PAGE

CHAPTER

10

CONTROL STRUCTURES

In this chapter you will learn about

· The selection structures such as the ‘if’ construct, the ‘if-else’ construct, the conditional operator and the ‘switch’ statement.

· The repetition structures such as the ‘while’ loop, ‘do-while’ loop, and the ‘for’ loop.

· The use of ‘continue’ and ‘break’.

10.1
Introduction

In a procedural language, the flow of execution is determined by the control structures of the program. All programs can be written using these three control structures:

· Sequence

· Selection

· Repetition

These control structures came about with the introduction of structured programming many years ago, to counteract the widespread bad habit of programmers at that time – the indiscriminate use of ‘goto’ statements. It was apparent that programs with ‘goto’ statements are hard to understand and modify, costing companies a great deal of money and manpower. Structured programming embraces good programming techniques and practice, among which is the eradication of ‘goto’ in programs.

A control structure is a combination of individual instructions into a single logical unit with one entry point and one exit point.

Sequential flow is specified by a compound statement, consisting of a group of statements in a block, delimited by braces:

{

statement1;

statement2;

.

.

statementn;

}

A selection structure allows for choice among alternative statements, and a repetition structure allows an action to be repeated while some condition remains true, as depicted in the flowcharts below. We will study these structures in details.

10.2
Selection Structure

C provides a few versions of the selection structure: one-way branch, two-way branch, and multi-way branch.

10.2.1
The ‘if’ Construct

The ‘if’ construct allows some action to be taken when a condition is met. The action could be a single statement, or a compound statement that comprises a number of statements. The syntax for an ‘if’ construct with a single-statement action is

if (expression)

 statement;

If the expression is nonzero (true), then statement is executed; otherwise, statement is skipped and control passes to the next statement in the program. Note the use of indentation which is a recommended practice to mark out the statement that is associated with the ‘if’ construct.

For example,

 fine = 20;

 if (speed > 50)

 fine += 10;

 printf("Fine is %d\n", fine);

Here, ‘fine’ will remain at 20 if the condition (speed > 50) is false. Otherwise, ‘fine’ will be increased to 30.

Compound-statement Action

Sometime, the course of action we want to take when the ‘if’ condition is true consists of a compound statement (a sequence of statements). In this case, we use the braces to mark off the compound statement. The syntax is hence:

if (expression)

{

 compound-statement;

}

Braces may also be used for single-statement action, sometimes for the sake of readability, but that is not required syntactically.

With compound-statement, instead of writing

 if (a > b)

 max = a;

 if (a > b)

 printf("%d is larger than %d\n", a, b);

we may now write this more efficient version:

 if (a > b)

 {

 max = a;

 printf("%d is larger than %d\n", a, b);

 }

Flags

Making use of the fact that zero is false and non-zero value is true, we could save a few keystrokes in some cases. For example, suppose ‘attended’ is an integer variable to indicate if a student has attended a course. It contains zero if he has not attended, or 1 if he has. Such a variable that stores zero or 1, simulates a Boolean variable
, and is known as a flag. Suppose ‘attendance’ is an integer variable that counts the number of students in a course. A code fragment could look like this (this code is most likely within a loop in order to perform the counting):

 if (attended == 1)

 attendance++;

The above could be replaced by:

 if (attended)

 attendance++;

which achieves the same result. Why?

Similarly, if we want to count the number of absentees, we could have:

 if (attended == 0)

 {

 absentees++;

 printf("One more absentee.\n");

 }

or this shorter version favoured by experienced programmers:

 if !(attended)

 {

 absentees++;

 printf("One more absentee.\n");

 }

Naming a Flag

Note that a flag should be named appropriately, otherwise it might cause a lot of confusion. Do not simply name a flag ‘flag’; this does not give any information to the readers. In the above example, the flag ‘attended’ is named as such, and readers would intuitively assume that if it contains the value 1 (true), it represents what the name suggests – he attended the course. If it contains zero (false), it represents the opposite of what the name suggests – he did not attend the course. If the flag is named ‘absent’ instead, but means present if it contains 1, and absent if it contains zero, this will go against expectation and create confusion!

Nested ‘if’ statements

Since an ‘if’ construct is a statement, it can appear in the body of another ‘if’ construct. This gives rise to nested ‘if’ statements, as shown below:

 if (exam >= 80)

 if (project >= 90)

 grade = 'A';

The above code could also be written using a single ‘if’ construct with compound condition:

 if (exam >= 80 && project >= 90)

 grade = 'A';

Lazy (short-circuit) evaluation

We have mentioned in Chapter 8 that a lazy or short-circuit evaluation is applied to a compound condition – the evaluation stops as soon as the value of the logical expression can be determined. The evaluation is carried out from left to right.

In the example above, if the expression (exam >= 80) is false, the second expression (project >= 90) would not need to be evaluated, since the whole compound condition is false.

Similarly, for a compound logical expression like this:

 if (bank_bal < 0.0 || expenses > 100.0)

 printf("Red alert!\n");

If bank_bal is less than 0.0, the whole condition is true, and so the second logical expression need not be evaluated.

Complementing a Condition

Negating or complementing a logical expression means changing the polarity of the expression. For example, !(a == 30) is equivalent to (a != 30), and !(a > b) can be rewritten as (a <= b). How about negating a compound logical expression?

We may use the DeMorgan’s Theorem for this purpose. The theorem states that:

· NOT(a AND b) is equivalent to NOT(a) OR NOT(b)

· NOT(a OR b) is equivalent to NOT(a) AND NOT(b)

Hence, in C we have:

· !(expr1 && expr2) is equivalent to !(expr1) || !(expr2)

· !(expr1 || expr2) is equivalent to !(expr1) && !(expr2)

For example, the following two logical expressions are equivalent.

 !(age > 25 && (status == 'S' || status == 'D'))

 (age <= 25) || (status != 'S' && status != 'D'))

Common Mistakes

As discussed in Chapter 8, floating-point numbers are inexact. Hence, you should not use the equality (==) or the inequality (!=) test on floating-point numbers. In testing for equality, compute the difference of the two values instead and check that the difference is small enough. In testing for inequality, you may compute the difference and check that it exceeds a threshold, or you may simply use other relational operators like <, <=, >, >= depending on the situation.

The equality (==) operator is often mixed up with the assignment (=) operator, and that could result in hard-to-spot errors. Some beginners also tend to omit the parentheses around the condition.

It is a mistake to put a semicolon after the condition, like this:

 if (a > b);

 printf("a is larger than b\n");

This would create an empty statement for the ‘if’ construct. The printf() statement is now outside the ‘if’ construct, and thus it will be executed regardless of the truth value of the ‘if’ condition.

Sometimes, mistakes might be made inadvertently in converting conditions from English to C. For example, suppose we want to check if a variable x lies within a range [lower, upper]. In mathematics, we are used to writing lower ≤ x ≤ upper, so some may translate it directly into the following code:

 if (lower <= x <= upper)

 ...

The condition is wrong. Test it out with some values, say, lower=10, upper=30, and various values for x, such as 15, 20, 40, etc. The right way to write the condition is:

 if (lower <= x && x <= upper)

Since <= has higher precedence than &&, the above is equivalent to:

 if ((lower <= x) && (x <= upper))

Another example: x and y are greater than z. A careless translation to C would result in:

 if (x && y > z)

which is again wrong (why?). The right way is:

 if (x > z && y > z)

Another common mistake is the omission of the braces in an ‘if’ construct with compound-statement action. For example, in the code below, the braces are forgotten:

 if (a > b)

 max = a;

 printf("%d is larger than %d\n", a, b);

Since indentation is meant for human consumption, and is ignored by the compiler, it does not automatically turn the two indented lines into a compound statement. The compiler would simply treat the body of this ‘if’ construct as a single-statement action, due to the absence of the braces. Hence, the printf() statement is considered outside the ‘if’ construct, and consequently, regardless of the truth value of the condition, the printf() line is always executed.

You are to guard against all these easy traps.

10.2.2
The ‘if-else’ Construct

The ‘if-else’ construct provides a two-way branch in which one of the two alternative paths is taken depending on the truth value of the condition. The format of the ‘if-else’ construct is:

if (expression)

 statement1 ;

else

 statement2 ;

or, with compound-statement actions, we have:

if (expression)

{

 compound-statement1 ;

}

else

{

 compound-statement2 ;

}

For example,

 if (count == 0)

 ave = 0.0;

 else

 ave = (float) total/count;

 if (score1 < score2)

 {

 better_score = score2;

 printf("score2 is better\n");

 }

 else

 {

 better_score = score1;

 printf("score1 is better\n");

 }

The use of ‘if-else’ avoids redundant code such as this:

 if (count == 0)

 ave = 0.0;

 if (count != 0)

 ave = (float) total/count;

In the above code, two conditions will have to be tested. Using the ‘if-else’ construct, only one condition is necessary.

Style

There are a few commonly accepted styles on the placement of the braces in the ‘if’ and ‘if-else’ statements. One version has been shown earlier on. Another version, favoured by some (including myself), has this format:

if (expression) {

 compound-statement1 ;

}

else {

 compound-statement2 ;

}

Omit the ‘else’ block if there is no ‘else’ part. This version takes up fewer lines. I will stick to this form for the rest of the book.

Removing Common Statements

You should ensure that there are no duplicated statements in the ‘if’ and ‘else’ parts of the construct, since that would be redundant.

 if (a < 0) {

 count++;

 neg++;

 printf("Enter an integer: ");

 scanf("%d", &k);

 }

 else {

 count++;

 pos++;

 printf("Enter an integer: ");

 scanf("%d", &k);

 }

The common sections should be moved out of the ‘if’ construct, as shown below:

 count++;

 if (a < 0)

 neg++;

 else

 pos++;

 printf("Enter an integer: ");

 scanf("%d", &k);

Logical Assignment for Flags

Consider this example where a flag ‘snr_citizen’ is assigned 1 to represent a senior citizen, or zero to represent non-senior citizen:

 if (age >= 65)

 snr_citizen = 1;

 else

 snr_citizen = 0;

In cases like this, we may write a single assignment statement without using the ‘if’ statement:

 snr_citizen = (age >= 65);

As another example, the code below sets the variable ‘even’ to 1 if n is even, or zero if n is odd.

 if (n % 2 == 0)

 even = 1;

 else

 even = 0;

The short form would be:

 even = (n % 2 == 0);

The statement is more succinct, and achieves the same purpose. You are encouraged to use such form whenever appropriate.

There is even a more cryptic way of writing the code:

 even = !(n % 2);

This is a favoured way of coding by C experts, but novice programmers should double-check the code if they want to follow suit.

Nested ‘if-else’ statements

Just as we have nested ‘if’ statements, we can also have nested ‘if-else’ statements. For example:

 if (marks < 50)

 grade = 'F';

 else

 if (marks < 70)

 grade = 'B';

 else

 grade = 'A’;

The fail grade is given if the marks fall below 50, and execution continues on to the next statement after the ‘if’ construct (the whole code above is considered as one single compound statement). Otherwise, the marks is compared to 70, and ‘B’ grade is awarded if it is below 70, or ‘A’ grade if it is above or equal to 70. A fuller version with more grades will be shown later.

Having nested ‘if-else’ statements gives rise to the possible question of determining which ‘if’ the ‘else’ part is associated with. In the above code, the first ‘else’ is associated with the first ‘if’, and the second ‘else’ with the second ‘if’. What about this code below?

 if (a == 1)

 if (b == 2)

 printf("***\n");

 else

 printf("###\n");

The code is not indented on purpose. Which ‘if’ is the ‘else’ associated with? If the ‘else’ is associated with the first ‘if’, then ### will be printed if a is not equal to 1. If the ‘else’ is associated with the second ‘if’, then ### will be printed if a is 1, and b is not 2.

In this case, the ‘else’ is matched to the second ‘if’. In general, an ‘else’ is associated with the nearest ‘if’ statement. Now, we will add indentation to the code above to reflect the actual way it is interpreted by the compiler:

 if (a == 1)

 if (b == 2)

 printf("***\n");

 else

 printf("###\n");

Suppose you want to override this interpretation; you want to attach the ‘else’ to the first ‘if’ instead. In this case, you would need to mark out the inner ‘if’ in a block, like this:

 if (a == 1) {

 if (b == 2)

 printf("***\n");

 }

 else

 printf("###\n");

Now, the ‘else’ will not be attached to the inner ‘if’, because it is outside the block where the inner ‘if’ lies, and hence, it will be matched to the outer ‘if’ instead.

Let’s look at another example. The code below is wrong:

 if (a == 0)

 if (b == 0)

 printf("Both a and b are zeros.\n");

 else

 c = b/a;

The ‘else’ is attached to the second (nearer) ‘if’, and so when a is zero and b non-zero, the statement c = b/a will be carried out, resulting in a division-by-zero error.

The correct code should be:

 if (a == 0) {

 if (b == 0)

 printf("Both a and b are zeros.\n");

 }

 else

 c = b/a;

This code will not result in a division-by-zero error since the statement c = b/a will only be executed when a is non-zero.

Coming back to the ‘if’ statement on grade assignment, this is the full version:

 if (marks < 50)

 grade = 'F';

 else

 if (marks < 60)

 grade = 'D';

 else

 if (marks < 70)

 grade = 'C’;

 else

 if (marks < 80)

 grade = 'B';

 else

 grade = 'A';

Note that following the style for indentation results in a code that is ‘skewed’ to the right and takes up many lines for complex ‘if’ statements. As such a structure is commonly encountered in practice, an alternative format which is widely accepted, is used:

 if (marks < 50)

 grade = 'F';

 else if (marks < 60)

 grade = 'D';

 else if (marks < 70)

 grade = 'C’;

 else if (marks < 80)

 grade = 'B';

 else

 grade = 'A';

This format gives a flatter layout without affecting readability.

Common Mistakes

As explained earlier, one mistake is to let an ‘else’ matched to the wrong ‘if’. The remedy is to use braces to block a section of the code if necessary.

Sometimes, a semicolon is added erroneously after the ‘if’ block:

 if (a == b) {

 a++;

 b--;

 };

 else

 a = b;

The semicolon after the closing brace (}) creates an empty statement, and consequently the ‘else’ has no ‘if’ to attach to.

10.2.3
Conditional Operator (?:)

C provides the conditional operator which is the only ternary operator that takes three operands. The operator with the operands form a conditional expression with this syntax:

condition ? expr1 : expr2

The first operand is the condition, the second operand is the value if the condition is true, and the third operand is the value if the condition is false.

For example,

 max = (a > b ? a : b);

This cryptic statement has a conditional expression on the right of the assignment. The conditional expression

(a > b ? a : b)

is evaluated to the value of a if a is larger than b, or to the value of b otherwise, and the value is then assigned to max. Hence, if a is larger than b, the value of a is assigned to max. If b is larger than or equal to a, then the value of b is assigned to max. This is equivalent to:

 if (a > b)

 max = a;

 else

 max = b;

Similarly, the two pieces of code below are equivalent:

 if (marks < 50)

 printf("Failed\n");

 else

 printf("Passed\n");

 printf("%s\n", grade < 50 ? "Failed" : "Passed");

10.2.4
The ‘switch’ Construct

The ‘switch’ is a multi-way selection statement generalising the ‘if-else’ statement. The syntax is as follows:

switch (expression) {

case v1:
s1 ;

break;

case v2:
s2 ;

break;

. . .

default:
sn ;

break; /* optional break */

}

This construct may only be used to test a constant integral expression, that is, the value of the expression should be of type int or char. The vi’s are integral values (integers or characters), and the si’s are compound statements.

After the expression is evaluated, control jumps to the appropriate ‘case’ label, and the statements in si are executed. Usually, the last statement before the next case is a ‘break’ statement. If there is no ‘break’ statement, the execution will fall through to the next statement in the succeeding case. There may be at most one default label in a ‘switch’ construct. The purpose of the default case is to capture cases that are not enumerated.

Here is an example:

 switch (class) {

 case 'B':

 case 'b': printf ("Battleship\n");

 break;

 case 'C':

 case 'c': printf ("Cruiser\n");

 break;

 case 'D':

 case 'd': printf ("Destroyer\n");

 break;

 case 'F':

 case 'f': printf ("Frigate\n");

 break;

 default : printf ("Unknown ship class %c\n",

 class);

 }

10.3
Repetition Structure

In our daily life, many activities are repetitive in nature. For example, fill the bottle until it is full, run ten laps around the track, wait until you are called, and so on. In data processing, we have operations such as read students’ records one at a time, until the end of the file; add a list of fifty numbers; or repeatedly request for a data until it is valid.

In programming, such repeated actions are known as loops. A loop is a group of instructions that is repeatedly executed while some condition stays true. A infinite loop is one that goes on forever, and that must be avoided.

There are basically two types of loop control: one is known as counter-controlled repetition where the number of times of repetition is known beforehand, and the other is the sentinel-controlled repetition where the loop stops when a special sentinel value is encountered, or when the terminating condition is met.

C provides 3 loop constructs: ‘while’, ‘for-while’ and ‘for’.

10.3.1
The ‘while’ Construct

The ‘while’ statement is a pre-test condition-controlled loop construct. It has the form:

while (expression)

statement ;

The expression is the loop condition and it is evaluated. If it is non-zero (true), the statement in the loop body is executed and control is then passed back to the beginning of the loop, and the condition tested again. If it is zero (false), then the loop terminates and control is passed to the next statement after the ‘while’ construct. It is possible that the loop body is not executed at all, if the loop condition is false at entry.

As usual, the loop body could be a compound statement, in which case it must be enclosed in braces.

The code below prints n asterisks across the screen.

 count_star = 0;

 while (count_star < n) {

 printf("*");

 count_star++;

 }

Assuming that n is an integer variable that contains the value 5 (or it could be a constant macro that represents 5), the above code prints 5 *’s. We say that the loop goes through 5 iterations. Trace the code.

The code could be rewritten as follows:

 count_star = 0;

 while (count_star++ < n)

 printf("*");

Summing is a very common task in programming. The code below computes the sum of the first 100 positive integers.

 int num = 1; /* declaration and */

 int total = 0; /* initialisation */

 while (num <= 100) {

 total += num;

 num++;

 }

If the num++ statement is removed, and the condition (num <=100) is changed to (num++ <=100), following the previous example, would the amended code compute the same result?

Which of the following is/are equivalent to the example above?

 int num = 1;

 int total = 0;

 while (num <= 100) {

 total += num;

 ++num;

 }

 int num = 1;

 int total = 0;

 while (num <= 100)

 total += num++;

 int num = 1;

 int total = 0;

 while (num <= 100)

 total += ++num;

The variable num above serves as the loop control variable in the loop statement. The loop control variable determines whether the loop should continue or terminate. The following operations involving the loop control variable are required for a successful loop construct:

· Initialisation – before the loop is entered, the loop control variable must be initialised.

· Testing – condition involving the loop control variable is tested before the start of each loop iteration; if condition is true, loop body is executed.

· Updating – loop control variable is updated during each iteration (usually at the beginning or the end of the loop body).

Counter-control repetition and Sentinel-control repetition

When the number of iterations is known, a counter-control method is more appropriate. In this method, a counter is used to keep track of the number of iterations.

Sentinel-control is a more general approach. It is handy when the number of iterations cannot be determined beforehand, such as reading a list of values without knowing how many values are there. A special value, one that does not fall within the range of the data values, might be chosen to indicate the end of the list.

The code below illustrates counter-control repetition in summing a list of 10 values entered by the user:

 #define N 10

 . . .

 total = 0;

 count = 1;

 while (count++ <= N) {

 printf("Enter score: ");

 scanf("%d", &score);

 total += score;

 }

 avg = (float) total / N;

 printf("Average is %.2f\n", avg);

The code below illustrates sentinel-control repetition. The sentinel value of –1 is chosen to indicate the end of the list of scores.

 #define SENTINEL –1

 . . .

 total = 0;

 count = 0;

 printf("Enter score, –1 to end: ");

 scanf("%d", &score);

 while (score != SENTINEL) {

 total += score;

 count++;

 printf("Enter score, –1 to end: ");

 scanf("%d", &score);

 }

 if (count) {

 avg = (float) total/count;

 printf("Average is %.2f\n", avg);

 }

 else

 printf("No scores were entered\n");

The disadvantage of user-defined sentinel such as –1 above is that the chosen sentinel value must not be a valid data. Hence, the range of valid values must be known first. If this is not possible, then setting an arbitrary sentinel is taking a risk. The more general solution is to use the system-defined end-of-file (EOF) character, but this topic will be deferred until CS1101C.

10.3.2
The ‘do-while’ Construct

The Pascal programming language provides a ‘repeat-until’ construct beside the ‘while-do’ construct. In C, there is no ‘repeat-until’, but there is a ‘do-while’ construct.

The ‘do-while’ statement is a loop structure with a post-test condition, in contrast to the pre-test condition in the ‘while’ statement. A post-test condition loop structure means that the condition is tested after the loop body. This implies that the loop body is executed at least once.

The syntax for the ‘do-while’ construct is as follows:

do

statement ;

while (expression);

Below are two examples that illustrate the use of ‘do-while’ constructs.

 count = 1;

 do {

 printf ("%d ", count);

 } while (++count <= 10);

 do {

 printf("Enter a letter A thru E: ");

 scanf("%c", &letter);

 } while (letter < 'A' || letter > 'E');

The second example above shows the common technique to request for data repeatedly until it is valid.

10.3.3
Flag-controlled Loops

When the loop condition becomes too complex, flags may be used to simplify the code, and makes it easier to read and understand. However, the name of the flag must be apt for the benefit of readability to be seen.

Here is an example of a flag-controlled loop:

 valid = 1;

 while (valid) {

 printf("Enter a letter A thru E: ");

 scanf("%c", &letter);

 valid = (letter >= 'A' && letter <= 'E');

 }

10.3.4
The ‘for’ Construct

The ‘for’ statement is another pre-test condition-control loop structure. It provides a more compact form for counter-controlled loops.

The syntax of the ‘for’ construct is as follows:

for (initialisation-expression ;

 loop-condition ;

 update-expression)

statement ;

The ‘for’ construct is equivalent to this ‘while’ construct:

initialisation-expression ;

while (loop-condition) {

statement ;

update-expression ;

}

An example:

 for (count_star = 0; /* init */

 count_star < N; /* condition */

 count_star++) /* update */

 printf ("*");

The initialisation-expression and update-expression are often comma-separated lists of expressions. The comma operator evaluates the list from left to right. For example,

 for (x = 1, total = 0; x <= 100; x++)

 total += x;

In this case, the initialisation-expression consists of two expression, namely, x = 1 and total = 0.

Any of the three expressions in the ‘for’ header can be omitted, but the semi-colons must remain. If the initialisation-expression is missing, then the loop does not perform any initialisation steps before executing the loop body. You have to ensure that all essential initialisation steps are done before the loop, as shown here:

 x = 1;

 total = 0;

 for (; x <= 100; x++)

 total += x;

If the update-expression is missing, the loop does not perform any update operation. Again, you must ensure that the necessary update operations are done in the loop body.

 for (x = 1, total = 0; x <= 100;) {

 total += x;

 x++;

 }

If the loop-condition is missing, then the test is always true. This means that the following loop is infinite:

 for (x = 1, total = 0; ; x++)

 total += x;

10.3.5
Common Mistakes

Here are a few common mistakes when it comes to programming loops.

Adding a semi-colon at the wrong place. For instance, in this code:

 for (x = 1; x <= 10; x++);

 printf("%d\n", x);

as well as in this code:

 x = 1;

 while (x <= 10);

 printf("%d\n", x++);

the semi-colons at the end of the ‘for’ line and the ‘while’ line create empty statements, and so the printf() statements no longer fall inside the loop body. What output do the above two codes produce?

Omitting semi-colons in the ‘for’ header, and mixing up semi-colons with commas, are also quite common.

Another common mistake is the ‘off-by-one’ error, where the loop executes one more time or one fewer time than desired. For example, the following code executes n+1 times:

 for (count = 0; count <= n; ++count)

 sum += count;

10.4
The ‘break’ and ‘continue’ Statements

The ‘break’ and ‘continue’ statements are used to alter the flow of control. (The ‘break’ statement has also been covered in the ‘switch’ construct.) Sometimes, we may want to terminate a loop, or skip a section of the loop body in an iteration, under some special condition. Without the provision of ‘break’ and ‘continue’, the code could still be written, but usually it would appear rather clumsy. However, the use of ‘break’ and ‘continue’ must be moderated. They should only be used to prevent awkward codes, not for convenience.

The ‘break’ statement in a ‘switch’, ‘while’, ‘do-while’ or ‘for’ structure causes immediate exit from the structure. The example below demonstrates the effect of a ‘break’ statement in a loop body.

 #include <stdio.h>

 main()

 {

 int x;

 for (x = 1; x <= 10; x++) {

 if (x == 5)

 break; /* break loop only if x == 5 */

 printf("%d ", x);

 }

 printf("\nBroke out of loop at x == %d\n", x);

 return 0;

 }

The code produces the output below:

 1 2 3 4

 Broke out of loop at x == 5

The ‘continue’ statement in a ‘while’, ‘do-while’ or ‘for’ structure skips the remaining statements in the body, to the next iteration of the loop, as shown below:

 #include <stdio.h>

 main()

 {

 int x;

 for (x = 1; x <= 10; x++) {

 if (x == 5)

 continue; /* skip remaining code in

 loop only if x == 5 */

 printf("%d ", x);

 }

 printf("\nUsed 'continue' to ");

 printf("skip printing the value 5\n");

 return 0;

 }

The output for this code is:

 1 2 3 4 6 7 8 9 10

 Used 'continue' to skip printing the value 5

10.5
Nested Loops And Combined Structures

Just as we have nested ‘if’ and ‘if-else’ statements, we could also build nested loops, or combine selection structures with repetition structures. In fact, it is the combination of these various structures that offers a rich set of possibilities. A good algorithm is usually a clever application of the right combination.

The following code use a nested ‘for’ loop to print a pattern of asterisks:

 for (i = 1; i <= 4; ++i) {

 for (j = 1; j <= 6; ++j)

 printf("*");

 printf("\n");

 }

The output is 4 rows by 6 columns of *’s:

What about this code?

 for (i = 1; i <= 4; ++i) {

 for (j = 1; j <= i; ++j)

 printf("*");

 printf("\n");

 }

The output this time is:

 *

 **

Another example:

 for (i = 1; i <= 6; ++i) {

 if (i <= 3)

 printf("%d", i);

 else

 for (j = 1; j <= i; ++j)

 printf("*");

 printf("\n");

 }

Can you work out the output before turning to the next page for the answer?

The output is:

 1

 2

 3

Knowing how to combine control structures is an essential skill in programming and solving algorithmic problems. You need to have plenty of practice on this.

10.6
Summary

This chapter covers the important topic on control structures. Control structures are the building blocks of programs. The three control structures are sequence, selection and repetition. The concepts of counter-controlled and sentinel-controlled loops are also introduced.

Selection structures are provided in C via the ‘if’, ‘if-else’, and ‘switch’ statements, as well as the conditional operator. Repetition structures include the ‘while’, ‘do-while’, and ‘for’ constructs.

Common mistakes in the use of these control structures are highlighted. Nested structures are also presented.

A good program consists of a well-composed combination of the various control structures. Hence, programmers have to master this skill through practice.

Exercises

1. Declare an integer variable ‘is_letter’ and use it as a flag to indicate if a character variable ‘ch’ is a letter ('a' to 'z', or 'A' to 'Z'). Write a program that asks the user to enter a character into ‘ch’, and set ‘is_letter’ accordingly. Then display a message as shown in the two sample outputs below:

Enter a character: P
'P' is a letter.

Enter a character: ?
'?' is not a letter.

2. A leap year is one that is divisible by 400. Otherwise, a year that is divisible by 4 but not by 100 is also a leap years. Other years are not leap years. For example, years 1912, 2000, and 1980 are leaps years, but 1835, 1999, and 1900 are not. Write a program that asks for the year, and assign 1 to the flag ‘leap_year’ if it is a leap year, or 0 if it is not. Then display a message as shown in the two sample outputs below:

Enter a year: 1912
1912 is a leap year.

Enter a year: 1835
1835 is not a leap year.

3. What value is assigned to the character variable ‘grade’ if ‘marks’ is 65 in the following code? What is wrong with this code?

 if (marks <= 100)

 grade = 'A';

 else if (marks < 80)

 grade = 'B';

 else if (marks < 70)

 grade = 'C’;

 else if (marks < 60)

 grade = 'D';

 else if (marks < 50)

 grade = 'F';

4. For each of the two groups of statements below, give the final value of x if the initial value of x is 1.

if (x >= 0)
if (x >= 0)

 x = x + 1;
 x = x + 1;

else if (x >= 1)
else if (x >= 1)

 x = x + 2;
 x = x + 2;

5. Write a program to asks for a positive integer n. If n is 1, output “There is 1 apple.”. If n is more than 1, output “There are n apples.”. Instead of using the ‘if’ construct, use the conditional operator.

6. The grade assignment code was written using the ‘if-else’ construct (refer to page 154). How could you write it using the ‘switch’ statement? Can you do some manipulation of the data so that your ‘switch’ statement is leaner?

7. Find the error in each of the following code segments and explain how to correct it.

(a)
x = 1;

while (x <= 10);

 x++;

}

(b)
for (y = 0.1; y != 1.0; y+= .1)

 printf("%f\n", y);

(c)
switch(n) {

 case 1:

 printf("The number is 1\n");

 case 2:

 printf("The number is 2\n");

 break;

 default:

 printf("The number is not 1 or 2\n");

}

(d)
The following code should print the values from 1 to 10.

n = 1;

while (n < 10)

 printf("%d ", n++);

8. Write a program that sums a sequence of integers. Assume that the first integer read with scanf() specifies the number of values remaining to be entered. Your program should read only one value each time scanf() is executed. A typical input sequence might be

5 100 200 300 400 500

where the 5 indicates that the subsequent 5 values are to be summed.

9. Write a program that calculates and prints the average of several integers. Assume the last value read with scanf() is the sentinel 9999. (You may hence assume that 9999 is not in the range of valid data values.) A typical input sequence might be

10 8 11 7 9 9999

indicating that the average of all the values preceding 9999 is to be calculated.

10. Write a program that finds the smallest of several integers. Assume that the first value read specified the number of values remaining.

11. Write a program that calculates and prints the sum of the even integers from 2 to 30.

12. Write a program that calculates and prints the product of the odd integers from 1 to 15.

13. Write a program to compute the xth power of y, where x is a positive integer and y a floating-point number. Do not use the pow() function; use a loop instead.

14. The factorial function is used frequently in probability problems. The factorial of a positive integer n (written n!) is equal to the product of the positive integers from 1 to n. Hence, 2! = 2, 3! = 6, and 4! = 24. By convention, 0! = 1. Write a program that evaluates the factorials of the integers from 1 to 5. Print the results in tabular format, as illustrated below. What difficulty might prevent you from calculating the factorial of 20?

n
 n!

--

1
 1

2
 2

3
 6

4
 24

5
120

15. Write programs that prints the following patterns. Use ‘for’ loops to generate the patterns. All asterisks (*) should be printed by a single printf() statement of the form printf("*");. The last two patterns require that each line begin with an appropriate number of blanks.

(A)
(B)
(C)
(D)

*

 *

**

 **

**
 **

*
 *

16. Calculate the value of (from the infinite series

(= 4 – 4/3 + 4/5 – 4/7 + 4/9 – 4/11 + …

Print a table that show the value of (approximated by 1 term of this series, by two terms, by three terms, etc. How many terms of this series do you have to use before you first get 3.14? 3.141? 3.1415? 3.14159?

17. Write a simple loop structure to repeatedly print a message, until the user enters ‘n’ to stop the repeatition. A sample dialogue is given below.

 Hello, nice to meet you.

 Do you want to continue? y
 Hello, nice to meet you.

 Do you want to continue? y
 Hello, nice to meet you.

 Do you want to continue? n
Can you modify the program so that the message is numbers, as shown below?

 1. Hello, nice to meet you.

 Do you want to continue? y
 2. Hello, nice to meet you.

 Do you want to continue? y
 3. Hello, nice to meet you.

 Do you want to continue? n
18. Add a loop in the square.c program so that you can repeatedly compute the square of different numbers. As in question 17, you end the program by entering ‘n’ to the prompt. Below is a sample dialogue:

 Enter the number to be squared: 5
 The square of 5 is 25.

 Do you want to try another number? y
 Enter the number to be squared: 10
 The square of 10 is 100.

 Do you want to try another number? y
 Enter the number to be squared: 12
 The square of 12 is 144.

 Do you want to try another number? n
19. Write a program with a menu to provide alternative actions. The user is shown the menu, and may choose one of the available options. The example below shows a simple program that displays different messages:

 1. Display 'Hello!'

 2. Display 'How are you?'

 3. Exit

 Enter your choice: 1
 Hello!

 1. Display 'Hello!'

 2. Display 'How are you?'

 3. Exit

 Enter your choise: 2
 How are you?

 1. Display 'Hello!'

 2. Display 'How are you?'

 3. Exit

 Enter your choise: 3
20. Write a menu-driven application to ask for two floating-point numbers, and perform addition, subtraction, multiplication and division on these two values. The user may choose which operation he would like by selecting an option on the menu. A sample run is shown below:

 0. Enter 2 values 1. Addition 2. Subtraction

 3. Multiplication 4. Division 5. Exit

 Please enter your choice: 0
 Enter first value: 6.5
 Enter second value: 4.1
 0. Enter 2 values 1. Addition 2. Subtraction

 3. Multiplication 4. Division 5. Exit

 Please enter your choice: 2
 Result of (6.5 – 4.1): 2.4

 0. Enter 2 values 1. Addition 2. Subtraction

 3. Multiplication 4. Division 5. Exit

 Please enter your choice:

action-2

action-1

No

Yes

Repetition structure

action

condition

Yes

No

Selection structure

condition

� A Boolean variable contains a Boolean value, which is either ‘true’ or ‘false’.

21

