PAGE

CHAPTER

5

PREPARING C PROGRAMS

In this chapter you will learn about

· The part of the program development process that involves computers.

· What are high-level programming languages and why the need for compilation.

· Creation, compilation and execution of C programs.

5.1
Introduction

This chapter describes the steps involved in the preparation of a C program, from the time it is keyed in via the editor, to the moment it is successfully executed, producing the desired result. This is, however, NOT the entire process of programming. Programming entails a much bigger process, starting right from understanding the problem (which has been covered), to designing and verifying the algorithm (which is the topic for the next chapter), to translating the algorithm into a program, and finally, to this sub-process that feeds the program into the computer. Therefore, this chapter deals only with the part of the program development cycle that involves the computing system. And this is the easiest part of the whole business.

You might not know the syntax of C programs. Do not fret. This chapter merely walks you through the mechanics of creating C programs. Programs chosen here are simple enough to be self-explanatory most of the time. Moreover, it is not a bad idea to take a peek into how a C program might look like. The materials here are usually given out during the Introductory Lab of the first programming module.

5.2
Creating A Working C Program

The process of creating a working C program involves the following steps:

1.
Using an editor of your choice, type in the source code (filename must have extension .c, for example, inventory.c)

2.
Compile your program to obtain the executable file (with default name a.out). (You may also compile your program to get the object file with extension .o, but this will be covered later in CS1101C.)

3.
Run the executable file by typing its name.

5.3
High-Level Languages And Compilation

The native language of the computer is the machine language, which consists of a series of bits
 0 and 1, because computers are built on electronic devices with two states: on and off, represented conveniently as 0 and 1.

A task, such as ‘adding the value of two numbers’, might be written in a hypothetical machine code that looks like this:

00100111 1010 0101

It is not hard to imagine how unreadable, not to mention long, the complete machine code would look to human beings, and how torturous it is to write one. Hence, smart computer scientists invented assembly language, which is a step towards making life a little easier:

ADD R1 R2

Assembly language uses mnemonics, such as ADD and STORE instead of 00100111 and 10111010. An assembly code needs to be translated into machine code before it can be run on a machine. The correspondence is almost line for line, and that does not make assembly language any more appealing than machine language to many people.

Then came high-level programming languages such as COBOL, Fortran, Pascal, Algol, Ada, and many more that attempt to bridge the gap between machine language and human’s natural languages. Being further from the intricacies of the hardware, high-level programming languages in general are less efficient, but this is more than compensated by the drastic increase in the ease of programming, which makes programming a more ‘humane’ undertaking.

Like assembly code, a program written in a high-level programming language must be translated into machine code, the native tongue of the computer. Such a process is known as compilation. A single line of code in a high-level programming language is typically translated into many lines of machine code.

The C programming language is a high-level programming language, but it also possesses some capability in handling low-level tasks that address the hardware directly, making it a relatively low-level language among the high-level languages. It is this property that C programs can be made more efficient than programs in other high-level programming languages. This explains why C attained its popularity as it offers the best of both worlds: readability and efficiency. On the down side, it is more difficult to learn.

The adding task might appear in a C program as:

Z = A + B;

5.4
A Sample C Program

Two sample C programs, square.c and square2.c are available in the ~tantc/prep/chap5 directory. Copy these files into your own c directory. If you do not have a c directory, create it.

Use the cat command to view the program square.c.

I shall assume your userid is garfield.

garfield@decunx:~/c[xxx]$ cat square.c

/* A simple C program to read a number and compute and

 display its square by using the multiplication (*) operator. */

#include <stdio.h>

main () /* a C program always has a main function */

{

 int n; /* this declares an integer variable 'n' */

 printf ("\nEnter the number to be squared: ");

 scanf ("%d", &n);

 printf ("Using the * operator, the square of %d is %d.\n\n", n, n*n);

}

Compile and run the program as follows. You may use the cc or the gcc compiler.

garfield@decunx:~/c[xxx]$ cc square.c

This compiles the file square.c and produces the executable file a.out. You may use the ls command to check that this new file exists.

To execute the file a.out, simply type a.out as shown below. In UNIX, typing the name of an executable file causes it to be run.

garfield@decunx:~/c[xxx]$ a.out

a.out is the default filename of the executable file given by the compiler. You will learn how to specify your own filename later.

So, have you run the square program? What does the program do? Examine the file square.c and see how much you can gather about how a program works.

Here, we have given you the C program. In the next section, you will create some programs yourself.

5.5
Creating Your Own C Programs

This section brings you a series of activities required of you in creating workable C programs.

5.5.1
Creating Your First C Program: first.c

There are a number of editors available in decunx: vim, vi, emacs, joe, pico, etc. Some are more powerful than others, but take a longer time to learn. For now, you will use the simplest editor of all – pico. It is your responsibility to pick an editor and master it, and in future sessions we will assume that you are familiar with your editor and its various functions.

Get into your c subdirectory if you are not there. Enter

garfield@decunx:~/c[xxx]$ pico first.c

and type in the following program:

#include <stdio.h>

main ()

{

 printf ("\nHello World\n");

 printf ("My first program works!\n\n");

}

Note that for simplicity, the above program contains no documentation. A good program should include documentation, at least the identity of the author and the date the program was written or last modified, and other relevant information. Keep this in mind when you write your own programs. More discussion on documentation can be found in Chapter 7.

When you are done, enter ctrl-x to exit from the pico editor. You will be prompted to save the buffer. Type Y for yes and hit the Enter key when the filename first.c appears. If you forgot to type in the filename first.c when you invoked pico earlier on, you must type it now.

5.5.2
Compile And Run Your Program

You may now compile the first.c program that you have just created.

garfield@decunx:~/c[xxx]$ cc first.c

There will be error messages if your program contains errors. Go to section 5.5.1 to make the necessary corrections and re-compile. If there are no compilation errors, proceed with program execution as follows:

garfield@decunx:~/c[xxx]$ a.out

Note that this a.out file is the executable version of first.c, and it has replaced (overwritten) the earlier a.out file which is the executable file of square.c, since there must not be two files with the same name in a directory. To avoid such replacement, you may specify the name of the executable file, instead of leaving it to the system to call it the default a.out. The trick lies in the –o option of the cc command:

garfield@decunx:~/c[xxx]$ cc –o first first.c

In the above example, the executable file for first.c will be called first instead of a.out. In UNIX, there is no need for the name of an executable file to have an extension. To find out more about the cc and gcc commands, read the man pages.

Warning: Some filenames are best avoided, because they may clash with some system commands. Two such cases detected are test and main.

5.5.3
Another Program: second.c

Use the instructions in sections 5.5.1 and 5.5.2 to create, compile and run the following program second.c. What is the output of the program? How could you add a blank line before and after the line of output, to make it into a 3-line output? You may refer to first.c for hint.

/* This program formats and displays two floating-point (real) numbers */

#include <stdio.h>

main ()

{

 float a, b;

 a = 37.56;

 b = 102.345;

 printf ("Is it %6.1f and %9.4f", a, b);

 printf ("?\n");

}

Experiment a little by changing the ‘6.1’ and ‘9.4’ to some other values, and try to figure out what they do (don’t worry if you do not succeed). Try also to combine the two printf statements into one.

5.5.4
A Program With Errors: third.c

The program third.c below contains syntax errors that will be reported during compilation. Though you may be new to C, the error messages do give some information, and by referring to the few correct sample programs in the previous sections, you should be able to spot and troubleshoot some, if not all, of the errors.

/* This program contains a FEW syntax errors */

#include "stdio.h"

main ()

{

 float num

 num := 305.68;

 printf ("***")

 printf ('%6.1f ******\n', Num);

}

Edit the program to correct the errors, then compile it. If there are still errors, what must you do? Yes, edit the program again, and re-compile. Repeat the process until you have cleared all the errors. Assuming that all errors have been corrected, what is the output of this program?

5.6
More Exercises

Try out the exercises at the end of this chapter.

Remember to log out of the UNIX system using the exit or logout command. You must remember to log out each time before you leave, otherwise anyone who comes by may delete all your valuable files away!

Similarly, if you find that someone has forgotten to log off, just graciously log out for him. Do not even think of malice.

5.7
Summary

This chapter shows the activities necessary for creating working C programs on the computer. The phases are: editing the source code, compiling it, and running the executable code. When errors are reported or detected, you need to rectify them by amending the source code, followed by a re-compilation. The chapter also runs through a few examples to illustrate the development process.

The motivation for high-level programming languages and the purpose of compilation are also explained. C is a high-level programming language, but is harsh on beginners.

Exercises

1. Printing a welcome message.

Edit, compile and run the following program.

#include <stdio.h>

main ()

{

 char letter1, letter2, letter3;

 printf ("Enter a 3 letter nickname and press return: ");

 scanf ("%c%c%c", &letter1, &letter2, &letter3);

 printf ("%s %c%c%c.\n", "Hello", letter1, letter2, letter3);

 printf ("We hope you enjoy learning C!\n");

}

Questions:

a.
What if you change the last printf statement into:

printf ("%s\n", "We hope you enjoy learning C!");

Is there any difference?

b.
What if you enter more than 3 characters? Or less than 3 characters?

c.
What if you remove the ‘&’ in ‘&letter1’?

2. Converting inches to centimeters.

Edit, compile and run the following program.

#include <stdio.h>

#define CM_PER_INCH 2.54

main ()

{

 float inches, cm;

 printf ("Enter a length in inches: ");

 scanf ("%f", &inches);

 cm = CM_PER_INCH * inches;

 printf ("That equals %.2f centimetres.\n\n", cm);

}

3. Modify the program given in question 2 to convert a temperature in degree Celsius to Fahrenheit.

4. Correct the syntax errors in the following program and rewrite it so that it follows our style conventions. What does each statement of the corrected program do? What values are printed?

main () { float X, y, z;

{ Y := 15.0,

z = -y + 3.5; Y + z = x;

printf ("%f %f %f\n", x; y; z)

}

5.
Complete the following program and show the output displayed when the data entered are 5 and 7.

printf ("Enter two integers: ");

scanf ("%d %d", &m, &n);

m = m + 5;

n *= 3;

printf ("m = %d, n = %d\n", m, n);

6.
Write a program that asks the user to enter the radius of a circle, and then computes and displays the circle’s area and circumference. Use the formulae:

area = (* radius2

circumference = 2 * (* radius

Let (be 3.142.

7.
The program below compiles successfully but contains a run-time error. Identify and correct the error.

#include <stdio.h>

main ()

{

 int i, j, k;

 j = 5;

 k = i + j;

 printf ("i=%d j=%d k=%d\n", i, j, k);

}

8.
Compile the program square2.c as follows:

garfield@decunx:~/c[xxx]$ cc –lm square2.c

and explore as according to the comment statements in the program.

If there are run-time errors, identify them, re-edit the source code, and compile again.

RUN

If there are compilation errors, identify them and re-edit the source code before you proceed.

COMPILE

EDIT

� ‘Bit’ stands for ‘binary digit’. The two binary digits are 0 and 1.

21

