PAGE

CHAPTER

7

C LANGUAGE PRELIMINARIES

In this chapter you will learn about

· The basic syntax and elements of a C program.

· The importance of documentation and style in programming.

· The use of variables and how they are represented in the memory.

7.1
The C Programming Language

C was written in 1972 by Dennis Ritchie at Bell Laboratories and it was used to implement UNIX on the Dec PDP-11, with 94% of its operating system written in C. Before that, Ken Thompson, who developed UNIX, had been using an assembler and the B language in the initial development of the operating system. B was based on BCPL, preceded by CPL, which in turn has its original in ALGOL60.

In the late 1980s, an American National Standards Institute (ANSI) committee, in their bid to standardise the language to enhance portability, produced what came to be known as ANSI C or standard C. C has since become a popular language in academic, research as well as industrial applications.

C belongs to the class of procedural languages (also known as prescriptive or imperative languages, as opposed to non-procedural/descriptive/declarative languages). Some other well-known procedural languages include COBOL
, Fortran
 and Pascal. Programs of procedural languages tell the computer how to solve a problem; programs of non-procedural languages, like Smalltalk, specify what is to be solved. Many languages are a mix. For example, Prolog
 is one, though it is considered as largely non-procedural.

C is generally treated as a high-level programming language. However, strictly speaking, it is part high-level and part low-level. Hence, it is actually a low-level language among the high-level ones.

As mentioned in Chapter 5, machine language, written in strings of bits 0 and 1, is the native tongue of computer. However, programming in machine code can be a nightmare for the non-divine. For example, the operation cost = price + tax in a hypothetical machine could appear as this intimidating script:

0010 0000 0000 0100

0100 0000 0000 0101

0011 0000 0000 0110

High-level programming languages have instructions that resemble more closely our everyday language, making it more readable and easier to write than machine code. To perform the operation above, the C statement would look like this:

cost = price + tax;

C is compact. Its core is small, but it is supplemented by a large set of systems calls and libraries, such as stdio.h, math.h, etc. The ANSI standard for C requires that certain standard libraries be provided in every ANSI C implementation.

C is expressive, portable and efficient. Coupled with its compactness, it is an excellent language for systems programming, time-critical functions, and applications involving close interaction with the operating system or hardware.

On the down side, C has a complicated syntax, which makes it appear confusing at first glance. As it accords the programmer a great deal of flexibility, maturity and discipline are demanded of the programmer. These are real obstacles to beginners. In short, C is baffling to look at, easy to mess up, and tricky to learn.

7.2
A Sample Program

A simple program is presented here as a reference for discussion in the subsequent sections. We also take this opportunity to revise the problem solving process in the derivation of an algorithm. These pre-coding activities are important, but too often neglected. Many people cannot wait to start typing in their codes without first investing some quality time over the design. The result is often a code haphazardly assembled that might require more time for debugging which could have been avoided had it been more carefully thought out. Unfortunately, the benefits of good design are apparent only when it comes to writing complex codes for big problems. Since beginners work with simple problems, it is naturally difficult for them to appreciate the word of wisdom. By the time they get on to developing bigger systems, they might have acquired a habit that is hard to kick.

The problem we are dealing with here is to convert measurement from inches to centimetres. A transcript of the process is given below.

Problem: Conversion from inches to centimetres.

Step 1: Understanding the problem.

What is the data (input)?

Length in inches. Let’s call it inches.

What is the unknown (output)?

Length in centimetres. Let’s call it cm.

Step 2: Devising a plan.

First draft of the plan (algorithm):

Get length in inches

Compute length in centimetres

Report length in centimetres

What is the relationship between the data and the unknown?

one inch = 2.54 centimetres

Do I know how to compute the length in centimetres?

Yes. ‘Compute length in centimetres’

(‘length in centimetres is 2.54 * length in inches’

Complete plan (algorithm):

Get length in inches

Compute length in centimetres, using

2.54 * length in inches

Report length in centimetres

Is the plan correct?

Work out on some examples. 1 inch, 2 inches, 3.5 inches, 0 inch, etc.

Step 3: Carrying out the plan.

Convert algorithm to program.

Compile and run.

Step 4: Looking back

Check the output. Is the output correct?

For a simple problem like this, the complete algorithm can be worked out quickly. For more complex problems, we would need to go through a few rounds of refinement, before we get to the final algorithm with all steps duly filled.

The program inch2cm.c, based on the algorithm, is shown below:

/*

 * Converts length from inches to centimetres

 * Author: Garfield Date: 25 July 1997

 * Note: This program contains a hard-to-spot error!

 */

#include <stdio.h> /* printf, scanf definitions */

#define CM_PER_INCH 2.54 /* conversion constant */

int main (void)

{

 float inches, /* length in inches

 cm; length in centimetres */

 /* get the length in inches */

 printf ("Enter a length in inches: ");

 scanf ("%f", &inches);

 /* convert to length in centimetres */

 cm = CM_PER_INCH * inches;

 /* display the length in centimetres */

 printf ("That equals %.2f centimetres.\n\n", cm);

 return 0; /* indicate program ends successfully */

}

The program contains a subtle error. Search for it. Compile the program and see if the error message produced by the compiler is of any help. If not, read on to section 7.3.2 for a hint.

Assuming that the error has been corrected, below are the outputs of a few sample runs:

garfield@decunx:~/c[xx]: cc -o inch2cm inch2cm.c
garfield@decunx:~/c[xx]: inch2cm
Enter a length in inches: 2
That equals 5.08 centimetres.

garfield@decunx:~/c[xx]: inch2cm
Enter a length in inches: 5.9
That equals 14.99 centimetres.

garfield@decunx:~/c[xx]: inch2cm
Enter a length in inches: 0
That equals 0.00 centimetres.

garfield@decunx:~/c[xx]: inch2cm
Enter a length in inches: –2
That equals –5.08 centimetres.

garfield@decunx:~/c[xx]: inch2cm
Enter a length in inches: 1.2e4
That equals 30480.00 centimetres.

In the last run, the user entered 1.2e4. This form is known as the scientific notation. A value aeb or aEb in scientific notation, where a is a real number and b an integer, is equivalent to the value a (10b. Hence, 1.2e4 = 1.2 (104 = 12000, and –3.65e–2 = –3.65 (10–2 = –0.0365. Do you want another example? But hey, today is not my birthday!

In one of the above runs, the input value –2 was entered. The issue on data validity will be discussed in section 7.5.

7.3
Basic C Elements

The following subsections introduce some basic features of a C program, using the inch2cm.c program above as reference. Bearing in mind the objective of this course, the treatment here merely scratches the surface. A more complete study on C elements will be covered in CS1101C.

7.3.1
Preprocessor Directives

C is a small language. It is supplemented by the preprocessor and a set of libraries to extent its power. A C program usually contains some preprocessor directives, especially at the beginning of the program. Preprocessor directives are instructions to the C preprocessor, whose job is to modify the program before it is compiled.

Preprocessor directives begin with the # symbol, which must be the first non-blank character on the line.

#include <stdio.h>

#define CM_PER_INCH 2.54

The two common preprocessor directives are #include and #define. The directive #include <stdio.h> above instructs the preprocessor to include the contents of the standard input/output header file (stdio.h) into the inch2cm.c program, so that the program can call certain functions such as printf() and scanf(). These functions are defined in the file stdio.h, which is usually located in the /usr/include directory. The preprocessor replaces the #include statement with the contents of stdio.h.

The #include <filename> statement is used to include standard header files like stdio.h, math.h and stdlib.h, just to name a few. These standard header files are typically stored in the /usr/include directory on UNIX systems, and each of them contains function prototypes in its associated library. The other form of the #include directive appears as #include "filename", which is normally used to include files created by programmers. In this case, the preprocessor searches in the current directory for the file to be included.

The preprocessor directive #define is used to define macros. The directive #define CM_PER_INCH 2.54 associates the constant macro (or symbolic constant) CM_PER_INCH with 2.54. The preprocessor replaces every occurrence of CM_PER_INCH (except when it is enclosed in quoted string) in the program by 2.54.

The use of symbolic constants improves clarity and portability, and you are encouraged to use them. CM_PER_INCH is certainly more meaningful to the readers of your program than the mysterious 2.54. On the count of portability and ease of change, suppose you decide to use a more relaxed conversion value 2.5 instead of 2.54. Rather than searching through the whole program for 2.54 and changing them one by one, you would need only change the #define statement if you used a directive.

7.3.2
Comment Statements

Comments are text enclosed in /* and */. The cc and gcc compilers also recognise comments that begin with // and run to the end of the line.

#include <stdio.h> /* printf, scanf definitions */
#define CM_PER_INCH 2.54 /* conversion constant */

 return 0; /* indicate program ends successfully */

Comments provide documentation for program readability. The preprocessor and compiler ignore all comments in the program. Every program should have its author identified, and its date of writing and modification documented. Every function in the program should also be preceded by a statement to describe the purpose of the function.

In introductory programming courses, the importance of comments is often stressed and enforced. Again, this is usually another source of contention. Some programmers, especially the more experienced ones, do not see the need of including comments in their already short and easy-to-understand programs, and find it a redundant chore. Teachers want to see that the habit is cultivated right from the start, and they need to enforce it across the board. Sometimes, some guard it a little too zealously.

Any resentment arising from this could have been avoided if all recognise that it is not the mere presence of comments, but the right dosage that matters. The key is not to overdo or underdo it.

Too much of it results in unnecessary and excessive comments. This mistake is usually committed by novice programmers, who might have taken the you-must-document-your-program rule at face value and followed it too rigidly. Look at these two examples:

i++; /* increment i by 1 */

sum += num; /* add num to sum */

This kind of comments is known as ‘parroting’. Equally extravagant is this:

/* multiply CM_PER_INCH by inches */

/* and store result in cm */

cm = CM_PER_INCH * inches;

Useful comments should add values to the readers. They should describe what the steps do, explain unusual tricks or difficult logic employed, instead of just translating the C statements into English, or describing how the task is carried out. Comments explain ‘what’ is done – the purpose; program statements show ‘how’ it is done – the logic.

On the other hand, some programmers, more likely the seasoned ones, commit niggardliness.

The ultimate purpose of providing comments is to improve code readability. It allows you to refresh your memory quickly when you revisit your long programs after six weeks. It allows your fellow project team mates to understand your codes better. Try reading another person’s undocumented programs, and see if you like it.

Too little explanations when they are called for, or too much that the code becomes bloated, would result in the code being harder to read and understand. It all boils down to good judgement, and it also relates to other documentation efforts. Variables that are aptly named such as ‘sum’, ‘min’ and ‘max’ should be self-explanatory enough to be exempted from the need for additional remarks, but overly liberal use of variable names like ‘a’, ‘b’, ‘c’ for the same data would make the code comparatively less readable, even with accompanying comments.

Because the tendency for programmers to ‘under-document’ is so much greater than overdoing it, as evident from the many poorly documented codes written by students and practitioners, teachers in an attempt to correct the lean, constantly demand documentation efforts from their students.

Since we are at it, here is another point to note. Many students make documentation an after-thought, just to meet the requirements and pacify the teachers. This shows a lack of planning on the part of the programmer. If you have noticed, most of the comment statements came from the steps in the algorithm. Cooking up comments after the code is completed implies the absence of an algorithm to begin with. This is a greater evil than writing undocumented codes.

Now, here is the hint for the error in inch2cm.c. The error is hidden somewhere in these two lines:

 float inches, /* length in inches

 cm; length in centimetres */

Can you spot it?

7.3.3
The main() Function

A C program comprises functions. Every C program has at least one function, called the main() function. (It is customary to write parentheses after the name of a function.) Execution of a C program begins at the main() function.

int main (void)

{

 /* body of function */

}

A function definition consists of two parts: header and body.

Function Header

The function header includes:

1. The type of the function – example: int

2. The name of the function – example: main

3. The parameter list which is enclosed in parentheses – example: void

In Chapter 6, you learned that a programming language provides different types of data. A function performs some task to generate a value. The type of a function declares what type of values it returns. In this case, the function main() returns an integer value, represented by the keyword int.

In the function body, there lies a return statement, usually at the end of the body, to return the value of the function. Execution of the function terminates when the return statement is encountered, and control is passed back to its caller. In the case where there is no return statement, execution of the function terminates when the last statement is executed.

 return 0; /* indicate program ends successfully */

In the statement above, the function returns the integer value zero to its caller, which is the operating system. How the operating system makes use of this returned value is beyond our scope here. Usually, we return the value zero in the main() function, as this represents successful execution on UNIX systems by convention.

The parameter list declares a list of arguments which the function takes from its caller. In modular programming, a task is divided into subtasks handled by different functions. Hence, data may need to be passed from one function to another, through the function parameters. For example, the main() function calls the printf() and scanf() functions, and passes data into each of them.

In our program, the parameter list is void, meaning the main() function receives no argument.

Function Body

The function body is enclosed in braces { }. A pair of braces also define a block. The function body consists of:

1. Declarations

2. Executable statements

Declarations are statements that declare the local variables used in the functions. The compiler refers to these declarations to allocate memory space for the variables in your program. In the inch2cm.c program, the declarations in the main() function are:

 float inches, cm;

that declare two floating-point variables inches and cm. Floating-point variables contain values that are real numbers.

The executable statements follow the declarations.

7.3.4
Reserved Keywords

We have encountered a few keywords so far: int, return, void and float. Keywords are special vocabulary of the programming language and they cannot be redefined or used for other purposes. The list of reserved keywords in ANSI C is shown below:

auto
default
float
long
sizeof
union

break
do
for
register
static
unsigned

case
double
goto
return
struct
void

char
else
if
short
switch
volatile

const
enum
int
signed
typedef
while

continue
exterm

7.3.5
Standard Identifiers

Identifiers are names given to the objects in a program, such as variable names and function names. An identifier consists of a sequence of letters, digits and the underscore (_) character, but it cannot begin with a digit.

Standard identitiers, like reserved words, have special meaning in a programming language. However, unlike reserved words, they can be redefined, though this is not recommended. Some standard identifiers that we can find in the inch2cm.c program are ‘printf’ and ‘scanf’, the names of two functions in the standard I/O library. Redefining printf to name something else means that we can no longer use the important printf() function.

7.3.6
User-defined Identifiers

We need to name our variables and functions that we create and use in our program. We can choose any identifier for a name, as long as it conforms to the syntax rule (that it consists of letters, digits and underscore, but may not begin with a digit), does not clash with a keyword, and preferably does not clash with a standard identifier in use. User-defined identifiers that begin with underscore should also be avoided because they may conflict with system names which usually begin with an underscore.

In the inch2cm.c program, CM_PER_INCH, inches, and cm are identifiers. The first is the name of a constant macro, and the other two are variable names. As identifiers are case sensitive, two identifiers sum and Sum are distinct. You should choose identifiers with appropriate and meaningful names to aid readability. A variable name sum already tells you something about the variable, even without the need to read the comments. Calling the variable s would be too cryptic, and calling it lunch is misleading and crazy. As always, moderation is to be observed. Calling it sum_of_the_list_of_numbers is not only an overkill, but makes reading the code clumsy.

7.3.7
Constants

There are few types of constants: numeric constants, character constants and string constants.

Numeric Constants

We have various data types like integer, floating-point number and character in C. Constants of numeric types may appear in programs. In the statement below, 2 is a constant.

 circumference = 2 * pi * radius;

In the inch2cm.c program, the only numeric constant is the zero in the statement ‘return 0;’. The 2.54 in the ‘#define’ statement is not a numeric constant, but initially treated as a string by the preprocessor. However, after the preprocessor replaces CM_PER_INCH by 2.54 in the code, the compiler takes 2.54 as a constant.

Integer constants are values like 0, 2, –52, and 9076. We may also use octal integers that begin with 0, for example, 09 and 012, and hexadecimal integers that begin with 0x, like 0x6 and 0x8A2. Floating-point constants are real numbers like 0.0076, –29.13, 6.2e12.

Character Constants

Character constants are single character enclosed in single quotes like 'A', 'g', '5', '?' and '+’.

String Constants

A string constant, or a literal string, is a sequence of characters enclosed in double quotes.

 printf ("Enter a length in inches: ");

In the above statement, "Enter a length in inches: " is a string constant. In the memory, a string contains an invisible character, '\0', at the end. This invisible character is known as the null character. Therefore, a string "abc" actually contains 4 characters instead of 3.

Note that "a" and 'a' are different. The former is a character constant, while the latter a string constant that contains two characters, an "a" and a null character.

Two string constants that are placed side by side separated only by white space is treated as a single string by the compiler. Therefore, "small" "talk" is the same as "smalltalk". These two statements below produce the same output:

 printf ("small" "talk\n");

 printf ("smalltalk\n");

7.3.8
Variable Declarations

In C, you must declare a variable before you can use it. A variable declaration consists of the name of the variable – an identifier – and the data type the value of the variable belongs to. For example, these statements

 float inches;

 float cm;

declare two floating-point variables inches and cm. They could be combined into a single statement, as follows:

 float inches, cm;

The compiler, on parsing the declaration statements, put aside memory space for each of the variables declared.

7.3.9
Data Types

A data type defines a set of values and a set of operations permissible on those values. Some basic data types provided in C are: int, float, double and char.

The int data type represents integers, such as 123, –900, 987654321, +31. Depending on the machine, an integer may occupy two bytes
 or four bytes. There is hence a limit on the range of integers that can be represented. C provides two other data types short and long, for situations where shorter integers are sufficient (to save memory space), or where longer integers are needed.

The float data type represents real numbers, which are implemented in the computers as floating-point numbers
. Examples are 4.3, –123.00, +0.02, 1.2e4, –86e3, 3.9e–12.

The float data type uses certain number of bits for the mantissa. The more bits the mantissa contains, the more precise it can represent a real number. The double data type uses twice the number of bits in the mantissa as the float, allowing for double-precision floating-point numbers.

The char data type includes single characters like 'A', 'p', '9', ':' and 'b'. (The b symbol represents the blank character, useful for writing on paper.)

More data types will be covered in CS1101C.

Each data type has its own set of allowed operations. For instance, for integers, we may use operations like add (+), subtract (–), multiply (*), divide (/), modulo (%) and others. Arithmetic operations will be covered in more details in Chapter 8.

7.4
Programming Style

There is plenty of room for a programmer to exercise his own style of programming. For a start, C is free-format, meaning that apart from a few restrictions (such as a preprocessor directive must have its # character as the first non-blank character in the line), you may write your C program in any layout you like. The inch2cm.c program could have been written in this format:

#include <stdio.h>

#define CM_PER_INCH 2.54

int main (void){float inches, cm; printf

("Enter a length in inches: ");scanf ("%f", &inches);

cm = CM_PER_INCH * inches; printf

("That equals %.2f centimetres.\n\n", cm);return 0;}

This code is gracefully accepted by the compiler, but most of us will frown on such ‘artwork’, because in practice, codes are read by others as well. And we like neat things.

Indentation and blank lines are inserted to make your codes more presentable. Again, there are no hard rules but only guidelines. Blank lines are usually added between two functions, or to mark out a big section of code. Indentations are used to show the hierarchy of the control structure. For example,

 if (x < y) {

 printf ("x is smaller than y\n");

 if (y < z)

 printf ("y is smaller than z\n");

 else

 printf ("y is larger than or equal to z\n");

 }

 else

 printf ("x is larger than or equal to y\n");

How much should we indent? Too little doe not show the effect. Too much and your code will stretch too far to the right. The guideline is to indent two to six characters at each level.

Naming identifiers is also a concern of style. Pick meaningful names for your variables and functions, like ‘length’ and ‘breadth’ instead of ‘lala’ and ‘baba’. Identifiers should be of appropriate length, ‘area_of_the_rectangle’ is too excessive, while ‘a’ is too cryptic. (However, loop variables are the exceptions. It is an accepted practice to use ‘i’ and ‘j’ for example, for loop variable names.) Avoid using these single characters for identifiers: the small letter ‘l’ and the big letter ‘O’, as they can be easily confused with the digits ‘1’ and ‘0’. It is also customary to use upper-case letters for constant macros, like CM_PER_INCH in inch2cm.c.

Style is very much a personal choice. You may have your own style, but you must stick to your convention consistently.

7.5
Data Validation

If we rewind to section 7.2 and look at a sample run of the program again, you will spot this:

garfield@decunx:~/c[xx]: inch2cm
Enter a length in inches: –2
That equals –5.08 centimetres.

Obviously, it makes no sense for a length measurement to be negative, and so you might have wondered, should this be allowed?

If you are adventurous enough, you could have tried entering other data, such as a character. What happened? What was the output? Should this be allowed too?

Writing robust programs is the ultimate aim of programming. Robust programs should be ‘fool-proof’, that is, if the user enters an invalid data, the program should not terminate abruptly (the phrase we commonly use when this occurs is ‘the program bombs’). Neither should it give unexpected or incorrect result. This is especially so for critical applications.

However, checking for valid data is a task more daunting than you could have thought. We need to anticipate all kinds of input that a user may enter, and write codes to handle individual cases. For a beginner course where the learners are still grappling with the basics, it is best not to distract them with such requirement at this stage.

Therefore, at this stage, you may make reasonable assumptions on the data. One useful assumption is that the user will enter data of the expected type, as this is one of the hardest things to check and rectify. Sometimes, you may also make reasonable assumption on the range of values, like non-negative values for length, but in this case, you should clearly document your assumption in the code. Such assumptions are presented as pre-conditions in the program or function. A pre-condition states the condition that must be satisfied before the program or function could guarantee the correctness of the result. For example, a function that takes in an argument x with the pre-condition that x is positive, holds responsibility only when positive value is passed to x.

When it is possible to do away with the assumption by doing a simple check, you may add a few lines of code for validity check. For example, the pre-condition that x is positive can be eliminated easily by adding an ‘if’ statement.

So, checking for data validity is important, but tough. For the moment, just concentrate on getting the program right first, and do only the simplest validity checks.

7.6
Variables And Memory

A variable has associated with it a name, type and value. Memory space is allocated by the system to hold the value of each variable at certain location(s) in the memory. In the computer, every memory location has an address. However, the programmer does not need to know which address his variable is located at; he refers to the variable by simply using its name, and leaves it to the system to work out the address.

The diagram below shows a possible scenario. The executable code inch2cm is stored in some part of the memory, say, starting at location 1000. With the following declarations

 float inches, cm;

the system allocates two sets of memory, each large enough to hold a floating-point number which is assumed to take up 8 bytes here, for the variables inches and cm. The diagram shows that the variable inches occupies 8 bytes starting at address 1500, and the variable cm occupies the next 8 bytes starting at address 1508. (Usually, memory addresses are written in binary or hexadecimal form. Here, we write them in decimal for convenience.)

Initially, the value of a variable is undefined, meaning that it takes on whatever value that happens to reside in that region of the memory. In general, there are 3 ways to load a value into a variable:

1. Initialising a variable at declaration.

2. Via the assignment statement.

3. Via the input function.

It is wrong to assume that a numeric variable contains the value zero at the start of the execution. It is a very common mistake to forget to initialise a variable before its value is used.

Initialisation at declaration

Variables may be initialised in the declaration statements. For example,

 float inches = 3.2;

initialises the variable inches with the value 3.2.

Using the assignment statement

You may use the assignment statement to load a value into a variable, like this:

 inches = 3.2;

The ‘=’ character is the assignment operator in C. On the right of the assignment operator could be a constant as above, or an expression that evaluates to a value. We will talk about expressions and arithmetic operations in Chapter 8.

For some data types such as string, instead of assignment operator, a function may be needed to fill the variable with the require content.

Using an input function

You may also load a value supplied by the user into a variable. This can be done by using an appropriate input function. The scanf() is a general function for input operation:

 scanf ("%f", &inches);

The value that is assigned to the variable inches will depend on what the user types at the standard input (the keyboard). Input and output functions like scanf() and printf() will be explained in more details in Chapter 9. For the moment, it suffices to say that %f is used for floating-point variables, %d for integer variables and %c for character variables. Also, the address operator & is required in the scanf() function for data of basic types like float, int, and char.

The diagram below shows the value of the variable before and after the scanf() statement is executed:

When a value is assigned to a variable, the old value is overwritten. Reading or accessing a variable, however, will not destroy its value. Such property is known as destructive write, non-destructive read.

The diagram below illustrates the assignment statement and the destructive write, non-destructive read nature of variables.

 int a, b;

 a = 40;

 b = 50;

 b = a + b;

7.7
Summary

This chapter introduces the basic elements of a C program. A C program consists of preprocessor directives to include library header files and to define macro constants, comment statements for documentation purposes, and the main() function which consists of declaration of local variables and the executable statements.

Reserved keywords have special meanings in the C language and must not be redefined. Identifiers are names of objects (variables and functions) in a program, and include standard identifiers which are names of predefined variables and functions, and user-defined identifiers created by the programmer.

Variables hold data that belong to various data types, and are stored in memory at certain addresses. Values can be loaded into variables at declarations, or through the assignment statements or input functions. Constants are values that do not change and they can also be of different types.

As programs are meant to be read by humans besides the compiler, programmers must include appropriate documentation to make their codes readable. Good style includes inserting blank lines where appropriate, making indentations and giving meaningful names to variables and functions. A consistent programming style should also be maintained.

Data validation refers to the checking of the validity of data. As a thorough check is often tedious, it is deferred till a later stage. Meanwhile, the focus is on getting the program right.

Some of these topics are dealt with in more details in the following chapters. An in-depth study will be conducted in CS1101C.

Exercises

The exercises here are mainly exploratory in nature. They provide the idea, which you should extend and experiment further on your own. Whenever relevant and possible, write your answers or programs on paper, and then run the programs to verify your answers.

1. Change the inches and cm variables in the inch2cm.c program to type int. What other changes do you need to make to the code? Run this new version and try it on different input values, including real numbers and characters. What do you observe?

2. Pick up some books on C and study the styles of the different authors by examining their codes. How do their styles differ? What are your own preferences?

3. Go into the /usr/include directory and check out the header files in there. In particular, examine the contents of stdio.h and math.h. Recall that the program square2.c in question 8 of Chapter 5 exercises. How could you modify the code to create another program that computes the cube of a number? The square root of a number? What should be the appropriate data type? What if the input value is negative? What kind of validity check can you implement?

4. Is nesting of comments (that is, a comment within another comment) allowed in C? Include this comment in a program and compile it.

/* Is a comment inside /* another comment */ allowed? */

5. Suppose you are to display the following text on the screen:

A C program consists of preprocessor directives to include library header files and to define macro constants, comment statements for documentation purposes, and the main() function which consists of declaration of local variables and the executable statements.

Use printf() in your program. How many printf() statements do you need? Can you do it with as few printf() statements as possible?

6. Refer to the diagram on the right. The side of the square is of length x. Write a program to read in the value of x, and compute and display the area of the circle. Make sure that you document your program properly.

after

before

User

enters

3.2

1500 (inches)

1500 (inches)

3.2

?

cm

1508

inches

1500

1000

1001

1002

:

:

Address

Memory

Program inch2cm

Comments are meant to aid, never to hamper, readability.

2344 (b)

2340 (a)

2340 (a)

after

before

40

?

x

2344 (b)

2344 (b)

2344 (b)

2340 (a)

2340 (a)

90

40

50

40

50

?

� COBOL is the acronym for COmmon Business Oriented Language, primarily used in the commercial and banking sectors.

� Fortran is the acronym for Formula Translation, mainly used by early scientists.

� Prolog is the acronym for Programming in Logic, a popular language for artificial intelligence applications.

� A byte of data contains 8 bits.

� Floating-point representation consists of two parts: the mantissa and the exponent.

21

