Computing a Delaunay triangulation

Lecture 10, CS 4235 18 march 2004

Antoine Vigneron

antoine@comp.nus.edu.sg

National University of Singapore

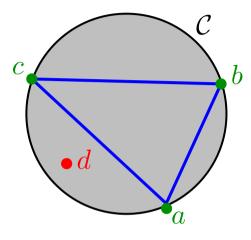
NUS - CS4235 - Lecture 10: Computing a Delaunay triangulation - p.1/61

Outline

- RIC of the Delaunay triangulation
- optimal $O(n \log n)$ time randomized algorithm
- application: computing a Voronoi diagram
- references
 - D. Mount Lecture 18
 - textbook chapter 9
 - H. Edelsbrunner's book: Geometry and topology of mesh generation, chapter 1
 - demo (J. Snoeyink) at: http://www.cs.ubc.ca/spider/snoeyink/demos/crust/home.html

Incircle test

Definition



 $\mathrm{inCircle}(a,b,c,d) < 0$

- assume triangle *abc* is counterclockwise
- let \mathcal{C} be the circumcircle of abc
- we want to design a test $\operatorname{inCircle}(\cdot)$ such that
 - $\operatorname{inCircle}(a, b, c, d) = 0$ if $d \in \mathcal{C}$
 - $\operatorname{inCircle}(a, b, c, d) > 0$ if d is outside C
 - $\operatorname{inCircle}(a, b, c, d) < 0$ if d is inside C

• we use the following expression:

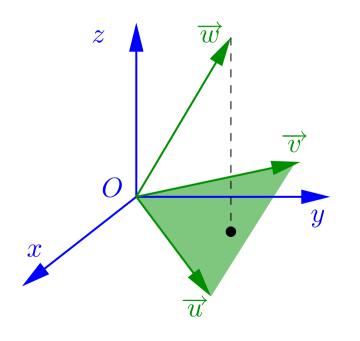
$$inCircle(a, b, c, d) = det \begin{pmatrix} 1 & a_x & a_y & a_x^2 + a_y^2 \\ 1 & b_x & b_y & b_x^2 + b_y^2 \\ 1 & c_x & c_y & c_x^2 + c_y^2 \\ 1 & d_x & d_y & d_x^2 + d_y^2 \end{pmatrix}$$

- why does it work?
 - next ten slides: proof with geometric interpretation
 - D. Mount's notes 18: different proof, through algebra
 - be careful: we reversed the sign of inCircle(·) with respect to D. Mount's notes, in order to simplify the following proof.

Orientation of vectors in \mathbb{R}^3

• the orientation of $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ is given by the sign of

$$\det \left(\begin{array}{cccc} u_x & u_y & u_z \\ v_x & v_y & v_z \\ w_x & w_y & w_z \end{array} \right)$$

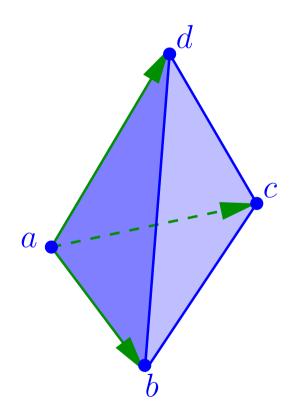


 $\begin{array}{l} \text{Orientation} \ (\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}) > 0 \\ \\ \text{Orientation} \ (\overrightarrow{v}, \overrightarrow{u}, \overrightarrow{w}) < 0 \end{array}$

 \leftarrow right thumb rule

Orientation of a tetrahedron

• orientation of tetrahedron abcd = orientation of $(\overrightarrow{ab}, \overrightarrow{ac}, \overrightarrow{ad})$



 $\begin{aligned} & \text{Orientation}(abcd) = \\ & \text{Orientation}\left(\overrightarrow{ab}, \overrightarrow{ac}, \overrightarrow{ad}\right) > 0 \\ & \Leftarrow \text{ right thumb rule} \end{aligned}$

Orientation of a tetrahedron

• Orientation (*abcd*)

$$= \det \begin{pmatrix} b_x - a_x & b_y - a_y & b_z - a_z \\ c_x - a_x & c_y - a_y & c_z - a_z \\ d_x - a_x & d_y - a_y & d_z - a_z \end{pmatrix}$$

$$= \det \begin{pmatrix} 1 & a_x & a_y & a_z \\ 0 & b_x - a_x & b_y - a_y & b_z - a_z \\ 0 & c_x - a_x & c_y - a_y & c_z - a_z \\ 0 & d_x - a_x & d_y - a_y & d_z - a_z \end{pmatrix}$$

• why?

• Develop with respect to first column

Orientation of a tetrahedron

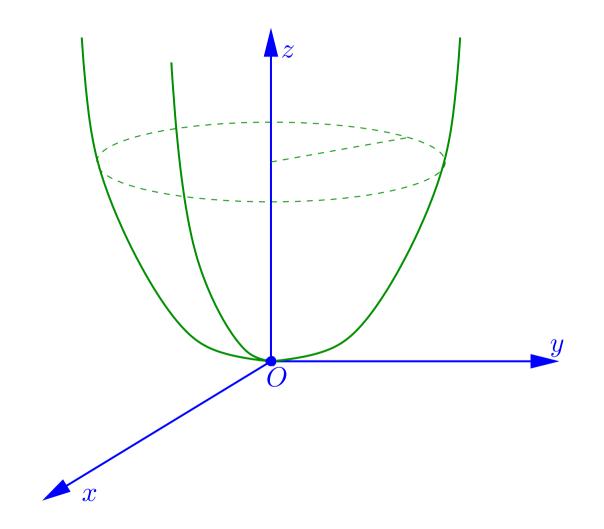
- add first row to the other rows
- Orientation (*abcd*)

$$= \det \begin{pmatrix} 1 & a_x & a_y & a_z \\ 1 & b_x & b_y & b_z \\ 1 & c_x & c_y & c_z \\ 1 & d_x & d_y & d_z \end{pmatrix}$$

 note that it generalizes the counterclockwise (CCW) predicate in R² (see lecture 1)

Paraboloid \mathcal{P}

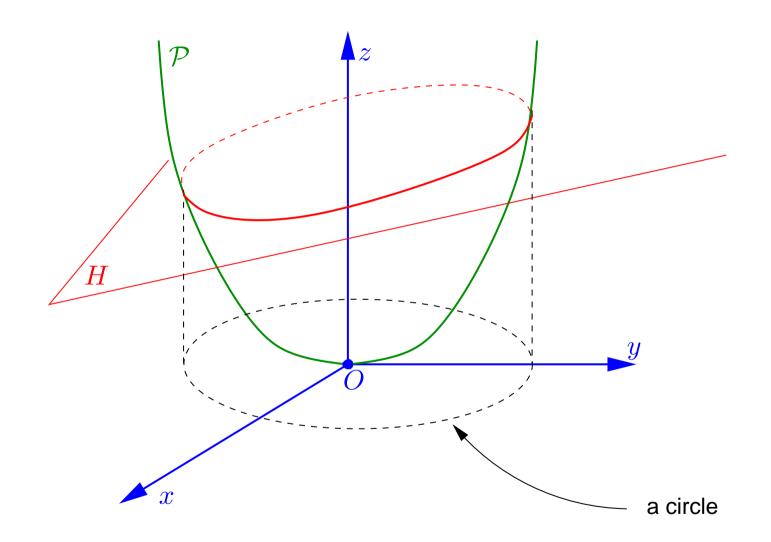
• in \mathbb{R}^3 , let \mathcal{P} be the paraboloid with equation $z = x^2 + y^2$



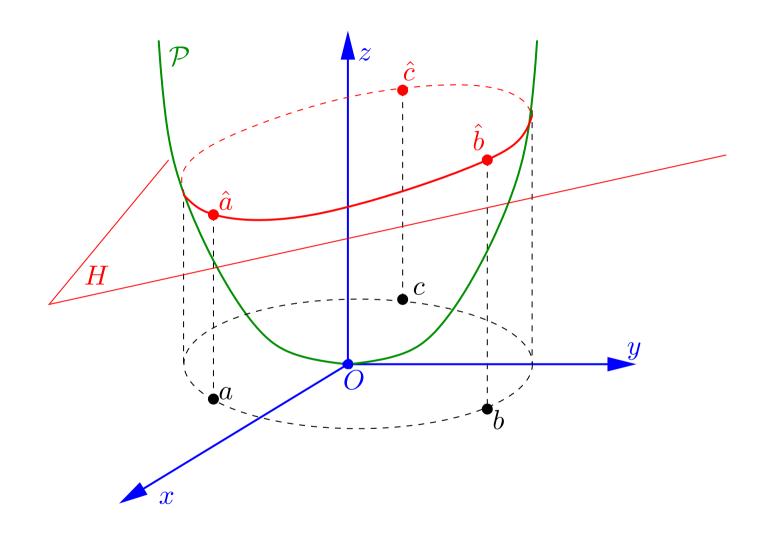
Property

- let *H* be a non-vertical plane
- *H* has equation $z = \alpha x + \beta y + \gamma$
- the projection of $H \cap \mathcal{P}$ onto plane Oxy has equation $x^2 + y^2 = \alpha x + \beta y + \gamma$
 - this is a circle
- property: the projection of $H \cap \mathcal{P}$ onto plane Oxy is a circle

Property



Proof



Proof

- let $p = (p_x, p_y)$
- we lift p onto \mathcal{P} and obtain $\hat{p} = (p_x, p_y, p_x^2 + p_y^2)$
- the transformation $p \rightarrow \hat{p}$ is called the *lifting map*

Proof

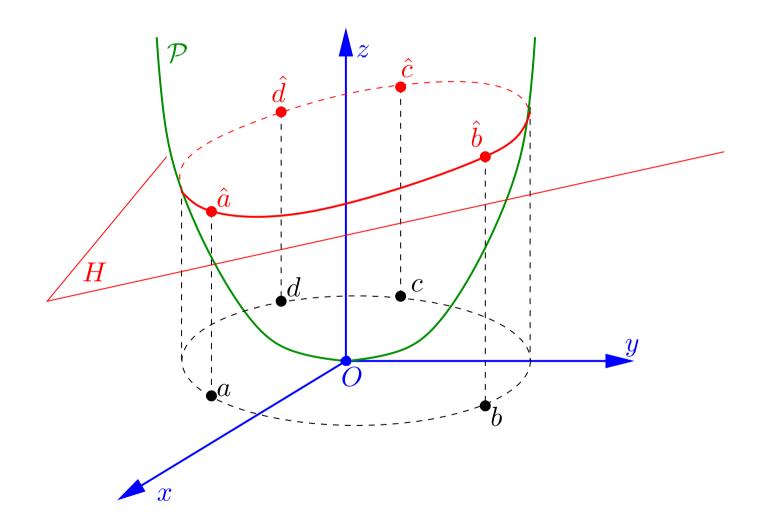
• we lift a, b, c and d:

$$\hat{a} = (a_x, a_y, a_x^2 + a_y^2)$$
$$\hat{b} = (b_x, b_y, b_x^2 + b_y^2)$$
$$\hat{c} = (c_x, c_y, c_x^2 + c_y^2)$$
$$\hat{d} = (d_x, d_y, d_x^2 + d_y^2)$$

- we denote by H the plane through $\{\hat{a}, \hat{b}, \hat{c}\}$
- inCircle(a, b, c, d) = 0 means that Orientation $(\hat{a}, \hat{b}, \hat{c}, \hat{d}) = 0$
 - SO $\hat{d} \in H$
 - we project to horizontal
 - we obtain that d is in the circumcircle of abc

Proof: first case

• a, b, c, d cocircular if $\hat{a}, \hat{b}, \hat{c}, \hat{d}$ coplanar

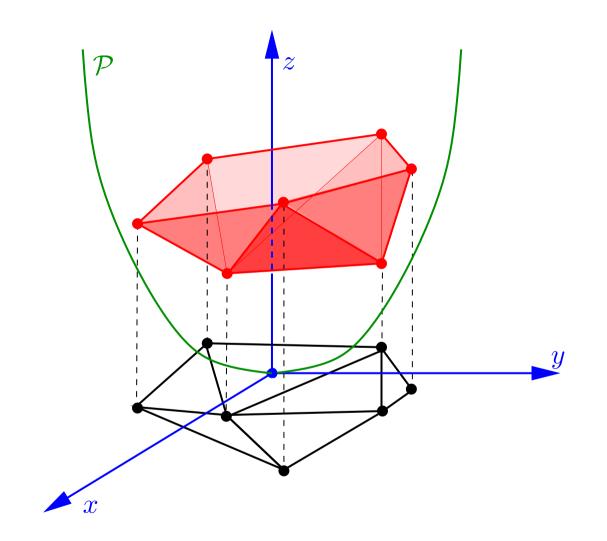


Proof: other cases

- $\operatorname{inCircle}(a, b, c, d) > 0$ means that $\operatorname{Orientation}(\hat{a}, \hat{b}, \hat{c}, \hat{d}) > 0$
 - then \hat{d} is above H
 - so d is outside the circumcircle of abc
- $\operatorname{inCircle}(a, b, c, d) < 0$ means that $\operatorname{Orientation}(\hat{a}, \hat{b}, \hat{c}, \hat{d}) < 0$
 - then \hat{d} is below H
 - so d is inside the circumcircle of abc

New interpretation of the Delaunay triangulation

Lifting $\mathcal{DT}(P)$

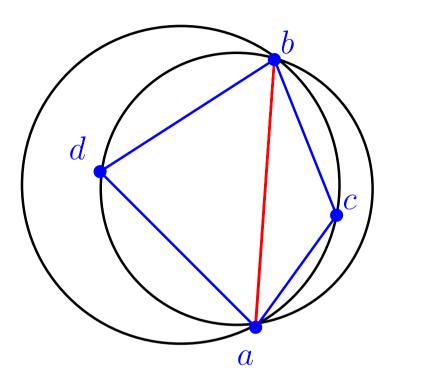


Circumcircle property

- $P = \{p_1, p_2, \dots, p_n\}$ is a set of points in the plane in general position
- we denote $\hat{P} = {\hat{p}_1, \hat{p}_2, \dots \hat{p}_n}$
- last lecture: triangle $p_i p_j p_k$ is a face of $\mathcal{DT}(P)$ iff its circumcircle is empty
 - it means that $\forall p \in P \setminus \{p_i, p_j, p_k\}$, \hat{p} is above the plane through $\hat{p}_i \hat{p}_j \hat{p}_k$
 - in other words, $\hat{p}_i \hat{p}_j \hat{p}_k$ is a facet of the lower hull of \hat{P}
- Theorem: $\mathcal{DT}(P)$ is the projection of the edges of the lower hull of \hat{P} onto the plane z = 0

Edge flip

Property



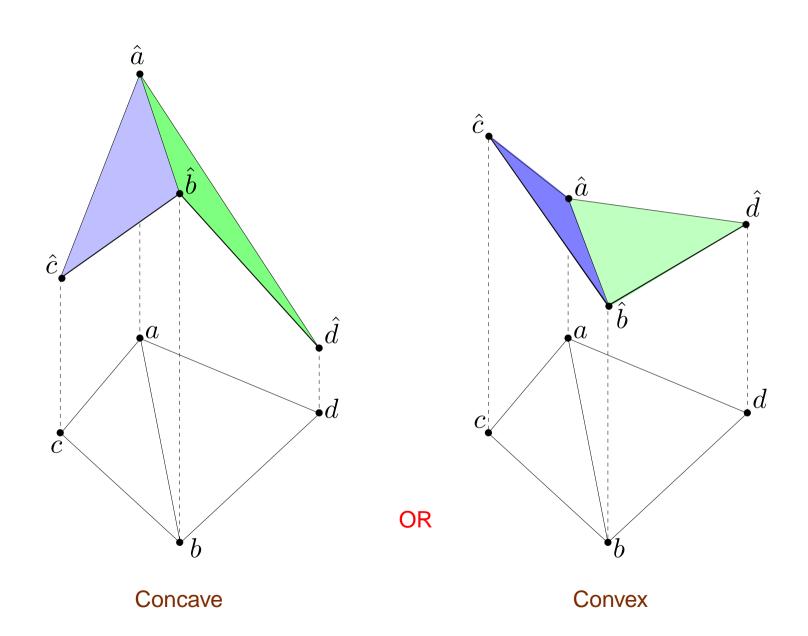
or



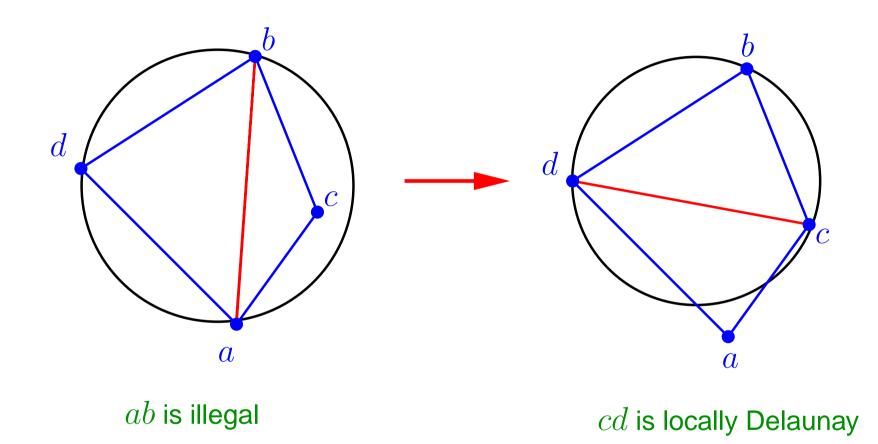
Property

- let acbd be a quadrilateral with diagonal \overline{ab}
- then either
 - c is inside the circumcircle of abd and d is inside the circumcircle of abc
 - or c is outside circumcircle of abd and d is outside the circumcircle of abc

Proof (by picture)



Edge flip: definition

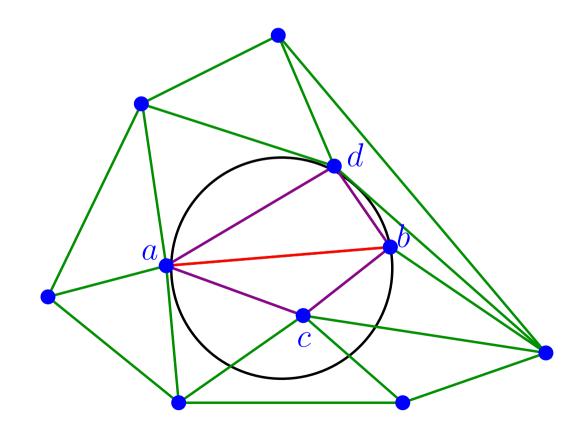


Definitions

- let P be a set of n points in \mathbb{R}^2
- *P* is in general position: no 4 points are cocircular
- let \mathcal{T} be a triangulation of P
- let ab be an edge of \mathcal{T}
- let $(c,d) \in P^2$ such that abc and abd are triangles of T
- *ab* is *locally Delaunay* iff *d* is outside the circumcircle of *abc*
- *ab* is *illegal* iff *d* is inside the circumcircle of *abc*
- note that we can decide whether *ab* is locally Delaunay or illegal by computing the sign of *CCW(abc)* and the sign of inCircle(*a*, *b*, *c*, *d*)

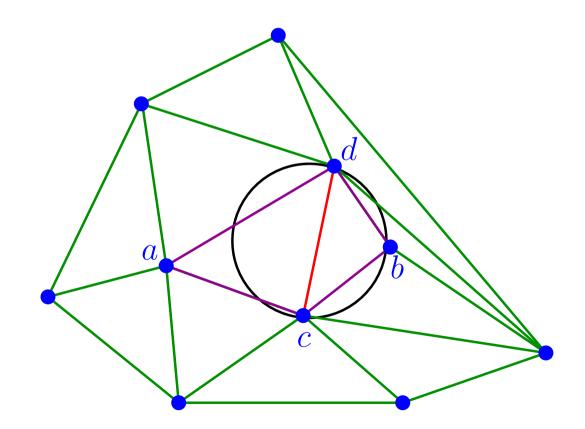
Definition

- if *ab* is illegal, we can perform an *edge flip*: remove *ab* from *T* and insert *cd*
- now *cd* is locally Delaunay

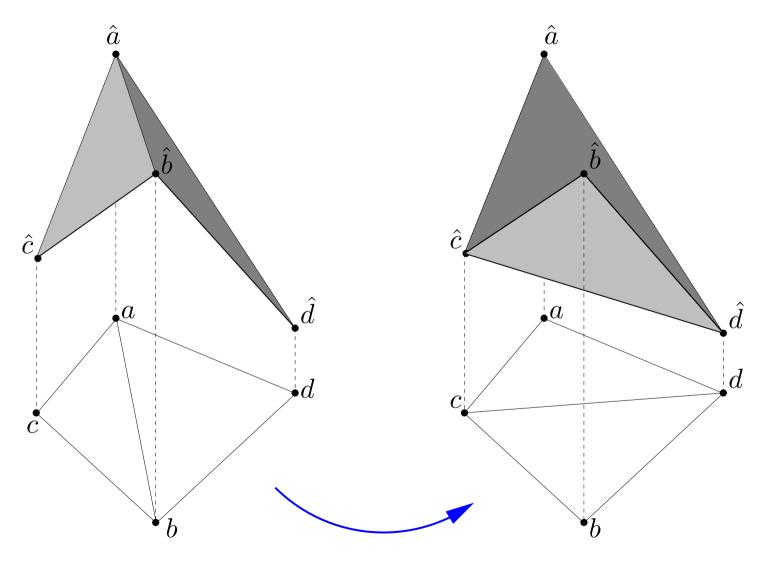


Definition

- if *ab* is illegal, we can perform an *edge flip*: remove *ab* from *T* and insert *cd*
- now *cd* is locally Delaunay



Edge flip: interpretation



the lifted triangulation gets lower the upper envelope becomes convex

A first algorithm

Theorem

- let \mathcal{T} be a triangulation of P
- T = DT(P) iff all the edges of T are locally Delaunay
- proof:
 - if T is Delaunay, then clearly all edges are locally Delaunay (by definition)
 - other direction: non trivial
 - see textbook Theorem 9.8
 - or use the lifting map: locally Delaunay ⇔ locally convex ⇔ globally convex ⇔ globally Delaunay

Idea

- draw a triangulation \mathcal{T} of P
- if all the edges of \mathcal{T} are locally Delaunay, we are done
- otherwise, pick an illegal edge and flip it
- repeat this process until all edges are locally Delaunay

Pseudocode

Algorithm *SlowDelaunay*(P) **Input:** a set P of n points in \mathbb{R}^2 **Output:** $\mathcal{DT}(P)$ compute a triangulation \mathcal{T} of P1. initialize a stack containing all the edges of \mathcal{T} 2. while stack is non-empty 3. do pop *ab* from stack and unmark it 4. 5. if ab is illegal then 6. do flip *ab* to *cd* 7. for $xy \in \{ac, cb, bd, da\}$ 8. do if xy is not marked 9. then mark xy and push it on stack

10. return T

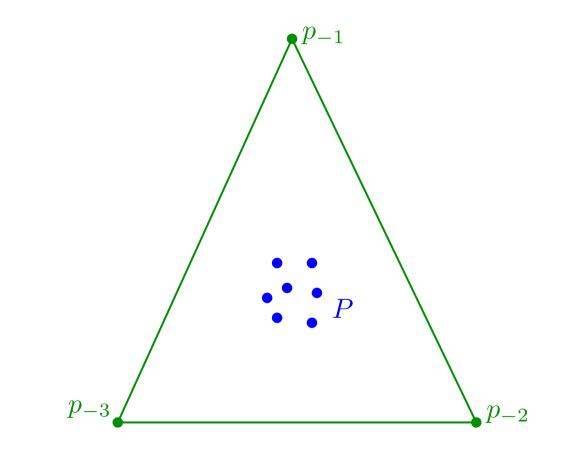
Analysis

- it is not obvious that this program halts!
- in fact runs in $\Theta(n^2)$ time
- proof using lifting map
 - each time we flip an edge, the lifted triangulation gets lower
 - so an edge can be flipped only once: afterward it remains above the lifted triangulation
 - there are $O(n^2)$ edges
 - so the algorithm runs in $O(n^2)$ time
 - lower bound left as an exercise

Randomized incremental algorithm

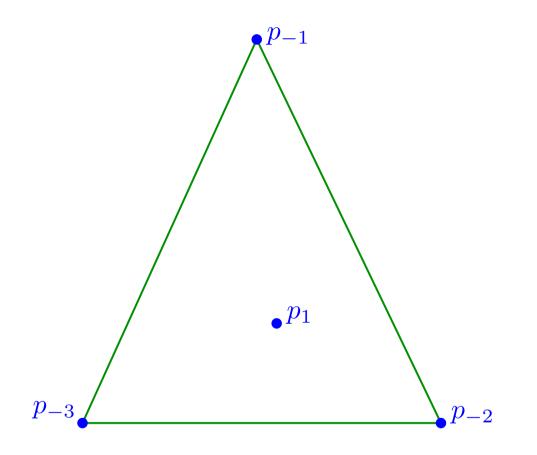
Preliminary

- let $(p_1, p_2, p_3 \dots p_n)$ be a random permutation of P
- let $p_{-3}p_{-2}p_{-1}$ be a large triangle containing P

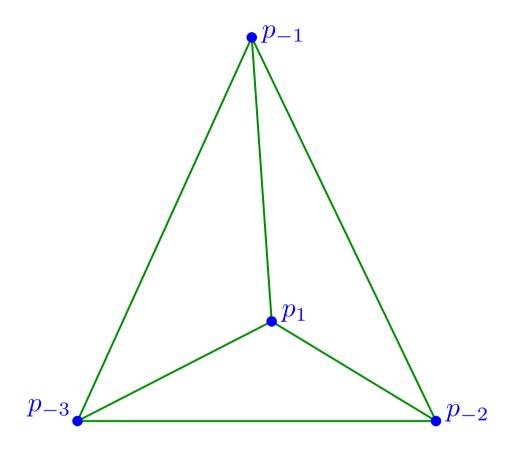


• for all *i* we denote $P_i = \{p_{-3}, p_{-2}, p_{-1}, p_1, p_2, \dots, p_i\}$

First step

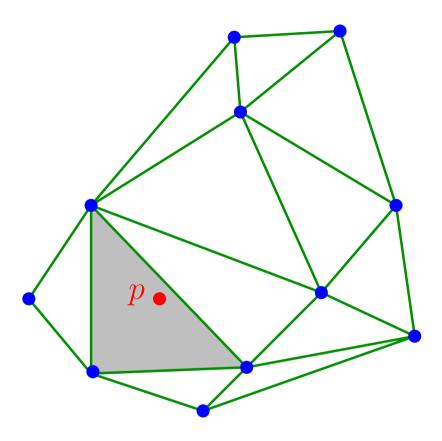


First step

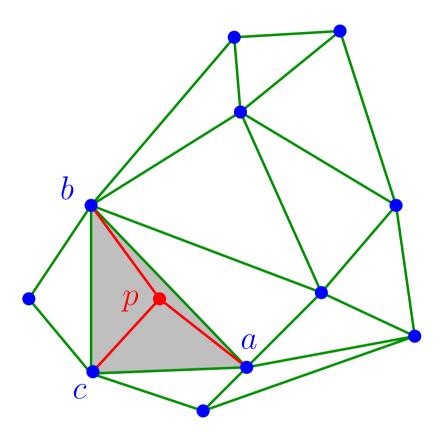


Idea

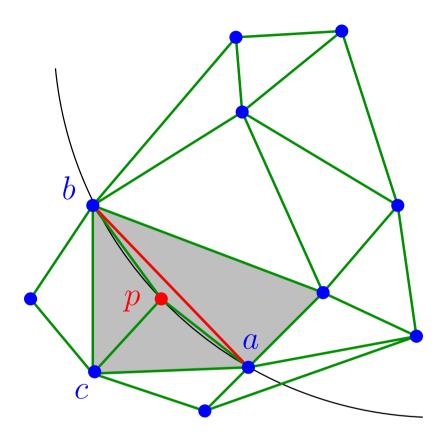
- insert p_1 , then p_2 ... and finally p_n
- suppose we have computed $\mathcal{DT}(P_{i-1})$
- insert $p_i \Rightarrow$ splits a triangle into three
 - find this triangle using conflict lists
 - each non inserted point has a pointer to the triangle in $\mathcal{DT}(P_{i-1})$ that contains it
 - each triangle in $\mathcal{DT}(P_{i-1})$ is associated with the list of all the non-inserted points that it contains
- perform edge flips until no illegal edge remains
 - we only need to perform flips around p_i
 - on average, this step takes constant time
- we have just computed $\mathcal{DT}(P_i)$
- repeat the process until i = n



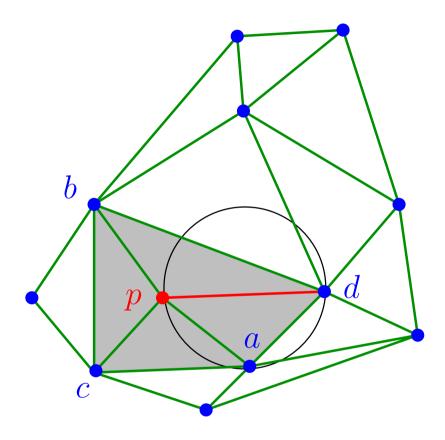
- inserting p_i
- to simplify the notations, we denote $p = p_i$
- we do not draw $p_{-1}p_{-2}p_{-3}$



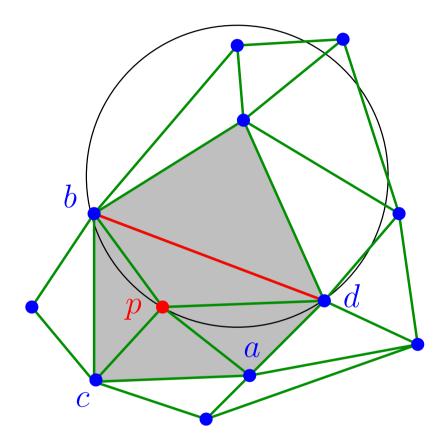
- use the pointer from p to the triangle abc that contains it
- split *abc* into *abp*, *bcp* and *cap*
- split the conflict list of *abc* accordingly



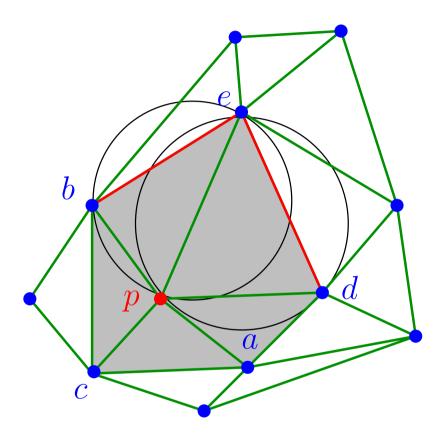
- edge *ab* is illegal
- flip it



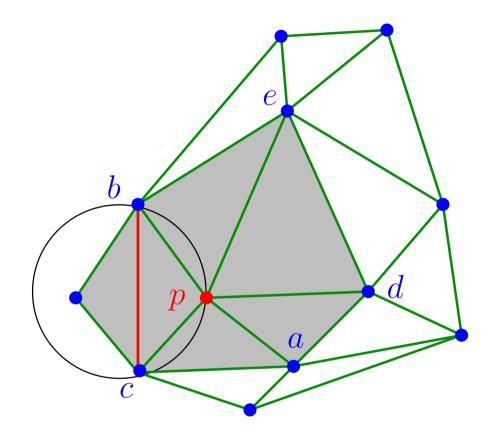
- edge *ab* has been flipped into *pd*
- *ad* is locally Delaunay, we keep it



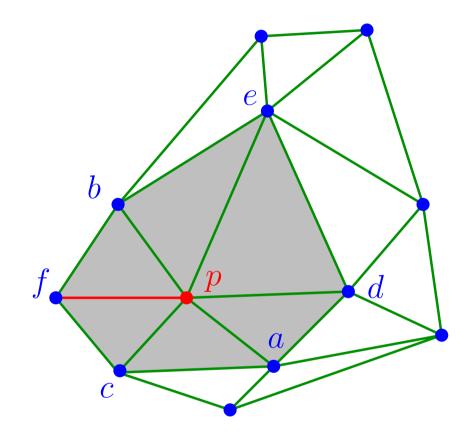
• edge *bd* is illegal



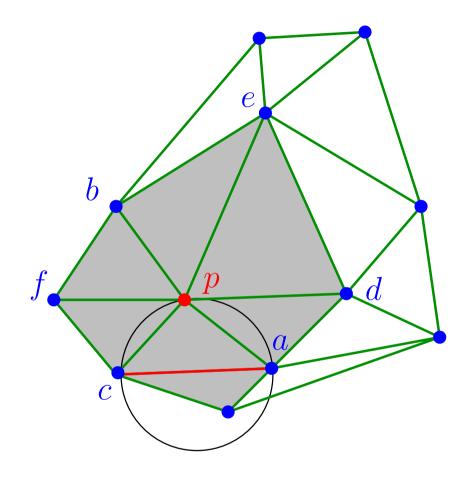
- edge bd has been flipped into pe
- edges *de* and *be* are locally Delaunay, we keep them



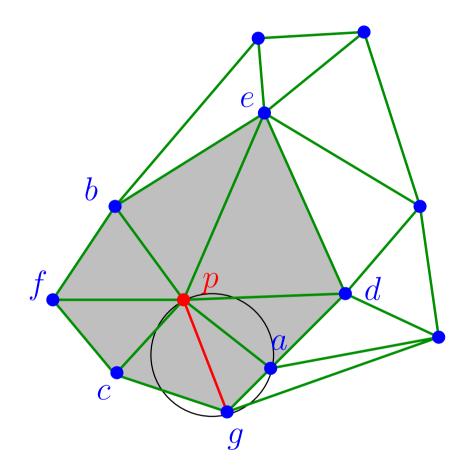
• edge *bc* is illegal



• edge bc has been flipped into pf



• edge *ac* is illegal



- edge *ag* is locally Delaunay
- no more edge to flip: we are done

Explanation

- we considered triangles in counterclockwise order around p and flipped illegal edges
- why is it enough to consider only triangles adjacent to p?
- see proof later
- the pseudocode for this algorithm is very simple
- see next slide

Pseudocode

Algorithm *Insert(p)* **Input:** a point p, a set of point P and $\mathcal{T} = \mathcal{DT}(p)$ **Output:** $\mathcal{DT}(P \cup \{p\})$ Find the triangle *abc* of $\mathcal{DT}(P \cup \{p\})$ containing *p* 1. (* use reverse pointers from conflict lists *) (* abc is chosen to be counterclockwise *) 2. Insert edges pa, pb and pc(* it includes conflict lists updates *) **3.** SwapTest(ab)(* pseudocode of this procedure next slide *) **4.** SwapTest(bc)**5.** SwapTest(ca)

Pseudocode

Algorithm SwapTest(ab)1. if ab is an edge of the exterior face2. do return3. $d \leftarrow$ the vertex to the right of edge ab4. if inCircle(p, a, b, d) < 05. do Flip edge ab for pd(* it includes conflict lists update *)6. SwapTest(ad)7. SwapTest(db)

Proof

- we only flipped edges of triangles that contain p
- why is it sufficient?
- remember Theorem slide 26: locally Delaunay implies Delaunay
- any edge between two triangles that do not contain p was locally Delaunay before insertion of p
- so it is still locally Delaunay
- thus the triangulation we obtain is the Delaunay triangulation

- we look at t_i : time taken to update the current triangulation while inserting p_i
- it does not account for conflict lists updates
- each new edge (after splitting abc or after a flip) contains p_i
- so t_i is proportional to the degree of p_i in $\mathcal{DT}(p_i)$
 - degree of p_i : number of edges that contain p_i

- we use backward analysis: P_i is fixed, p_i is random
- each edge has two vertices
- so each edge contains p_i with probability $\frac{2}{i}$
- there are O(i) edges in the whole triangulation (by Euler formula)
- so by backward analysis

$$E[t_i] = \frac{O(i)}{i} = O(1)$$

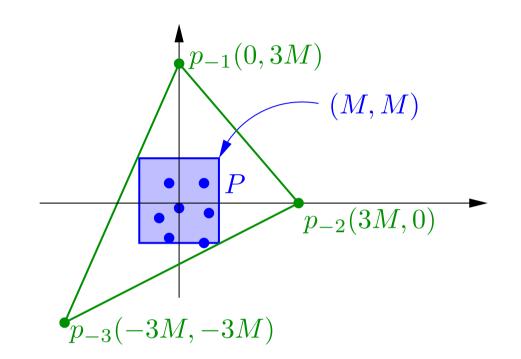
- so the time for updating the triangulation is O(n) over the course of the whole algorithm
- similar with trapezoidal map: what takes Θ(n log n) time is the update of conflict lists (see next slide)

- while inserting p_i , what is the probability that $p \in P \setminus P_i$ is rebucketed?
- backward analysis
 - assume p is in triangle abc
 - this is the probability that $p_i \in \{a, b, c\}$
 - so it is 3/i
- so while inserting p_i , we rebucket less than 3n/i sites on average

- problem: a site may be rebucketed several times at step
 - intuition: only a constant number of flips at each step so it only account for a constant factor
 - detailed proof in textbook
- so overall, rebucketing takes expected time

$$O\left(\sum_{i=1}^{n} \frac{n}{i}\right) = O(n\log n)$$

Choice of $p_{-1}p_{-2}p_{-3}$



- M: max of any coordinate of any point in P
- For incircle test, do as if these three points are outside any circle defined by three points in *P*

Conclusion

Conclusion

- the Delaunay triangulation of n points can be computed in expected time $O(n \log n)$
- it holds for worst case input, the expectation is over the random choices made by the algorithm
- it can also be done in $O(n \log n)$ deterministic time
- knowing the Delaunay triangulation of P, we can find the Voronoi diagram of P in O(n) time
 - left as an exercise

Conclusion

- combining with the point location data structure of lecture 8, we can answer proximity queries in the plane (see lecture 9) with
 - $O(\log n)$ expected query time
 - $O(n \log n)$ expected preprocessing time
 - O(n) expected space usage
- all these bounds can be made deterministic
 - harder, less practical