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Outline

• RIC of the Delaunay triangulation
• optimal O(n log n) time randomized algorithm
• application: computing a Voronoi diagram
• references
• D. Mount Lecture 18
• textbook chapter 9
• H. Edelsbrunner’s book: Geometry and topology of

mesh generation, chapter 1
• demo (J. Snoeyink) at:

http://www.cs.ubc.ca/spider/snoeyink/demos/crust/home.html
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Incircle test
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Definition

d

c b

a

C

inCircle(a, b, c, d) < 0

• assume triangle abc is counterclockwise
• let C be the circumcircle of abc

• we want to design a test inCircle(·) such that
• inCircle(a, b, c, d) = 0 if d ∈ C

• inCircle(a, b, c, d) > 0 if d is outside C
• inCircle(a, b, c, d) < 0 if d is inside C
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Expression

• we use the following expression:

inCircle(a, b, c, d) = det











1 ax ay ax
2 + ay

2

1 bx by bx
2 + by

2

1 cx cy cx
2 + cy

2

1 dx dy dx
2 + dy

2











• why does it work?
• next ten slides: proof with geometric interpretation
• D. Mount’s notes 18: different proof, through algebra
• be careful: we reversed the sign of inCircle(·) with

respect to D. Mount’s notes, in order to simplify the
following proof.
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Orientation of vectors in IR3

• the orientation of (−→u ,−→v ,−→w ) is given by the sign of

det







ux uy uz

vx vy vz

wx wy wz







−→v

O

z

y

x

Orientation (−→u ,−→v ,−→w ) > 0

Orientation (−→v ,−→u ,−→w ) < 0

−→w

−→u

⇐ right thumb rule
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Orientation of a tetrahedron

• orientation of tetrahedron abcd = orientation of
(
−→
ab,−→ac,

−→
ad)

a

b

d

c

Orientation(abcd) =

Orientation (
−→
ab,−→ac,

−→
ad) > 0

⇐ right thumb rule
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Orientation of a tetrahedron

• Orientation (abcd)

= det







bx − ax by − ay bz − az

cx − ax cy − ay cz − az

dx − ax dy − ay dz − az







= det











1 ax ay az

0 bx − ax by − ay bz − az

0 cx − ax cy − ay cz − az

0 dx − ax dy − ay dz − az











• why?
• Develop with respect to first column
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Orientation of a tetrahedron

• add first row to the other rows
• Orientation (abcd)

= det











1 ax ay az

1 bx by bz

1 cx cy cz

1 dx dy dz











• note that it generalizes the counterclockwise (CCW)
predicate in IR2 (see lecture 1)
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Paraboloid P

• in IR3, let P be the paraboloid with equation z = x2 + y2

O

x

y

z
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Property

• let H be a non–vertical plane
• H has equation z = αx + βy + γ

• the projection of H ∩ P onto plane Oxy has equation
x2 + y2 = αx + βy + γ
• this is a circle

• property: the projection of H ∩ P onto plane Oxy is a
circle
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Property

O

x

y

z

a circle

H

P
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Proof

O

x

y

z

a
b

c

â

ĉ

b̂

H

P
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Proof

• let p = (px, py)

• we lift p onto P and obtain p̂ = (px, py, p
2
x + p2

y)

• the transformation p→ p̂ is called the lifting map
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Proof

• we lift a, b, c and d:

â = (ax, ay, a
2
x + a2

y)

b̂ = (bx, by, b
2
x + b2

y)

ĉ = (cx, cy, c
2
x + c2

y)

d̂ = (dx, dy, d
2
x + d2

y)

• we denote by H the plane through {â, b̂, ĉ}

• inCircle(a, b, c, d) = 0 means that
Orientation(â, b̂, ĉ, d̂) = 0

• so d̂ ∈ H
• we project to horizontal
• we obtain that d is in the circumcircle of abc
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Proof: first case

• a, b, c, d cocircular if â, b̂, ĉ, d̂ coplanar

O

x

y

z

a
b

c

â

ĉ

b̂

d̂

d
H

P
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Proof: other cases

• inCircle(a, b, c, d) > 0 means that Orientation(â, b̂, ĉ, d̂) > 0

• then d̂ is above H
• so d is outside the circumcircle of abc

• inCircle(a, b, c, d) < 0 means that Orientation(â, b̂, ĉ, d̂) < 0

• then d̂ is below H
• so d is inside the circumcircle of abc
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New interpretation of the Delaunay
triangulation
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Lifting DT (P )

x

y

zP
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Circumcircle property

• P = {p1, p2, . . . pn} is a set of points in the plane in
general position

• we denote P̂ = {p̂1, p̂2, . . . p̂n}

• last lecture: triangle pipjpk is a face of DT (P ) iff its
circumcircle is empty
• it means that ∀p ∈ P \ {pi, pj , pk}, p̂ is above the

plane through p̂ip̂j p̂k

• in other words, p̂ip̂j p̂k is a facet of the lower hull of P̂

• Theorem: DT (P ) is the projection of the edges of the
lower hull of P̂ onto the plane z = 0
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Edge flip

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.21/61



Property

a

b

c

d

c

a

b

d

or
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Property

• let acbd be a quadrilateral with diagonal ab

• then either
• c is inside the circumcircle of abd and d is inside the

circumcircle of abc
• or c is outside circumcircle of abd and d is outside the

circumcircle of abc
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Proof (by picture)

ĉ

b̂

d̂

â

a

b

d

c

d

a

c

b
OR

ĉ

â
d̂

b̂

Concave Convex
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Edge flip: definition

a

b

c

d

b

c

d

a

ab is illegal cd is locally Delaunay
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Definitions

• let P be a set of n points in IR2

• P is in general position: no 4 points are cocircular
• let T be a triangulation of P

• let ab be an edge of T

• let (c, d) ∈ P 2 such that abc and abd are triangles of T
• ab is locally Delaunay iff d is outside the circumcircle of

abc

• ab is illegal iff d is inside the circumcircle of abc

• note that we can decide whether ab is locally Delaunay
or illegal by computing the sign of CCW (abc) and the
sign of inCircle(a, b, c, d)
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Definition

• if ab is illegal, we can perform an edge flip:
remove ab from T and insert cd

• now cd is locally Delaunay

c

a

d

b
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Definition

• if ab is illegal, we can perform an edge flip:
remove ab from T and insert cd

• now cd is locally Delaunay

a

c

b

d
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Edge flip: interpretation

â

ĉ ĉ

b̂ b̂

d̂d̂

â

a

b

d

c

d

a

c

b

the lifted triangulation gets lower
the upper envelope becomes convex
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A first algorithm
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Theorem

• let T be a triangulation of P

• T = DT (P ) iff all the edges of T are locally Delaunay
• proof:
• if T is Delaunay, then clearly all edges are locally

Delaunay (by definition)
• other direction: non trivial
• see textbook Theorem 9.8
• or use the lifting map: locally Delaunay⇔ locally

convex⇔ globally convex⇔ globally Delaunay
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Idea

• draw a triangulation T of P

• if all the edges of T are locally Delaunay, we are done
• otherwise, pick an illegal edge and flip it
• repeat this process until all edges are locally Delaunay
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Pseudocode

Algorithm SlowDelaunay (P)

Input: a set P of n points in IR2

Output: DT (P )
1. compute a triangulation T of P
2. initialize a stack containing all the edges of T
3. while stack is non–empty
4. do pop ab from stack and unmark it
5. if ab is illegal then
6. do flip ab to cd
7. for xy ∈ {ac, cb, bd, da}
8. do if xy is not marked
9. then mark xy and push it on

stack
10. return T
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Analysis

• it is not obvious that this program halts!

• in fact runs in Θ(n2) time
• proof using lifting map
• each time we flip an edge, the lifted triangulation

gets lower
• so an edge can be flipped only once: afterward it

remains above the lifted triangulation
• there are O(n2) edges
• so the algorithm runs in O(n2) time
• lower bound left as an exercise
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Randomized incremental algorithm
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Preliminary

• let (p1, p2, p3 . . . pn) be a random permutation of P

• let p
−3p−2p−1 be a large triangle containing P

P

p
−1

p
−3 p

−2

• for all i we denote Pi = {p
−3, p−2, p−1, p1, p2, . . . pi}
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First step

p
−1

p
−3 p

−2

p1
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First step

p
−1

p
−3 p

−2

p1
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Idea

• insert p1, then p2 . . . and finally pn

• suppose we have computed DT (Pi−1)

• insert pi ⇒ splits a triangle into three
• find this triangle using conflict lists
• each non inserted point has a pointer to the

triangle in DT (Pi−1) that contains it
• each triangle in DT (Pi−1) is associated with the

list of all the non–inserted points that it contains
• perform edge flips until no illegal edge remains
• we only need to perform flips around pi

• on average, this step takes constant time
• we have just computed DT (Pi)

• repeat the process until i = n
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Example

p

• inserting pi

• to simplify the notations, we denote p = pi

• we do not draw p
−1p−2p−3
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Example

p

a

b

c

• use the pointer from p to the triangle abc that contains it
• split abc into abp, bcp and cap

• split the conflict list of abc accordingly
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Example

p

a

b

c

• edge ab is illegal
• flip it
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Example

p

a

b

c

d

• edge ab has been flipped into pd

• ad is locally Delaunay, we keep it
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Example

p

a

b

c

d

• edge bd is illegal

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.44/61



Example

p

a

b

c

d

e

• edge bd has been flipped into pe

• edges de and be are locally Delaunay, we keep them
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Example

p

a

b

c

d

e

• edge bc is illegal
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Example

a

b

c

d

e

pf

• edge bc has been flipped into pf
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Example

b

c

d

e

pf

a

• edge ac is illegal
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Example

b

c

d

e

pf

a

g

• edge ag is locally Delaunay
• no more edge to flip: we are done
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Explanation

• we considered triangles in counterclockwise order
around p and flipped illegal edges

• why is it enough to consider only triangles adjacent to
p?

• see proof later
• the pseudocode for this algorithm is very simple
• see next slide
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Pseudocode

Algorithm Insert(p)
Input: a point p, a set of point P and T = DT (p)
Output: DT (P ∪ {p})
1. Find the triangle abc of DT (P ∪ {p}) containing p
(∗ use reverse pointers from conflict lists ∗)
(∗ abc is chosen to be counterclockwise ∗)
2. Insert edges pa,pb and pc
(∗ it includes conflict lists updates ∗)
3. SwapTest(ab)
(∗ pseudocode of this procedure next slide ∗)
4. SwapTest(bc)
5. SwapTest(ca)
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Pseudocode

Algorithm SwapTest(ab)
1. if ab is an edge of the exterior face
2. do return
3. d←the vertex to the right of edge ab
4. if inCircle(p, a, b, d) < 0
5. do Flip edge ab for pd
(∗ it includes conflict lists update ∗)
6. SwapTest(ad)
7. SwapTest(db)
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Proof

• we only flipped edges of triangles that contain p

• why is it sufficient?
• remember Theorem slide 26: locally Delaunay implies

Delaunay
• any edge between two triangles that do not contain p

was locally Delaunay before insertion of p

• so it is still locally Delaunay
• thus the triangulation we obtain is the Delaunay

triangulation
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Analysis

• we look at ti: time taken to update the current
triangulation while inserting pi

• it does not account for conflict lists updates
• each new edge (after splitting abc or after a flip)

contains pi

• so ti is proportional to the degree of pi in DT (pi)

• degree of pi: number of edges that contain pi
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Analysis

• we use backward analysis: Pi is fixed, pi is random
• each edge has two vertices

• so each edge contains pi with probability 2

i

• there are O(i) edges in the whole triangulation (by Euler
formula)

• so by backward analysis

E[ti] =
O(i)

i
= O(1)

• so the time for updating the triangulation is O(n) over
the course of the whole algorithm

• similar with trapezoidal map: what takes Θ(n log n) time
is the update of conflict lists (see next slide)
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Analysis

• while inserting pi, what is the probability that p ∈ P \ Pi

is rebucketed?
• backward analysis
• assume p is in triangle abc
• this is the probability that pi ∈ {a, b, c}

• so it is 3/i

• so while inserting pi, we rebucket less than 3n/i sites on
average
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Analysis

• problem: a site may be rebucketed several times at step
i
• intuition: only a constant number of flips at each step

so it only account for a constant factor
• detailed proof in textbook

• so overall, rebucketing takes expected time

O

(

n
∑

i=1

n

i

)

= O(n log n)
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Choice of p−1p−2p−3

p
−3(−3M,−3M)

p
−2(3M, 0)

P

p
−1(0, 3M)

(M, M)

• M : max of any coordinate of any point in P

• For incircle test, do as if these three points are outside
any circle defined by three points in P
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Conclusion
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Conclusion

• the Delaunay triangulation of n points can be computed
in expected time O(n log n)

• it holds for worst case input, the expectation is over the
random choices made by the algorithm

• it can also be done in O(n log n) deterministic time
• knowing the Delaunay triangulation of P , we can find

the Voronoi diagram of P in O(n) time
• left as an exercise
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Conclusion

• combining with the point location data structure of
lecture 8, we can answer proximity queries in the plane
(see lecture 9) with
• O(log n) expected query time
• O(n log n) expected preprocessing time
• O(n) expected space usage

• all these bounds can be made deterministic
• harder, less practical
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