PAGE

CHAPTER

9

INPUT/OUTPUT

OPERATIONS AND FUNCTIONS

In this chapter you will learn about

· The printf() function and its various conversion specifiers.

· The scanf() function and its various conversion specifiers.

9.1
Introduction

We need input/output, or I/O operations to read data and display results. Data may be read from the standard input device (keyboard), or from a file. Likewise, results may be displayed on the standout output device (monitor), or written to a file as well.

We have seen the use of input/output functions such as scanf() and printf() in earlier chapters. These and many other I/O functions, are defined in the I./O library, with stdio.h as its associated header file.

Most of the library functions, and those that are created by you, accept a fixed number of parameters. The scanf() and printf() functions, however, are special in that they take in a variable number of arguments.

Other I/O functions are getchar, putchar, getc, putc, fscanf, and fprintf. These will be covered in CS1101C.

9.2
Formatting Output: printf()

The printf() function is a general function to put data onto the standard output device. The format of the function is:

printf(format-control-string, print-list)

The function arguments include the format-control-string, and possibly a print-list. The format-control-sting is a string that may contain conversion specifications. The print-list includes a list of expressions whose values are displayed in the formats specified by the corresponding conversion specifications. For example, in this statement:

the format %.2f is applied to the variable cm, controlling the way the value of cm appear in the output. The ‘\n’ is an escape sequence with certain meaning attached to it.

The function displays the value of its format-control-string

1.
after substituting in left-to-right order the value of the expressions in the print-list for their conversion specifications in the format-control-string, and

2.
after replacing escape sequences by their meanings.

The printf() function returns an integer value that is the number of characters displayed or a negative value if there is an error.

The following shows the output of a printf() statement:

 sum = 20;

 count = 3;

 printf("%d divided by %d equals %f\n",

 sum, count, (float)sum/count);

Output:

 20 divided by 3 equals 6.666667

What if %f is replaced by %d and the cast (float) removed? What if the value of count is zero?

9.2.1
Conversion Specification

A conversion specification (or format) begins with % and ends with a conversion specifier. For example, %d specifies that the value is to be printed as a decimal integer. The list below shows more conversion specifiers and their meanings.

Conversion Specifier
Description

d or i
signed decimal integer

o
unsigned octal integer

u
unsigned decimal integer

x or X
unsigned hexadecimal integer

h or l
to indicate a short or long integer

e or E
floating-point value in scientific notation

f
floating-point value

g or G
either floating-pt form f or exponential form e (or E)

c
character

s
string

An unsigned integer has value that is non-negative. A short integer type uses less bits for the representation, while a long integer type uses more bits. The int type comes in between, but in practice, it has the same range of values as either the short or the long type, depending on the system.

The program and output below illustrate the integer conversion specifiers.

/* Using the integer conversion specifiers */

#include <stdio.h>

int main(void)

{

 printf("%d\n", 455);

 printf("%i\n", 455); /* i same as d

 in printf */

 printf("%d\n", +455);

 printf("%d\n", -455);

 printf("%hd\n", 32000);

 printf("%ld\n", 2000000000);

 printf("%o\n", 455);

 printf("%u\n", 455);

 printf("%u\n", -455);

 printf("%x\n", 455);

 printf("%X\n", 455);

 return 0;

}

The program and output below illustrate the floating-point conversion specifiers. Take note of the default number of decimal places for the %f format. This default may vary from system to system.

/* Printing floating-point numbers with

 floating-point conversion specifiers */

#include <stdio.h>

int main(void)

{

 printf("%e\n", 1234567.89);

 printf("%e\n", +1234567.89);

 printf("%e\n", -1234567.89);

 printf("%E\n", 1234567.89);

 printf("%f\n", 1234567.89);

 printf("%g\n", 1234567.89);

 printf("%G\n", 1234567.89);

 return 0;

}

The program and output below illustrate the character and string specifiers.

/* Printing strings and characters */

#include <stdio.h>

int main(void)

{

 char character = 'A';

 char string[] = "This is a string";

 char *stringPtr = "This is also a string";

 printf("%c\n", character);

 printf("%s\n", "This is a string");

 printf("%s\n", string);

 printf("%s\n", stringPtr);

 return 0;

}

A

This is a string

This is a string

This is also a string

The second printf() statement above could be replaced by this equivalent statement:

printf("This is a string\n");

String variables and their usage and declaration, such as string[] and *stringPtr above, will be covered in CS1101C.

9.2.2
Field Width And Precision

When an argument is printed, the place where it is displayed is called the field, and the field width is the size of the field, that is, the number of characters in it. The field width as well as the precision of the value can be specified between the % symbol and the conversion specifier, for example, ‘%9.3f’.

The display is right justified if the field width is larger than what the value requires. On the other hand, for numerical values, if the field width is too small to hold the value, the specified width is ignored, and the system determines a width that is sufficient to accommodate the data.

The example below shows the effect of field width on integer arguments.

/* Printing integers right-justified */

#include <stdio.h>

int main(void)

{

 printf("%4d\n", 1);

 printf("%4d\n", 12);

 printf("%4d\n", 123);

 printf("%4d\n", 1234);

 printf("%4d\n\n", 12345);

 printf("%4d\n", -1);

 printf("%4d\n", -12);

 printf("%4d\n", -123);

 printf("%4d\n", -1234);

 printf("%4d\n", -12345);

 return 0;

}

The precision value appears after the dot (.) in the conversion specification, and it takes on different meanings for different specifiers.

· For specifier d, it indicates the minimum number of digits (the default value is 1).

· For specifiers e, E and f, it refers to the number of digits after the decimal point.

· For specifiers g and G, it refers to the maximum number of significant digits.

· For specifier s, it means the maximum number of characters to be displayed.

The example below shows the use of precision:

/* Using precision on integers, floating-point numbers, and strings */

#include <stdio.h>

int main(void)

{

 int i = 873;

 float f = 123.94536;

 char s[] = "Happy Birthday";

 printf("Using precision for integers\n");

 printf("%.4d\n%.9d\n\n", i, i);

 printf("Using precision for floating-point numbers\n");

 printf("%.3f\n%.3e\n%.3g\n\n", f, f, f);

 printf("Using precision for strings\n");

 printf("%.11s\n", s);

 return 0;

}

Using precision for integers

0873

000000873

Using precision for floating-point numbers

123.945

1.239e+02

124

Using precision for strings

Happy Birth

9.2.3
Flags

Flags in the conversion specification provide additional formatting features, allowing more flexibility in the display of data.

Flag
Description

–
left-justify

+
display a plus sign for positive values and a minus sign for negative values

b
print a space before a positive value

#
prefix 0 for octal conversion specifier o
prefix 0x or 0X for hexadecimal conversion specifier x or X
for decimal point for specifiers e, E, f, g or G that does not contain a fractional part

0 (zero)
pad field with leading zeros

The series of programs below illustrate the use of these flags.

/* Right justifying and left justifying values */

#include <stdio.h>

int main(void)

{

 printf("%10s%10d%10c%10f\n\n", "hello", 7, 'a', 1.23);

 printf("%–10s%–10d%–10c%–10f\n", "hello", 7, 'a', 1.23);

 return 0;

}

 hello 7 a 1.230000

hello 7 a 1.230000

/* Printing numbers with and without the + flag */

#include <stdio.h>

int main(void)

{

 printf("%d\n%d\n", 786, –786);

 printf("%+d\n%+d\n", 786, –786);

 return 0;

}

/* Printing a space before signed values

 not preceded by + or – */

#include <stdio.h>

int main(void)

{

 printf("% d\n% d\n", 547, –547);

 return 0;

}

/* Using the # flag with conversion specifiers

 o, x, X, and any floating-point specifier */

#include <stdio.h>

int main(void)

{

 int c = 1427;

 float p = 1427.0;

 printf("%#o\n", c);

 printf("%#x\n", c);

 printf("%#X\n", c);

 printf("\n%g\n", p);

 printf("%#g\n", p);

 return 0;

}

/* Printing with the 0(zero) flag

 fills in leading zeros */

#include <stdio.h>

int main(void)

{

 printf("%+07d", 452);

 printf("%07d", 452);

 return 0;

}

9.2.4
Literals And Escape Sequences

Among the characters in the character set, some are non-printing characters that require an escape sequence to identify them. Escape sequences begin with the backslash (\) character. We have encountered the character ‘\n’ which represents the newline, and the null character ‘\0’ that is appended at the end of a string constant.

Since the double quote (") is used to delimit a string, and the backslash (\) is used to specify an escape sequence, they need special treatment if they are to be part of a string. They need to be escaped if they are used as normal characters (or literals) in the string. The list below shows some of the escape sequences that may be used in a string, and their meanings.

Escape sequence
Description

\’
Single quote (’)

\”
Double quote (”)

\?
Question mark (?)

\\
Backslash (\)

\a
Bell

\b
Backspace: move cursor back one position

\f
Formfeed: move cursor to start of next page

\n
Newline: move cursor to beginning of next line

\r
Carriage return: move cursor to beginning of current line

\t
Tab: move cursor to next horizontal tab position

\v
Vertical tab: move cursor to next vertical tab position

The program below shows how escape sequences may be used in strings.

/* Escape sequences in string */

#include <stdio.h>

int main(void)

{

 printf("John said, \"Hello.\"\n");

 printf("\tThis symbol \\ is a backslash.\n");

 return 0;

}

John said, "Hello."

This symbol \ is a backslash.

9.3
Formatting Input: scanf()

The scanf() function is a general function to read data from the standard input device. The format of the function is:

scanf(format-control-string, scan-list)

The function arguments include the format-control-string, and a scan-list. Like the printf() function, the format-control-sting here contains conversion specifications that control how the input data are to be interpreted. The scan-list includes a list of addresses where the entered values are stored.

The scanf() statement is usually preceded by a printf() statement to provide prompt message, for the purpose of user-friendliness.

In this statement:

the format is matched with the expression &inch, causing the scanf() function to interpret the characters entered as a floating-point number, and store the value into the address of inch.

The scanf() function returns an integer value that is the number of successful conversions done, or the system defined end-if-value.

The list below shows the conversion specifiers used in scanf().

Conversion Specifier
Description

d
optionally signed decimal integer

i
optionally signed decimal, octal or hexadecimal integer

o
octal integer

u
unsigned decimal integer

x or X
hexadecimal integer

h or l
to indicate a short or long integer

e, E, f, g or G
floating-point value

l or L
indicate double or long double value

c
character

s
string

Study the programs below to understand how the conversion specifiers work.

/* Reading integers */

#include <stdio.h>

int main(void)

{

 int a, b, c, d, e, f, g;

 printf("Enter seven integers: ");

 scanf("%d%i%i%i%o%u%x", &a, &b, &c, &d, &e, &f, &g);

 printf("The input displayed as decimal integers is:\n");

 printf("%d %d %d %d %d %d %d\n", a, b, c, d, e, f, g);

 return 0;

}

Enter seven integers: -70 -70 070 0x70 70 70 70
The input displayed as decimal integers is:

-70 -70 56 112 56 70 112

/* Reading floating-point numbers */

#include <stdio.h>

int main(void)

{

 float a, b, c;

 printf("Enter three floating-point numbers: \n");

 scanf("%e%f%g", &a, &b, &c);

 printf("Here are the numbers entered in plain\n");

 printf("floating-point notation:\n");

 printf("%f %f %f\n", a, b, c);

 return 0;

}

Enter three floating-point numbers:

1.27987 1.27987e+03 3.38476e-06

Here are the numbers entered in plain

floating-point notation:

1.279870

1279.869995

0.000003

/* Reading characters and strings */

#include <stdio.h>

int main(void)

{

 char x, y[9];

 printf("Enter a string: ");

 scanf("%c%s", &x, y);

 printf("The input was:\n");

 printf("the character \"%c\" ", x);

 printf("and the string \"%s\"\n", y);

 return 0;

}

Enter a string: Sunday
The input was:

the character ”S” and the string ”unday”

9.3.1
Field Width

Field width may be used in a scanf() statement to specify the part of the entered data that is to be selected for conversion.

/* inputting data with a field width */

#include <stdio.h>

int main(void)

{

 int x, y;

 printf("Enter a six digit integer: ");

 scanf("%2d%d", &x, &y);

 printf("The integers input were %d and %d\n", x, y);

 return 0;

}

Enter a six digit integer: 123456
The integers input were 12 and 3456

9.3.2
Assignment Suppression Character *

Sometimes, you may want to let the user enter certain data in a familiar format (such as date) and your program discards the non-essential characters from the input. This could be done by using the assignment suppression character * in the scanf() statement, as shown below.

/* Reading and discarding characters

 from the input stream */

#include <stdio.h>

int main(void)

{

 int month1, day1, year1, month2, day2, year2;

 printf("Enter a date in the form mm-dd-yy: ");

 scanf("%d%*c%d%*c%d", &month1, &day1, &year1);

 printf("month = %d day = %d year = %d\n\n",

 month1, day1, year1);

 printf("Enter a date in the form mm/dd/yy: ");

 scanf("%d%*c%d%*c%d", &month2, &day2, &year2);

 printf("month = %d day = %d year = %d\n",

 month2, day2, year2);

 return 0;

}

Enter a date in the form mm-dd-yy: 11-18-71
month = 11 day = 18 year = 71

Enter a date in the form mm/dd/yy: 11/18/71
month = 11 day = 18 year = 71

9.4
Summary

This chapter presents printf() and scanf(), the two general functions for input and output operations.

The syntax of the functions are introduced, and the meaning and use of the various conversion specifiers are also covered.

Other input/output functions will be covered in CS1101C.

Exercises

1. Write a program that reads in two integers and determines and prints if the first is a multiple of the second. (Hint: Use the modulus operator.) Two sample dialogues are given below:

Input two integers: 88 11
88 is a multiple of 11 by a factor of 8

Input two integers: 777 5
777 is not a multiple of 5

2. Write a program that asks interactively for three non-negative integers and computes their arithmetic mean (average) and geometric mean. Display your answers in floating-point format. The geometric mean of 3 numbers a, b, c is given by:

(a * b * c)1/3

Display one of the following messages depending on the values of the arithmetic mean and geometric mean. Run your program with different sets of data. What do you notice?

Arithmetic mean is greater than geometric mean.

Arithmetic mean is equal to geometric mean.

Arithmetic mean is less than geometric mean.

3. Write a program to ask for an integer which is an amount in cents, and display the amount in $xxx.xx format. For example, if the input is 1280, then the output should be $12.80.

4. Repeat question 3. This time, you should split the dollars and cents parts and display the output in the following format. Do NOT use field width (section 9.3.1) in your code.

Amount is 12 dollars and 80 cents.

5. Write a program to read in 3 positive integers, and determine if they form the lengths of a right-angled triangle. Report ‘Yes’ or ‘No’. Test your program with different sets of data.

6. Write a program to read in 3 positive real numbers, and determine if they form the lengths of an equilateral triangle (all sides equal), an isosceles triangle (two sides equal), or a scalene triangle (all sides unequal). Report ‘Equilateral’, ‘Isosceles’ or ‘Scalene’ accordingly. Test your program with different sets of data

printf ("That equals %.2f centimetres.\n\n", cm);

 1

 12

 123

1234

12345

 -1

 -12

-123

-1234

-12345

1.234568e+06

1.234568e+06

-1.234568e+06

1.234567E+06

1234567.890000

1.23457e+06

1.23457E+06

455

455

455

-455

32000

2000000000

707

455

65081

1c7

1C7

scan-list

format-control-string

scanf ("%f", &inch);

+000452

0000452

02623

0x593

0X593

1427

1427.00

 547

–547

786

–786

+786

–786

escape sequences

conversion specification

print-list

format-control-string

21

