighted Graphs

- Many situations can be modeled as weighted graphs.

- For example, the highways connecting cities may be modeled as a weighted graph with highway distance as the weight function.

- The rooted tree built by a breadth first search starting at vertex v gives the shortest path length of all vertices from v: the shortest distance of a vertex at level L is L.

- In other words, BFS solves the 1-to-any (single source) shortest path problem for the special case when $w(E) = \{1\}$.
Weighted Graph Representations

- A simple weighted graph can be represented as an adjacency matrix:

\[a[i][j] = w(i, j). \]

- A weighted graph can also be represented as adjacency lists:

\[a[i] = \text{a list of pairs } (v, w(e)) \]

where \(v\) is a vertex adjacent to \(i\) and \(e\) is an edge incident on \(i\) and \(v\).
Floyd’s Algorithm: All-Pairs Shortest Path

floyd() {
 for(k = 0; k < n; k++)
 for(i = 0; i < n; i++)
 for(j = 0; j < n; j++)
 if(a[i][k] + a[k][j] < a[i][j])
 a[i][j] = a[i][k] + a[k][j];
}
Floyd’s Algorithm: Comments

- Very easy to code.
- Transform the adjacency matrix to an all-pairs shortest path matrix.
- Complexity $\Theta(n^3)$.

Theory: dynamic programming subproblem structure:

$$a^{(k)}_{i,j} = \min(a^{(k-1)}_{i,j}, a^{(k-1)}_{i,k} + a^{(k-1)}_{k,j}).$$

Programming: update in place is correct because

$$a^{(k)}_{i,k} = a^{(k-1)}_{i,k}, \quad a^{(k)}_{k,j} = a^{(k-1)}_{k,j}.$$
Dijkstra’s Algorithm for Single-Source Shortest Paths

- This is a greedy algorithm.
- Theory (skipped).
Dijkstra’s Algorithm: Pseudo Code

for each vertex \(v \) do \(d[v] = \text{MAX}_\text{VAL} \);
\(d[\text{source}] = 0; \quad p[\text{source}] = -1; \)
do \(|V|\) times {
 let \(d[v] \) be the smallest among all undeleted vertices
 \(x = d[v]; \quad \text{delete} \ v; \)
 for each vertex \(u \) adjacent to \(v \) do {
 if \(u \) is undeleted and \(x + w[u] < d[u] \) then {
 \(d[u] = x + w[u]; \quad p[u] = v; \)
 }
 }
} // array \(d \) gives the shortest distance from source
Implementation: Naive Versus Sophisticated

- Two pieces of information: adjacency and distance.

- If the distance information is implemented as an array $d[v]$, coding is simple but may incur a time complexity of $O(|V|^2)$.

- If the distance information is implemented as a priority queue, coding is more involved but the time complexity is $O(|E| \log |V|)$ when the graph is connected.
Dijkstra’s Algorithm: Example

![Graph Diagram]
#include <values.h>

// adjacency nodes

struct edge {
 int v, wt;
 struct edge *nxt;
};

// adjacency lists

int n, m;
struct edge **adj;
// priority queue with
// priority updates and
// indirect priorities

int N;
// build adjacency lists
insert(struct edge ** l, int v, int wt) {
 struct edge *p, *q;
 p = *l;
 q = (struct edge *) calloc(1, sizeof(struct edge));
 q->v = v;
 q->wt = wt;
 q->nxt = p;
 *l = q;
}

show(struct edge *l) {
 for(; l; l = l->nxt)
 printf(" %d (%d)", l->v, l->wt);
 printf("\n");
}
siftdown(int i) {
 int hi, child;

 hi = heap[i];
 while(2*i+1 <= N-1) {
 child = 2*i+1;
 if(child<N-1 && dist[heap[child+1]]<dist[heap[child]])
 child++;
 if(dist[heap[child]] < dist[hi]) {
 heap[i] = heap[child]; where[heap[i]] = i;
 } else
 break;
 i = child;
 }
 heap[i] = hi; where[heap[i]] = i;
}
heapify() {
 int i;

 for(i = N/2-1; i >= 0; i--) siftdown(i);
}

int heap_del() {
 int v;
 v = heap[0];
 delete[v] = 1;
 heap[0] = heap[N-1];
 where[heap[0]] = 0;
 N--;
 siftdown(0);
 return v;
}
heap_decrement(int v, int val) {
 int i;
 dist[v] = val;
 i = where[v];
 while(i > 0 && val < dist[heap[(i+1)/2 - 1]]) {
 heap[i] = heap[(i+1)/2 - 1];
 where[heap[i]] = i;
 i = (i+1)/2 - 1;
 }
 heap[i] = v;
 where[heap[i]] = i;
}
heap_show() {
 int i;

 printf("*\n");
 for(i = 0; i < N; i++)
 printf("%d %d %d\n", i, heap[i], dist[heap[i]]);
}
dijkstra(int start) {
 int i, minc, v, u;
 struct edge *e;

 for(i = 0; i < n; i++) {
 dist[i] = MAXINT;
 heap[i] = i;
 where[i] = i;
 delete[i] = 0;
 }
 N = n;

 dist[start] = 0; parent[start] = -1;
 heapify();
for(i = 0; i < n; i++) {
 v = heap_del();
 minc = dist[v];
 for(e = adj[v]; e; e = e->nxt) {
 u = e->v;
 if(!delete[u] && minc + e->wt < dist[u]) {
 parent[u] = v;
 heap_decrement(u, minc + e->wt);
 }
 }
 heap_show();
}
// vertices are numbered from 0

main(int ac, char *av[]) {
 int i, u, v, wt;

 scanf("%d %d", &n, &m); printf("%d %d\n", n, m);

 adj = (struct edge **) calloc(n, sizeof(struct edge *));

 for(i = 0; i < m; i++) {
 scanf("%d %d %d", &u, &v, &wt);
 printf("%d %d %d\n", u, v, wt);
 insert(&adj[u], v, wt);
 insert(&adj[v], u, wt);
 }

 for(i = 0; i < n; i++) show(adj[i]);
delete = (int *) calloc(n, sizeof(int));
parent = (int *) calloc(n, sizeof(int));
heap = (int *) calloc(n, sizeof(int));
dist = (int *) calloc(n, sizeof(int));
where = (int *) calloc(n, sizeof(int));

if(ac > 1)
 dijkstra(atoi(av[1]));
else
 dijkstra(0);

for(i = 0; i < n; i++)
 printf("%d %d %d\n", i, dist[i], parent[i]);
}
Dijkstra’s Algorithm: Output

5 8
0 1 1
0 3 1
0 4 9
1 4 1
1 2 5
4 3 9
4 2 9
3 2 1
4 (9) 3 (1) 1 (1)
2 (5) 4 (1) 0 (1)
3 (1) 4 (9) 1 (5)
2 (1) 4 (9) 0 (1)
2 (9) 3 (9) 1 (1) 0 (9)
NOI only
0 2 1
1 1 4
2 4 3
3 3 0
4 0 -1
Exercises

1. A complete graph is a simple graph in which any two distinct vertices are adjacent. A complete graph of n vertices is denoted K_n. Describe the rooted ordered tree produced by a bfs and a dfs on K_n.

2. Code a naive Dijkstra’s algorithm to run the given example. (By naive we mean using an array instead of a priority queue to store the distance information.)

3. What is the role of $\text{where}[\]$ array in the given Dijkstra’s algorithm?

4. Implement Floyd’s algorithm to run the given example.