
Computing a Delaunay triangulation
Lecture 10, CS 4235

18 march 2004

Antoine Vigneron

antoine@comp.nus.edu.sg

National University of Singapore

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.1/61

Outline

• RIC of the Delaunay triangulation
• optimal O(n log n) time randomized algorithm
• application: computing a Voronoi diagram
• references
• D. Mount Lecture 18
• textbook chapter 9
• H. Edelsbrunner’s book: Geometry and topology of

mesh generation, chapter 1
• demo (J. Snoeyink) at:

http://www.cs.ubc.ca/spider/snoeyink/demos/crust/home.html

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.2/61

Incircle test

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.3/61

Definition

d

c b

a

C

inCircle(a, b, c, d) < 0

• assume triangle abc is counterclockwise
• let C be the circumcircle of abc

• we want to design a test inCircle(·) such that
• inCircle(a, b, c, d) = 0 if d ∈ C

• inCircle(a, b, c, d) > 0 if d is outside C
• inCircle(a, b, c, d) < 0 if d is inside C

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.4/61

Expression

• we use the following expression:

inCircle(a, b, c, d) = det











1 ax ay ax
2 + ay

2

1 bx by bx
2 + by

2

1 cx cy cx
2 + cy

2

1 dx dy dx
2 + dy

2











• why does it work?
• next ten slides: proof with geometric interpretation
• D. Mount’s notes 18: different proof, through algebra
• be careful: we reversed the sign of inCircle(·) with

respect to D. Mount’s notes, in order to simplify the
following proof.

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.5/61

Orientation of vectors in IR3

• the orientation of (−→u ,−→v ,−→w) is given by the sign of

det







ux uy uz

vx vy vz

wx wy wz







−→v

O

z

y

x

Orientation (−→u ,−→v ,−→w) > 0

Orientation (−→v ,−→u ,−→w) < 0

−→w

−→u

⇐ right thumb rule

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.6/61

Orientation of a tetrahedron

• orientation of tetrahedron abcd = orientation of
(
−→
ab,−→ac,

−→
ad)

a

b

d

c

Orientation(abcd) =

Orientation (
−→
ab,−→ac,

−→
ad) > 0

⇐ right thumb rule

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.7/61

Orientation of a tetrahedron

• Orientation (abcd)

= det







bx − ax by − ay bz − az

cx − ax cy − ay cz − az

dx − ax dy − ay dz − az







= det











1 ax ay az

0 bx − ax by − ay bz − az

0 cx − ax cy − ay cz − az

0 dx − ax dy − ay dz − az











• why?
• Develop with respect to first column

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.8/61

Orientation of a tetrahedron

• add first row to the other rows
• Orientation (abcd)

= det











1 ax ay az

1 bx by bz

1 cx cy cz

1 dx dy dz











• note that it generalizes the counterclockwise (CCW)
predicate in IR2 (see lecture 1)

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.9/61

Paraboloid P

• in IR3, let P be the paraboloid with equation z = x2 + y2

O

x

y

z

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.10/61

Property

• let H be a non–vertical plane
• H has equation z = αx + βy + γ

• the projection of H ∩ P onto plane Oxy has equation
x2 + y2 = αx + βy + γ
• this is a circle

• property: the projection of H ∩ P onto plane Oxy is a
circle

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.11/61

Property

O

x

y

z

a circle

H

P

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.12/61

Proof

O

x

y

z

a
b

c

â

ĉ

b̂

H

P

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.13/61

Proof

• let p = (px, py)

• we lift p onto P and obtain p̂ = (px, py, p
2
x + p2

y)

• the transformation p→ p̂ is called the lifting map

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.14/61

Proof

• we lift a, b, c and d:

â = (ax, ay, a
2
x + a2

y)

b̂ = (bx, by, b
2
x + b2

y)

ĉ = (cx, cy, c
2
x + c2

y)

d̂ = (dx, dy, d
2
x + d2

y)

• we denote by H the plane through {â, b̂, ĉ}

• inCircle(a, b, c, d) = 0 means that
Orientation(â, b̂, ĉ, d̂) = 0

• so d̂ ∈ H
• we project to horizontal
• we obtain that d is in the circumcircle of abc

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.15/61

Proof: first case

• a, b, c, d cocircular if â, b̂, ĉ, d̂ coplanar

O

x

y

z

a
b

c

â

ĉ

b̂

d̂

d
H

P

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.16/61

Proof: other cases

• inCircle(a, b, c, d) > 0 means that Orientation(â, b̂, ĉ, d̂) > 0

• then d̂ is above H
• so d is outside the circumcircle of abc

• inCircle(a, b, c, d) < 0 means that Orientation(â, b̂, ĉ, d̂) < 0

• then d̂ is below H
• so d is inside the circumcircle of abc

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.17/61

New interpretation of the Delaunay
triangulation

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.18/61

Lifting DT (P)

x

y

zP

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.19/61

Circumcircle property

• P = {p1, p2, . . . pn} is a set of points in the plane in
general position

• we denote P̂ = {p̂1, p̂2, . . . p̂n}

• last lecture: triangle pipjpk is a face of DT (P) iff its
circumcircle is empty
• it means that ∀p ∈ P \ {pi, pj , pk}, p̂ is above the

plane through p̂ip̂j p̂k

• in other words, p̂ip̂j p̂k is a facet of the lower hull of P̂

• Theorem: DT (P) is the projection of the edges of the
lower hull of P̂ onto the plane z = 0

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.20/61

Edge flip

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.21/61

Property

a

b

c

d

c

a

b

d

or

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.22/61

Property

• let acbd be a quadrilateral with diagonal ab

• then either
• c is inside the circumcircle of abd and d is inside the

circumcircle of abc
• or c is outside circumcircle of abd and d is outside the

circumcircle of abc

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.23/61

Proof (by picture)

ĉ

b̂

d̂

â

a

b

d

c

d

a

c

b
OR

ĉ

â
d̂

b̂

Concave Convex

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.24/61

Edge flip: definition

a

b

c

d

b

c

d

a

ab is illegal cd is locally Delaunay

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.25/61

Definitions

• let P be a set of n points in IR2

• P is in general position: no 4 points are cocircular
• let T be a triangulation of P

• let ab be an edge of T

• let (c, d) ∈ P 2 such that abc and abd are triangles of T
• ab is locally Delaunay iff d is outside the circumcircle of

abc

• ab is illegal iff d is inside the circumcircle of abc

• note that we can decide whether ab is locally Delaunay
or illegal by computing the sign of CCW (abc) and the
sign of inCircle(a, b, c, d)

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.26/61

Definition

• if ab is illegal, we can perform an edge flip:
remove ab from T and insert cd

• now cd is locally Delaunay

c

a

d

b

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.27/61

Definition

• if ab is illegal, we can perform an edge flip:
remove ab from T and insert cd

• now cd is locally Delaunay

a

c

b

d

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.28/61

Edge flip: interpretation

â

ĉ ĉ

b̂ b̂

d̂d̂

â

a

b

d

c

d

a

c

b

the lifted triangulation gets lower
the upper envelope becomes convex

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.29/61

A first algorithm

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.30/61

Theorem

• let T be a triangulation of P

• T = DT (P) iff all the edges of T are locally Delaunay
• proof:
• if T is Delaunay, then clearly all edges are locally

Delaunay (by definition)
• other direction: non trivial
• see textbook Theorem 9.8
• or use the lifting map: locally Delaunay⇔ locally

convex⇔ globally convex⇔ globally Delaunay

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.31/61

Idea

• draw a triangulation T of P

• if all the edges of T are locally Delaunay, we are done
• otherwise, pick an illegal edge and flip it
• repeat this process until all edges are locally Delaunay

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.32/61

Pseudocode

Algorithm SlowDelaunay (P)

Input: a set P of n points in IR2

Output: DT (P)
1. compute a triangulation T of P
2. initialize a stack containing all the edges of T
3. while stack is non–empty
4. do pop ab from stack and unmark it
5. if ab is illegal then
6. do flip ab to cd
7. for xy ∈ {ac, cb, bd, da}
8. do if xy is not marked
9. then mark xy and push it on

stack
10. return T

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.33/61

Analysis

• it is not obvious that this program halts!

• in fact runs in Θ(n2) time
• proof using lifting map
• each time we flip an edge, the lifted triangulation

gets lower
• so an edge can be flipped only once: afterward it

remains above the lifted triangulation
• there are O(n2) edges
• so the algorithm runs in O(n2) time
• lower bound left as an exercise

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.34/61

Randomized incremental algorithm

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.35/61

Preliminary

• let (p1, p2, p3 . . . pn) be a random permutation of P

• let p
−3p−2p−1 be a large triangle containing P

P

p
−1

p
−3 p

−2

• for all i we denote Pi = {p
−3, p−2, p−1, p1, p2, . . . pi}

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.36/61

First step

p
−1

p
−3 p

−2

p1

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.37/61

First step

p
−1

p
−3 p

−2

p1

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.38/61

Idea

• insert p1, then p2 . . . and finally pn

• suppose we have computed DT (Pi−1)

• insert pi ⇒ splits a triangle into three
• find this triangle using conflict lists
• each non inserted point has a pointer to the

triangle in DT (Pi−1) that contains it
• each triangle in DT (Pi−1) is associated with the

list of all the non–inserted points that it contains
• perform edge flips until no illegal edge remains
• we only need to perform flips around pi

• on average, this step takes constant time
• we have just computed DT (Pi)

• repeat the process until i = n
NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.39/61

Example

p

• inserting pi

• to simplify the notations, we denote p = pi

• we do not draw p
−1p−2p−3

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.40/61

Example

p

a

b

c

• use the pointer from p to the triangle abc that contains it
• split abc into abp, bcp and cap

• split the conflict list of abc accordingly
NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.41/61

Example

p

a

b

c

• edge ab is illegal
• flip it

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.42/61

Example

p

a

b

c

d

• edge ab has been flipped into pd

• ad is locally Delaunay, we keep it

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.43/61

Example

p

a

b

c

d

• edge bd is illegal

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.44/61

Example

p

a

b

c

d

e

• edge bd has been flipped into pe

• edges de and be are locally Delaunay, we keep them

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.45/61

Example

p

a

b

c

d

e

• edge bc is illegal

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.46/61

Example

a

b

c

d

e

pf

• edge bc has been flipped into pf

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.47/61

Example

b

c

d

e

pf

a

• edge ac is illegal

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.48/61

Example

b

c

d

e

pf

a

g

• edge ag is locally Delaunay
• no more edge to flip: we are done

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.49/61

Explanation

• we considered triangles in counterclockwise order
around p and flipped illegal edges

• why is it enough to consider only triangles adjacent to
p?

• see proof later
• the pseudocode for this algorithm is very simple
• see next slide

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.50/61

Pseudocode

Algorithm Insert(p)
Input: a point p, a set of point P and T = DT (p)
Output: DT (P ∪ {p})
1. Find the triangle abc of DT (P ∪ {p}) containing p
(∗ use reverse pointers from conflict lists ∗)
(∗ abc is chosen to be counterclockwise ∗)
2. Insert edges pa,pb and pc
(∗ it includes conflict lists updates ∗)
3. SwapTest(ab)
(∗ pseudocode of this procedure next slide ∗)
4. SwapTest(bc)
5. SwapTest(ca)

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.51/61

Pseudocode

Algorithm SwapTest(ab)
1. if ab is an edge of the exterior face
2. do return
3. d←the vertex to the right of edge ab
4. if inCircle(p, a, b, d) < 0
5. do Flip edge ab for pd
(∗ it includes conflict lists update ∗)
6. SwapTest(ad)
7. SwapTest(db)

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.52/61

Proof

• we only flipped edges of triangles that contain p

• why is it sufficient?
• remember Theorem slide 26: locally Delaunay implies

Delaunay
• any edge between two triangles that do not contain p

was locally Delaunay before insertion of p

• so it is still locally Delaunay
• thus the triangulation we obtain is the Delaunay

triangulation

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.53/61

Analysis

• we look at ti: time taken to update the current
triangulation while inserting pi

• it does not account for conflict lists updates
• each new edge (after splitting abc or after a flip)

contains pi

• so ti is proportional to the degree of pi in DT (pi)

• degree of pi: number of edges that contain pi

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.54/61

Analysis

• we use backward analysis: Pi is fixed, pi is random
• each edge has two vertices

• so each edge contains pi with probability 2

i

• there are O(i) edges in the whole triangulation (by Euler
formula)

• so by backward analysis

E[ti] =
O(i)

i
= O(1)

• so the time for updating the triangulation is O(n) over
the course of the whole algorithm

• similar with trapezoidal map: what takes Θ(n log n) time
is the update of conflict lists (see next slide)

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.55/61

Analysis

• while inserting pi, what is the probability that p ∈ P \ Pi

is rebucketed?
• backward analysis
• assume p is in triangle abc
• this is the probability that pi ∈ {a, b, c}

• so it is 3/i

• so while inserting pi, we rebucket less than 3n/i sites on
average

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.56/61

Analysis

• problem: a site may be rebucketed several times at step
i
• intuition: only a constant number of flips at each step

so it only account for a constant factor
• detailed proof in textbook

• so overall, rebucketing takes expected time

O

(

n
∑

i=1

n

i

)

= O(n log n)

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.57/61

Choice of p−1p−2p−3

p
−3(−3M,−3M)

p
−2(3M, 0)

P

p
−1(0, 3M)

(M, M)

• M : max of any coordinate of any point in P

• For incircle test, do as if these three points are outside
any circle defined by three points in P

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.58/61

Conclusion

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.59/61

Conclusion

• the Delaunay triangulation of n points can be computed
in expected time O(n log n)

• it holds for worst case input, the expectation is over the
random choices made by the algorithm

• it can also be done in O(n log n) deterministic time
• knowing the Delaunay triangulation of P , we can find

the Voronoi diagram of P in O(n) time
• left as an exercise

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.60/61

Conclusion

• combining with the point location data structure of
lecture 8, we can answer proximity queries in the plane
(see lecture 9) with
• O(log n) expected query time
• O(n log n) expected preprocessing time
• O(n) expected space usage

• all these bounds can be made deterministic
• harder, less practical

NUS – CS4235 – Lecture 10: Computing a Delaunay triangulation – p.61/61

	Outline
	Incircle test
	Definition
	Expression
	Orientation of vectors in $IR ^3$
	Orientation of a tetrahedron
	Orientation of a tetrahedron
	Orientation of a tetrahedron
	Paraboloid $mathcal P$
	Property
	Property
	Proof
	Proof
	Proof
	Proof: first case
	Proof: other cases
	New interpretation of the Delaunay triangulation
	Lifting $mathcal {DT}(P)$
	Circumcircle property
	Edge flip
	Property
	Property
	Proof (by picture)
	Edge flip: definition
	Definitions
	Definition
	Definition
	Edge flip: interpretation
	A first algorithm
	Theorem
	Idea
	Pseudocode
	Analysis
	Randomized incremental algorithm
	Preliminary
	First step
	First step
	Idea
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Explanation
	Pseudocode
	Pseudocode
	Proof
	Analysis
	Analysis
	Analysis
	Analysis
	Choice of $p_{-1}p_{-2}p_{-3}$
	Conclusion
	Conclusion
	Conclusion

